Sparse Network Estimation

Olga Klopp

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Joint works with

Alexandre Tsybakov

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Nicolas Verzelen

Solenne Gaucher

Network model

East-river trophic network [Yoon et al.(04)]

Approach

- Model-based statistical analysis.
- The modeling of real networks as random graphs.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Stochastic Block-Model (SBM) Holland et al. (1980)

- Fit observed networks to parametric or non-parametric models of random graphs.
- SBM popular in applications: it allows to generate graphs with a community structure
- Parameters:
 - Partition of n nodes into k disjoint groups $\{C_1, \ldots, C_k\}$
 - each node i is associated with a community z(i)
 - ▶ $z: [n] \rightarrow [k]$: the index function
 - z: a parameter to estimate (the conditional SBM), or a latent variable
 - Symmetric k × k matrix Q of inter-community edge probabilities.
 - Any two vertices $u \in C_i$ and $v \in C_j$ are connected with probability Q_{ij}
- Regularity Lemma: basic approximation units for more complex models.

Inhomogeneous random graph model

- We observe the $n \times n$ adjacency matrix $\mathbf{A} = (\mathbf{A}_{ij})$ of a graph
- A_{ij} are Bernoulli random variables with parameter Θ_{ij}
- Θ₀ is the n × n symmetric matrix with entries (Θ_{ij}) (the matrix of probabilities associated to the graph)
 - ▶ vertices i and j are connected by an edge with probability Θ_{ij} independently from any other edge

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ sparsity parameter $\rho_n = \max_{ij} \Theta_{ij} \rightarrow 0$ and $\rho_n \ge 1/n$
- Given a single observation ${f A}$, we want to estimate ${f \Theta}_0$

Minimax rate for sparse SBM in Frobenius norm

The best rate of convergence that any estimator may achieve: K., Tsybakov & Verzelen (2017)

$$\inf_{\widehat{\boldsymbol{\Theta}}} \sup_{\boldsymbol{\Theta}_0 \in \mathcal{T}[k,\rho_n]} \mathbb{E}_{\boldsymbol{\Theta}_0} \left[\frac{1}{n^2} \left\| \widehat{\boldsymbol{\Theta}} - \boldsymbol{\Theta}_0 \right\|_2^2 \right] \asymp \min\left\{ \rho_n \Big(\frac{\log k}{n} + \frac{k^2}{n^2} \Big), \rho_n^2 \right\}$$

▶ $\rho_n = 1$: Gao et al.(2014), the minimax rate over $\mathcal{T}[k, 1]$

$$\frac{k^2}{n^2} + \frac{\log k}{n}$$

$$k > \sqrt{n \log(k)} : \text{ nonparametric rate } \frac{k^2}{n^2}$$

$$k < \sqrt{n \log(k)} : \text{ clustering rate } \frac{\log k}{n}$$

Sparse network estimation problem

The optimal rates can be achieved by the Least Squares Estimator

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- But: not realizable in polynomial time
- Better choices:

...

- Maximum Likelihood Estimator
- Hard thresholding estimator

Maximum Likelihood Estimator

- ▶ Wolfe and Olhede (2013), Bickel et al (2013), Amini et al (2013), Celisse et al (2012) , Tabouy et al (2017)
- Also NP hard ...
- Computationally efficient approximations:
 - Pseudo-likelihood methods
 - Variational approximation
- Quite successful in practice

Is MLE minimax optimal?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Convergence rate for the MLE

The conditional log-likelihood:

$$\mathcal{L}(\mathbf{A}; z, \mathbf{Q}) = \sum_{i < j} \mathbf{A}_{ij} \log(\mathbf{Q}_{z(i)z(j)}) + (1 - \mathbf{A}_{ij}) \log(1 - \mathbf{Q}_{z(i)z(j)})$$

The maximum log-likelihood estimator of Θ^* :

$$(\widehat{\mathbf{Q}}, \widehat{z}) \in \operatorname*{argmax}_{Q \in [0,1]^{k imes k}, z \in \mathcal{Z}_{n,k}} \mathcal{L}(\mathbf{A}; z, \mathbf{Q}).$$

