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Network model

East-river trophic network [Yoon et al.(04)]

Approach

▶ Model-based statistical
analysis.

▶ The modeling of real
networks as random
graphs.



Stochastic Block-Model (SBM) Holland et al. (1980)

▶ Fit observed networks to parametric or non-parametric models
of random graphs.

▶ SBM popular in applications: it allows to generate graphs
with a community structure

▶ Parameters:

▶ Partition of n nodes into k disjoint groups {C1, . . . , Ck}

▶ each node i is associated with a community z(i)
▶ z : [n] → [k]: the index function
▶ z: a parameter to estimate (the conditional SBM), or a latent

variable

▶ Symmetric k × k matrix Q of inter-community edge
probabilities.

▶ Any two vertices u ∈ Ci and v ∈ Cj are connected with
probability Qij

▶ Regularity Lemma: basic approximation units for more
complex models.



Inhomogeneous random graph model

▶ We observe the n×n adjacency matrix A = (Aij) of a graph

▶ Aij are Bernoulli random variables with parameter Θij

▶ Θ0 is the n× n symmetric matrix with entries (Θij) (the
matrix of probabilities associated to the graph)

▶ vertices i and j are connected by an edge with probability Θij

independently from any other edge

▶ sparsity parameter ρn = max
ij

Θij → 0 and ρn ≥ 1/n

▶ Given a single observation A, we want to estimate Θ0



Minimax rate for sparse SBM in Frobenius norm

The best rate of convergence that any estimator may achieve:

K., Tsybakov & Verzelen (2017)
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Sparse network estimation problem

▶ The optimal rates can be achieved by the Least Squares
Estimator

▶ But: not realizable in polynomial time

▶ Better choices:

▶ Maximum Likelihood Estimator

▶ Hard thresholding estimator

▶ ...



Maximum Likelihood Estimator

▶ Wolfe and Olhede (2013), Bickel et al (2013), Amini et
al (2013), Celisse et al (2012) , Tabouy et al (2017) ...

▶ Also NP hard ...

▶ Computationally efficient approximations:

▶ Pseudo-likelihood methods

▶ Variational approximation

▶ Quite successful in practice

Is MLE minimax optimal?



Convergence rate for the MLE

The conditional log-likelihood:

L(A; z,Q) =
∑
i<j

Aij log(Qz(i)z(j)) + (1−Aij) log(1−Qz(i)z(j))

The maximum log-likelihood estimator of Θ∗:

(Q̂, ẑ) ∈ argmax
Q∈[0,1]k×k,z∈Zn,k

L(A; z,Q).

Zn,k the set of all possible mappings z from [n] to [k]

Theorem (Gaucher & K., 2021)
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▶ 0 < γn ≤ Θij ≤ ρn < 1
▶ Minimax optimal if γn ≍ ρn



Variational approximation

▶ The optimization of the likelihood function requires a search
over the set of kn labels ⇒ MLE is computationally
intractable

▶ Solution: Variational approximation

▶ serves to approximate the posterior

▶ distributions for the unobserved variables (parameters, latent
variables)

▶ often hard-to-solve integrals

▶ Kullback–Leibler divergency as a measure of good
approximation

▶ Assuming the unknown variables can be partitioned so that
each partition is independent: the mean-field approximation

▶ Often results in easy to compute interactive algorithms



Subhabrata’s talk: variational approximation can lead to a quite
accurate approximation

ΘP (εn)

S. Sen’s courtesy

The mean field approximation works exceptionally well for the SBM



Variational approximation to the MLE

▶ Celisse et al (2008) and Bickel et al (2013): variational
approximation

▶ asymptotic normality for variational methods for parameter
estimates of stochastic block data

▶ The problem of community detection: Edoardo et al (2008),
Hofman et al (2008), Zhang et al (2020), Razaee et al (2019)
. . .