 $\mathcal{Z}_{n,k}$ the set of all possible mappings z from [n] to [k]Theorem (Gaucher & K., 2021) With high probability

$$\frac{1}{n^2} \|\boldsymbol{\Theta}_0 - \widehat{\boldsymbol{\Theta}}_{ML}\|_2^2 \le C_{\rho_n, \gamma_n} \rho_n \Big(\frac{\log k}{n} + \frac{k^2}{n^2} \Big).$$

▶
$$0 < \gamma_n \le \Theta_{ij} \le \rho_n < 1$$

▶ Minimax optimal if $\gamma_n ≍ \rho_n$

うせん 同一人用 人用 人用 人口 マ

Variational approximation

- The optimization of the likelihood function requires a search over the set of k^n labels \Rightarrow MLE is computationally intractable
- Solution: Variational approximation
 - serves to approximate the posterior
 - distributions for the unobserved variables (parameters, latent variables)
 - often hard-to-solve integrals
 - Kullback–Leibler divergency as a measure of good approximation
 - Assuming the unknown variables can be partitioned so that each partition is independent: the mean-field approximation
 - Often results in easy to compute interactive algorithms

Subhabrata's talk: variational approximation can lead to a quite accurate approximation

S. Sen's courtesy

The mean field approximation works exceptionally well for the SBM

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Variational approximation to the MLE

- Celisse et al (2008) and Bickel et al (2013): variational approximation
 - asymptotic normality for variational methods for parameter estimates of stochastic block data
- The problem of community detection: Edoardo et al (2008), Hofman et al (2008), Zhang et al (2020), Razaee et al (2019)

► Gaucher & K. (2021):

. . .

- optimal statistical accuracy
- labels recovery

SBM with random labels

- ▶ Nodes are classified into k communities:
 - each node i is associated with a community z(i)
 - ▶ $z : [n] \rightarrow [k]$: the index function
 - z: a parameter to estimate (the conditional SBM), or a latent variable
- The indexes follow a multinomial distribution:

$$\forall i \quad z(i) \stackrel{i.i.d}{\sim} \mathcal{M}(1;\alpha)$$

- $\blacktriangleright ~\forall l \in [k], ~\alpha_l$ is the probability that node i belongs to the community l
- $\alpha_k n$ is the expected size of community k
- \blacktriangleright the probabilities of connection are given by a k imes k matrix ${f Q}$
- We consider a SBM with parameters (α, \mathbf{Q}) .

Variational approximation to the MLE

- **SBM** with parameters (α, \mathbf{Q})
- ► The likelihood of the observed adjacency matrix A:

$$\mathfrak{l}(\mathbf{A};\alpha,\mathbf{Q}) = \sum_{z\in\mathcal{Z}_{n,k}} \left(\prod_{i\leq n} \alpha_{z(i)}\right) \exp\left(\mathcal{L}(\mathbf{A};z,\mathbf{Q})\right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- the maximization still requires to evaluate the expectation of the label function z by summing over kⁿ possible labels
- Solution: use the mean-field approximation

Mean-field approximation

$$\mathfrak{l}(\mathbf{A}; \alpha, \mathbf{Q}) = \sum_{z \in \mathcal{Z}_{n,k}} \left(\prod_{i \le n} \alpha_{z(i)} \right) \exp\left(\mathcal{L}(\mathbf{A}; z, \mathbf{Q}) \right).$$

- Approximate the posterior distribution of z by a simpler distribution:
 - the posterior distribution P(·|A, α, Q) is approximated by a multinomial distribution P_τ, s.t. P_τ(z) = Π_{1≤i≤n} M(z|τⁱ)

 Use the KL-divergence as a measure of how well our approximation fits the true posterior

Variational approximation to the MLE

The variational estimator:

$$\begin{pmatrix} \widehat{\alpha}^{VAR}, \widehat{\mathbf{Q}}^{VAR}, \widehat{\tau}^{VAR} \end{pmatrix} = \underset{\alpha \in \mathcal{A}, \mathbf{Q} \in \mathcal{Q}, \tau \in \mathcal{T}}{\operatorname{argmax}} \mathcal{J}(\mathbf{A}; \tau, \alpha, \mathbf{Q})$$
(1)
for $\mathcal{J}(\mathbf{A}; \tau, \alpha, \mathbf{Q}) = \mathfrak{l}(\mathbf{A}; \alpha, \mathbf{Q}) - KL(\mathbb{P}_{\tau}(\cdot) || \mathbb{P}(\cdot | \mathbf{A}, \alpha, \mathbf{Q}))$

 A, Q and T: the parameter spaces for the parameters α, Q and τ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ► *KL*: the Kullback-Leibler divergence
- $\mathcal{J}(\mathbf{A}; \tau, \alpha, \mathbf{Q})$ provides a lower bound on $\mathfrak{l}(\mathbf{A}; \alpha, \mathbf{Q})$

EM algorithm

The expectation - maximization (EM) algorithm Tabouy et al (2020):

Estimation Step: given parameters (α, Q), the variational parameter τ maximizing J(A; τ, α, Q) is given by the fixed point equation :

$$\tau_k^i \propto \alpha_k \prod_{j \neq i} \prod_{l \leq K} \left(\mathbf{Q}_{kl}^{\mathbf{A}_{ij}} \left(1 - \mathbf{Q}_{kl} \right)^{1 - \mathbf{A}_{ij}} \right)^{\tau_l^j};$$

Maximisation Step: given parameter τ, the parameters (α, Q) maximizing J(A; τ, α, Q) are given by

$$\alpha_k = \frac{\sum_i \tau_k^i}{n} \text{ , } \mathbf{Q}_{kl} = \frac{\sum_{i \neq j} \tau_k^i \tau_l^j \mathbf{A}_{ij}}{\sum_{i \neq j} \tau_k^i \tau_l^j}.$$

Statistical guarantees for the variational estimator

- Celisse et al (2008) and Bickel et al (2013):
 - $\blacktriangleright \mbox{ maximizing } \max_{\tau \in \mathcal{T}} \mathcal{J}(\mathbf{A}; \tau, \alpha, \mathbf{Q}) \mbox{ is equivalent to maximising } \mathfrak{l}(\mathbf{A}; \alpha, \mathbf{Q})$
 - ▶ the estimator obtained by maximizing $l(A; \alpha, Q)$ converges to the true parameters (α, Q)
 - $(\widehat{\alpha}^{VAR}, \widehat{\mathbf{Q}}^{VAR})$ also converges to (α, \mathbf{Q})
 - \blacktriangleright does not provide guarantees on the recovery of the true labels z

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The label estimator

$$\forall \ i \leq n, \ \widehat{z}^{VAR}(i) \triangleq \operatorname*{argmax}_{k \leq K} \left(\widehat{\tau}^{VAR} \right)_{k}^{i}$$

 \blacktriangleright Replace $\widehat{\mathbf{Q}}^{VAR}$ by the empirical mean estimator:

$$\widehat{\mathbf{Q}}_{ab}^{ML-VAR} \triangleq \frac{\sum\limits_{i \in (\widehat{z}^{VAR})^{-1}(a), j \in (\widehat{z}^{VAR})^{-1}(b), i \neq j} \mathbf{A}_{ij}}{n_{ab}}$$

$$n_{ab}(\hat{z}^{VAR}) = \begin{cases} |(\hat{z}^{VAR})^{-1}(a)| \times |(\hat{z}^{VAR})^{-1}(b)| & \text{if } a \neq b \\ |(\hat{z}^{VAR})^{-1}(a)| \times (|(\hat{z}^{VAR})^{-1}(a)| - 1) & \text{otherwise} \end{cases}$$

$$\blacktriangleright \text{ Define } \widehat{\Theta}^{VAR} \text{ as } \\ \widehat{\Theta}^{VAR}_{i\neq j} = \widehat{\mathbf{Q}}^{ML-VAR}_{\hat{z}^{VAR}(i), \hat{z}^{VAR}(j)}, \ \widehat{\Theta}^{VAR}_{ii} = 0.$$