▶ Gaucher & K. (2021):

▶ optimal statistical accuracy

▶ labels recovery



SBM with random labels

▶ Nodes are classified into k communities:

▶ each node i is associated with a community z(i)

▶ z : [n] → [k]: the index function

▶ z: a parameter to estimate (the conditional SBM), or a latent
variable

▶ The indexes follow a multinomial distribution:

∀i z(i)
i.i.d∼ M(1;α)

▶ ∀l ∈ [k], αl is the probability that node i belongs to the
community l

▶ αkn is the expected size of community k

▶ the probabilities of connection are given by a k × k matrix Q

▶ We consider a SBM with parameters (α,Q).



Variational approximation to the MLE

▶ SBM with parameters (α,Q)

▶ The likelihood of the observed adjacency matrix A:

l(A;α,Q) =
∑

z∈Zn,k

∏
i≤n

αz(i)

 exp (L(A; z,Q)) .

▶ the maximization still requires to evaluate the expectation of
the label function z by summing over kn possible labels

▶ Solution: use the mean-field approximation



Mean-field approximation

l(A;α,Q) =
∑

z∈Zn,k

∏
i≤n

αz(i)

 exp (L(A; z,Q)) .

▶ Approximate the posterior distribution of z by a simpler
distribution:

▶ the posterior distribution P (·|A, α,Q) is approximated by a
multinomial distribution Pτ , s.t. Pτ (z) =

∏
1≤i≤n M(z|τ i)

▶ τ i =
(
τ i1, ..., τ

i
K

)
▶ τ =

(
τ1, ..., τn

)
▶ Use the KL-divergence as a measure of how well our

approximation fits the true posterior



Variational approximation to the MLE

The variational estimator:(
α̂V AR, Q̂V AR, τ̂V AR

)
= argmax

α∈A,Q∈Q,τ∈T
J (A; τ, α,Q) (1)

for J (A; τ, α,Q) = l(A;α,Q)−KL (Pτ (·)||P (·|A, α,Q))

▶ A, Q and T : the parameter spaces for the parameters α, Q
and τ

▶ KL: the Kullback-Leibler divergence

▶ J (A; τ, α,Q) provides a lower bound on l(A;α,Q)



EM algorithm

The expectation - maximization (EM) algorithm Tabouy et al
(2020):

▶ Estimation Step: given parameters (α,Q), the variational
parameter τ maximizing J (A; τ, α,Q) is given by the fixed
point equation :
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∏
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∏
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Statistical guarantees for the variational estimator

▶ Celisse et al ( 2008) and Bickel et al (2013):

▶ maximizing maxτ∈T J (A; τ, α,Q) is equivalent to maximising
l(A;α,Q)

▶ the estimator obtained by maximizing l(A;α,Q) converges to
the true parameters (α,Q)

▶ (α̂V AR, Q̂V AR) also converges to (α,Q)

▶ does not provide guarantees on the recovery of the true labels z



The label estimator

▶ The label estimator ẑV AR:

∀ i ≤ n, ẑV AR(i) ≜ argmax
k≤K

(
τ̂V AR

)i
k

▶ Replace Q̂V AR by the empirical mean estimator:

Q̂ML−V AR
ab ≜

∑
i∈(ẑV AR)−1(a),j∈(ẑV AR)−1(b),i ̸=j

Aij

nab

▶

nab(ẑ
V AR) =

{
|(ẑV AR)−1(a)| × |(ẑV AR)−1(b)| if a ̸= b
|(ẑV AR)−1(a)| ×

(
|(ẑV AR)−1(a)| − 1

)
otherwise

▶ Define Θ̂
V AR

as

Θ̂
V AR

i ̸=j = Q̂ML−V AR
ẑV AR(i),ẑV AR(j)

, Θ̂
V AR

ii = 0.