Statistical guarantees for the variational estimator

This new estimator
$$\left(\widehat{z}^{VAR}, \widehat{\mathbf{Q}}^{ML-VAR}
ight)$$
 is minimax optimal:

Theorem (Gaucher & K., 2021)

Assume that \mathbf{Q}^0 has no identical columns and the sparsity inducing sequence ρ_n satisfies $\rho_n \gg \log(n)/n$. Then, there exists a constant $C_{\mathbf{Q}^0} > 0$ depending on \mathbf{Q}^0 such that

$$\mathbb{P}\left(\left\|\boldsymbol{\Theta}_{0}-\widehat{\boldsymbol{\Theta}}^{VAR}\right\|_{2}^{2} \leq C_{\mathbf{Q}^{0}}\rho_{n}\left(k^{2}+n\log(k)\right)\right) \underset{n \to \infty}{\to} 1$$

1.
$$\alpha = \alpha^0$$
 for some fixed α^0 such that $\alpha_a^0 > 0$ for any $a \in \{1, ..., k\}$
2. $\mathbf{Q} = \rho_n \mathbf{Q}^0$ for some fixed $\mathbf{Q}^0 \in (0, 1)^{k \times k}$ such that $\sum_{a,b=1}^k \alpha_a^0 \alpha_b^0 \mathbf{Q}_{ab}^0 = 1$

How does it work ?

- Variational approximation to the MLE has been used for estimation of (Q, α)
- We show that both the maximum likelihood estimator and its variational counterpart can perfectly recover all labels:
 - with large probability, there exists a permutation σ of $\{1, ..., K\}$ such that $(\hat{z}^{VAR}(\sigma(k)))_{k \le K} = (\hat{z}(k))_{k \le K}$

- exact recovery of the labels have already been established in this regime under more restricted assumptions (see Abbe (2018)):
 - the SBM is symmetric, assortative and has balanced communities

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Non-parametric Model

- SBM does not allow to analyze the fine structure of extremely large networks, in particular when the number of groups is growing.
- Non-parametric models of random graphs: Graphon Model
 - Graphons are symmetric measurable functions

 $W: [0,1]^2 \to [0,1].$

- Play a central role in the recent theory of graphs limits: every graph limit can be represented by a graphon.
- Graphons give a natural way of generating random graphs.

Graphon Model

Graphon Model:

• $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)$ are latent i.i.d. uniformly distributed on [0, 1].

$$\Theta_{ij} = W_0(\xi_i, \xi_j).$$

• The diagonal entries Θ_{ii} are zero and $\Theta_0 = (\Theta_{ij})$

- Given Θ₀ the graph is sampled according to the inhomogeneous random graph model:
 - vertices i and j are connected by an edge with probability \Omega_{ij} independently from any other edge.
- If W₀ is a step-function with k steps, the graph is distributed as a SBM with k groups.

Sparse Graphon Model

• The expected number of edges $\asymp n^2 \Rightarrow$ dense case.

- In real life networks often sparse
- Sparse Graphon Model:
 - Take $\rho_n > 0$ such that $\rho_n \to 0$ as $n \to \infty$.
 - The adjacency matrix A is sampled according to graphon W₀ with scaling parameter ρ_n:

$$\Theta_{ij} = \rho_n W_0(\xi_i, \xi_j), \ i < j.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $\rho_n =$ "expected proportion of non-zero edges",

• the number of edges is of the order $O(\rho_n n^2)$,

$$\triangleright \rho_n = 1$$
 dense case

•
$$\rho_n = 1/n$$
 very sparse

Graphon: invariance with respect to the change of labeling

- Graphon estimation is more challenging than probability matrix estimation
- Multiple graphons can lead to the same distribution on the space of graphs of size n.
- The topology of a network is invariant with respect to any change of labeling of its nodes
- We consider equivalence classes of graphons defining the same probability distribution on random graphs.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Loss function for graphon estimation

- Consider a sparse graphon $f(x,y) = \rho_n W(x,y)$
- $\tilde{f}(x,y)$ estimator of f(x,y)
- The squared error is defined by

$$\delta^2(f,\tilde{f}) := \inf_{\tau \in \mathcal{M}} \int \int_{(0,1)^2} |f(\tau(x),\tau(y)) - \tilde{f}(x,y)|^2 \mathrm{d}x \mathrm{d}y$$

 $\mathcal M$ is the set of all measure-preserving bijections $\tau:[0,1]\to[0,1]$

Property (Lovász 2012)

 $\delta(\cdot, \cdot)$ defines a metric on the quotient space ${\mathcal W}$ of graphons.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

From probability matrix estimation to graphon estimation

- To any n × n probability matrix Θ we can associate a graphon.
- ► Given a n×n matrix Θ with entries in [0,1], define the empirical graphon f̃_Θ as the following piecewise constant function:

$$\widetilde{f}_{\Theta}(x,y) = \Theta_{\lceil nx\rceil,\lceil ny\rceil}$$

for all x and y in (0,1].

This provides a way of deriving an estimator of the graphon function f(·, ·) = ρ_nW(·, ·) from any estimator of the probability matrix Θ₀.

From probability matrix estimation to graphon estimation

• Empirical graphon $\widetilde{f}_{\Theta}(x, y) = \Theta_{\lceil nx \rceil, \lceil ny \rceil}$.

• For any estimator $\widehat{\mathbf{T}}$ of $\mathbf{\Theta}_0$:

$$\mathbb{E}\left[\delta^{2}(\widetilde{f}_{\widehat{\mathbf{T}}}, f)\right] \leq 2\mathbb{E}\left[\frac{1}{n^{2}}\|\widehat{\mathbf{T}} - \mathbf{\Theta}_{0}\|_{F}^{2}\right] + 2\underbrace{\mathbb{E}\left[\delta^{2}\left(\widetilde{f}_{\mathbf{\Theta}_{0}}, f\right)\right]}_{\text{agnostic error}}$$

(from the triangle inequality). Here, $\tilde{f}_{\widehat{\mathbf{T}}}$ and \tilde{f}_{Θ_0} are empirical graphons.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Step function graphons: For some $k\times k$ symmetric matrix ${\bf Q}$ and some $\phi:[0,1]\to [k],$

$$W(x,y) = \mathbf{Q}_{\phi(x),\phi(y)}$$
 for all $x,y \in [0,1]$.

Theorem (K., Tsybakov and Verzelen, 2017) Consider the ρ_n -sparse step-function graphon model $\mathcal{W}[k, \rho_n]$.

$$\inf_{\widehat{f}} \sup_{f \in \mathcal{W}[k,\rho_n]} \mathbb{E}\left[\delta^2\left(\widehat{f},f\right)\right] \asymp \left[\rho_n\left(\frac{k^2}{n^2} + \frac{\log(k)}{n}\right) + \rho_n^2 \sqrt{\frac{\mathbf{k}}{\mathbf{n}}}\right]$$

Missing Links

Real-life networks are only partially observed

- Exhaustive exploration of all interactions in a network is expensive
- Survey data: non-response or drop-out of participants
- Online social network data: sub-sample of the network

A balanced modularity maximization link prediction model in social networks [Wu et al.(2017)]