Statistical guarantees for the variational estimator

This new estimator
(
ẑV AR, Q̂ML−V AR

)
is minimax optimal:

Theorem (Gaucher & K., 2021)

Assume that Q0 has no identical columns and the sparsity inducing
sequence ρn satisfies ρn ≫ log(n)/n. Then, there exists a
constant CQ0 > 0 depending on Q0 such that
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2
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(
k2 + n log(k)
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→
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1. α = α0 for some fixed α0 such that α0
a > 0 for any

a ∈ {1, ..., k}
2. Q = ρnQ
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0
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0
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How does it work ?

▶ Variational approximation to the MLE has been used for
estimation of (Q, α)

▶ We show that both the maximum likelihood estimator
and its variational counterpart can perfectly recover all
labels:

▶ with large probability, there exists a permutation σ of
{1, ...,K} such that

(
ẑV AR(σ(k))

)
k≤K

= (ẑ(k))k≤K

▶ (under certain conditions) MLE recovers the true labels

▶ exact recovery of the labels have already been established in
this regime under more restricted assumptions (see Abbe
(2018)):

▶ the SBM is symmetric, assortative and has balanced
communities



Non-parametric Model

▶ SBM does not allow to analyze the fine structure of extremely
large networks, in particular when the number of groups is
growing.

▶ Non-parametric models of random graphs: Graphon Model

▶ Graphons are symmetric measurable functions

W : [0, 1]2 → [0, 1].

▶ Play a central role in the recent theory of graphs limits: every
graph limit can be represented by a graphon.

▶ Graphons give a natural way of generating random graphs.



Graphon Model

▶ Graphon Model:

▶ ξ = (ξ1, . . . , ξn) are latent i.i.d. uniformly distributed on [0, 1].

Θij = W0(ξi, ξj).

▶ The diagonal entries Θii are zero and Θ0 = (Θij)

▶ Given Θ0 the graph is sampled according to the
inhomogeneous random graph model:

▶ vertices i and j are connected by an edge with probability Θij

independently from any other edge.

▶ If W0 is a step-function with k steps, the graph is distributed
as a SBM with k groups.



Sparse Graphon Model

▶ The expected number of edges ≍ n2 ⇒ dense case.

▶ In real life networks often sparse

▶ Sparse Graphon Model:

▶ Take ρn > 0 such that ρn → 0 as n → ∞.

▶ The adjacency matrix A is sampled according to graphon W0

with scaling parameter ρn:

Θij = ρnW0(ξi, ξj), i < j.

▶ ρn = “expected proportion of non-zero edges”,

▶ the number of edges is of the order O(ρnn
2),

▶ ρn = 1 dense case

▶ ρn = 1/n very sparse



Graphon: invariance with respect to the change of labeling

▶ Graphon estimation is more challenging than probability
matrix estimation

▶ Multiple graphons can lead to the same distribution on the
space of graphs of size n.

▶ The topology of a network is invariant with respect to any
change of labeling of its nodes

▶ We consider equivalence classes of graphons defining the
same probability distribution on random graphs.



Loss function for graphon estimation

▶ Consider a sparse graphon f(x, y) = ρnW (x, y)

▶ f̃(x, y) estimator of f(x, y)

▶ The squared error is defined by

δ2(f, f̃) := inf
τ∈M

∫ ∫
(0,1)2

|f(τ(x), τ(y))− f̃(x, y)|2dxdy

M is the set of all measure-preserving bijections
τ : [0, 1] → [0, 1]

Property (Lovász 2012)

δ(·, ·) defines a metric on the quotient space W of graphons.



From probability matrix estimation to graphon estimation

▶ To any n× n probability matrix Θ we can associate a
graphon.

▶ Given a n× n matrix Θ with entries in [0, 1], define the
empirical graphon f̃Θ as the following piecewise constant
function:

f̃Θ(x, y) = Θ⌈nx⌉,⌈ny⌉

for all x and y in (0, 1].
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▶ This provides a way of deriving an estimator of the graphon
function f(·, ·) = ρnW (·, ·) from any estimator of the
probability matrix Θ0.



From probability matrix estimation to graphon estimation

▶ Empirical graphon f̃Θ(x, y) = Θ⌈nx⌉,⌈ny⌉.

▶ For any estimator T̂ of Θ0 :

E
[
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, f)
]
≤ 2E
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]
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︸ ︷︷ ︸
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(from the triangle inequality). Here, f̃
T̂

and f̃Θ0 are empirical
graphons.



Bound for the δ-risk of step-function graphon

Step function graphons: For some k × k symmetric matrix Q
and some ϕ : [0, 1] → [k],

W (x, y) = Qϕ(x),ϕ(y) for all x, y ∈ [0, 1] .

Theorem (K., Tsybakov and Verzelen, 2017)

Consider the ρn-sparse step-function graphon model W[k, ρn].
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Missing Links

Real-life networks are only partially observed

▶ Exhaustive exploration of all interactions in a network is
expensive

▶ Survey data: non-response or drop-out of participants

▶ Online social network data: sub-sample of the network

A balanced modularity maximization link prediction model in social networks [Wu et al.(2017)]



Conditional maximum likelihood estimator

▶ the log-likelihood function with respect to the observed entries
of the adjacency matrix A and sampling matrix X:

LX(A; z,Q) =
∑

1≤i<j≤n

Xij

(
Aij log(Qz(i)z(j))

+(1−Aij) log(1−Qz(i)z(j))
)

=
∑
a≤b

log(Qab)
∑

i∈z−1(a), j∈z−1(b)
i̸=j

XijAij

+
∑
a≤b

log(1−Qab)
∑

i∈z−1(a), j∈z−1(b)
i̸=j

Xij(1−Aij)

▶ Xij are iid Bernoulli (p)



Theorem (Gaucher & K., 2021)

Assume that Q0 has no identical columns and the sparsity inducing
sequence ρn satisfies ρn ≫ log(n)/(pn). Then,

P
(
ẑV AR ∼ ẑ

)
→ 1

when n → ∞. Moreover, there exists a constant CQ0 > 0
depending on Q0 such that

P
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2
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→
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Empirical performances of the variational approximation of
MLE

We compare the variational approximation to the MLE to

▶ missSBM

▶ softImpute

▶ the oracle estimator with knowledge of the label z∗

Assortative SBM Mixed SBM



Robustness against sparsity and missing observations

Error of connection probabilities estimation as a function of the
sparsity parameter ρ and of the sampling rate p (n = 500):

Robustness against sparsity Robustness against missing observations.



Interactions within a elementary school

▶ Network of interactions within a French elementary school
Stehle et al ( 2011) :
▶ Physical interactions between 222 children divided into 10

classes and their 10 teachers

▶ Two consecutive days

▶ Homogeneous degrees (the maximum degree is 41, the
minimum degree is 5 and the mean degree is 20)

▶ Strong community structure. Therefore, we expect the
networks of interactions to be well approximated by a
stochastic block model

▶ Two outcomes of the same random network model:

▶ We use the observations collected on Day 1 to estimate the
matrix Θ∗

▶ Evaluate the estimators on the network of Day 2



Interactions within a elementary school

Estimator Θ̂
V AR

Θ̂
missSBM

Θ̂
SV T

Θ̂
naive

∥X⊙ (A− Θ̂)∥22
/
∥X⊙A∥22 0.312 0.317 0.357 0.541

Table: Normalized squared distance between the observed adjacency
matrix for the network on interaction on Day 2, and its predicted value.

▶ The naive estimator Θ̂
naive

:

▶ Θ̂
naive

ij = 1 if an interaction between i and j has been
recorded on Day 1

▶ Θ̂
naive

= 0 if no such interaction has been recorded

▶ Θ̂
naive

ij = d/n if the information is missing, where d is the
average degree of the graph for Day 1.



Conclusion

▶ Least Squares Estimator:
▶ attains the optimal rates in a minimax sense

▶ not realizable in polynomial time

▶ (variational) MLE:
▶ minimax optimal

▶ allows labels recovery

▶ Variational MLE has good performances in practice

▶ Can be used for Link Prediction



Thank You !
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