Conditional maximum likelihood estimator

the log-likelihood function with respect to the observed entries of the adjacency matrix A and sampling matrix X:

$$\begin{aligned} \mathcal{L}_{\mathbf{X}}(\mathbf{A}; z, \mathbf{Q}) &= \sum_{1 \leq i < j \leq n} \mathbf{X}_{ij} \left(\mathbf{A}_{ij} \log(\mathbf{Q}_{z(i)z(j)}) \right. \\ &+ (1 - \mathbf{A}_{ij}) \log(1 - \mathbf{Q}_{z(i)z(j)}) \right) \\ &= \sum_{a \leq b} \log(\mathbf{Q}_{ab}) \sum_{\substack{i \in z^{-1}(a), \ j \in z^{-1}(b) \\ i \neq j}} \mathbf{X}_{ij} \mathbf{A}_{ij} \\ &+ \sum_{a \leq b} \log(1 - \mathbf{Q}_{ab}) \sum_{\substack{i \in z^{-1}(a), \ j \in z^{-1}(b) \\ i \neq j}} \mathbf{X}_{ij} (1 - \mathbf{A}_{ij}) \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• X_{ij} are iid Bernoulli (p)

Theorem (Gaucher & K., 2021)

Assume that \mathbf{Q}^0 has no identical columns and the sparsity inducing sequence ρ_n satisfies $\rho_n \gg \log(n)/(pn)$. Then,

$$\mathbb{P}\left(\widehat{z}^{VAR} \sim \widehat{z}\right) \to 1$$

when $n \to \infty$. Moreover, there exists a constant $C_{\mathbf{Q}^0} > 0$ depending on \mathbf{Q}^0 such that

$$\mathbb{P}\left(\left\|\boldsymbol{\Theta}^* - \widehat{\boldsymbol{\Theta}}^{VAR}\right\|_2^2 \le \frac{C_{\mathbf{Q}^0}\left(k^2 + n\log(k)\right)}{p}\right) \underset{n \to \infty}{\to} 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Empirical performances of the variational approximation of MLE

We compare the variational approximation to the MLE to

- missSBM
- softImpute
- ▶ the oracle estimator with knowledge of the label z^*

Robustness against sparsity and missing observations

Error of connection probabilities estimation as a function of the sparsity parameter ρ and of the sampling rate p (n = 500):

Robustness against sparsity

Robustness against missing observations.

イロト 不得 トイヨト イヨト

3

Interactions within a elementary school

- Network of interactions within a French elementary school Stehle et al (2011) :
 - Physical interactions between 222 children divided into 10 classes and their 10 teachers
 - Two consecutive days
 - Homogeneous degrees (the maximum degree is 41, the minimum degree is 5 and the mean degree is 20)
 - Strong community structure. Therefore, we expect the networks of interactions to be well approximated by a stochastic block model
- Two outcomes of the same random network model:
 - We use the observations collected on Day 1 to estimate the matrix Θ*
 - Evaluate the estimators on the network of Day 2

Interactions within a elementary school

Estimator	$\widehat{\mathbf{\Theta}}^{VAR}$	$\widehat{oldsymbol{\Theta}}^{missSBM}$	$\widehat{\mathbf{\Theta}}^{SVT}$	$\widehat{\mathbf{\Theta}}^{naive}$
$\ \mathbf{X}\odot(\mathbf{A}-\widehat{\mathbf{\Theta}})\ _2^2/\ \mathbf{X}\odot\mathbf{A}\ _2^2$	0.312	0.317	0.357	0.541

Table: Normalized squared distance between the observed adjacency matrix for the network on interaction on Day 2, and its predicted value.

- The naive estimator $\widehat{\Theta}^{naive}$:
 - $\blacktriangleright \ \widehat{\Theta}_{ij}^{naive} = 1$ if an interaction between i and j has been recorded on Day 1
 - $\widehat{\Theta}^{naive} = 0$ if no such interaction has been recorded
 - $\widehat{\Theta}_{ij}^{naive} = d/n$ if the information is missing, where d is the average degree of the graph for Day 1.

Conclusion

Least Squares Estimator:

attains the optimal rates in a minimax sense

not realizable in polynomial time

(variational) MLE:

minimax optimal

allows labels recovery

Variational MLE has good performances in practice

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Can be used for Link Prediction

Thank You !

<ロト (四) (三) (三) (三) (三)