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Dense graph limits

Graph limits for dense graphs and the associated classical graphon
representation emerged as a subfield of graph theory about 15
years ago. The theory immediately spurred wide interest due to its
wide interdisciplinary connections. See the book by Lovász (2012)
and the book by van der Hofstad (2017, 2023) and the many
references therein.

Graphon space W is the space of all symmetric measurable
functions h(x , y) from [0, 1]2 into [0, 1]. The interval [0, 1]
represents a ‘continuum’ of vertices, and h(x , y) denotes the
probability of putting an edge between x and y .



For classical graphons, there are several quite different ways to
define topology and convergence: left convergence (convergence of
local properties), right convergence (convergence of global
properties), metric convergence, convergence of quotients, etc.

The space of classical graphons (modulo equivalence) is compact,
and the different notions of dense graph convergence are all
equivalent under some technical conditions. See Borgs, Chayes,
Lovász, Sós, and Vesztergombi (2008, 2012) and Chatterjee and
Diaconis (2013).

*Many people made contributions from the statistical physics
perspective. See the papers by den Hollander, Radin, ...



The following figure gives a visual realization of the convergence of
a sequence of dense graphs and the limiting graphon. We can
think of these pixel pictures as representations of graphs where
each pixel indicates the presence, black, or absence, white, of an
edge. As the number of vertices increases without bound, the
limiting pixel picture is a representation of the measurable function.



Sparse graph limits

The original graph limit theory however did not apply to many
real-world networks, since the theory dealt with dense graphs while
networks in the real world tend to be sparser.

We survey the limiting constructions introduced in Veitch and Roy
(2015, 2019), Herlau, Schmidt, and Mørup (2016), Borgs, Chayes,
Cohn, and Holden (2017), Janson (2017), and Borgs, Chayes,
Dhara, and Sen (2019).

Alternative limiting constructions were introduced in Bollobás and
Riordan (2009) and Borgs, Chayes, Cohn, and Zhao (2019).

*Consistent estimation using graphons were carried out in Wolfe
and Olhede (2013), Mukherjee (2020), and Bhattacharya and
Ramanan (2021), and the work of many others from the statistics
community. Quite a number of the experts are in attendance at
this workshop!



From array to measure:

Sequences of dense graphs sampled from a possibly random
graphon are characterized by a natural notion of exchangeability
via the Aldous-Hoover exchangeable arrays (1979, 1981).

Analogously, the sparse graph limit theory may be built on
exchangeable random measures. See Kallenberg’s representation
theorem (2002, 2005) and a first step in this direction in Caron
and Fox (2014).

*Not all random graphs may be addressed by this “exchangeable”
theory, for example the Barabási-Albert preferential attachment
model or the model discussed by Lutz Warnke on Wednesday.



Reformulating the Kallenberg representation theorem for graphs:

A random graph is characterized by three (potentially random)
components: a non-negative real I in R+, an integrable function
S : R+ → R+, and a symmetric measurable function
W : R2

+ → [0, 1] that satisfies several weak integrability conditions.
The triple (I ,S ,W ) is called a graphex (or simply, a (generalized)
graphon). W is the main component of the graphex, and often
I = S = 0.

This construction can be extended further to σ-finite measure
space.



Generating a random graph from the graphex W :

Take realizations of independent unit-rate Poisson processes
Ξ = {(θi , υi )}i on R2

+. θi ’s are potential vertex labels.
Independently an edge is placed in between (θi , θj) with probability
W (υi , υj). Typically we only keep non-isolated vertices born before
a certain time (whose vertex labels are below some threshold).

S and I , should they be non-zero, would respectively contribute
the stars and isolated edges of the random graph and are of minor
interest relatively.

The generated graphs are projective and grow over time.
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Kallenberg exchangeable graph (simple illustration).



Main takeaway:

The generated random graph is dense if and only if the
corresponding integrable graphex has compact support (i.e. the
graphex is equal to the dilation of some classical graphon). The
classical graphon model is a special case of the graphex model.

The distinction that allows for more general graphs in the
Kallenberg exchangeable graphs setting is that the latent variables
υi associated with each vertex θi are not independent, and the
sizes of the graphs are random.

The space of probability distributions on dense graphs can be
parameterized by the space of graphons. The space of probability
distributions on sparse graphs can be parameterized by the space
of graphexes. Graphons and graphexes are respectively the ergodic
measures in the family of distributions.

*Please recall Peter Orbanz’s very informative talk on Tuesday for
background on ergodic measures!



Modes of metric convergence for exchangeable random graphs:

• Cut metric (dense graphs): W (x , y).

δ□(W1,W2)

= inf
σ1,σ2

sup
S,T⊆R+

∣∣ ∫
S×T

(W σ1
1 (x , y)−W σ2

2 (x , y)) dxdy
∣∣.

• Rescaled cut metric (sparse graphs): ∥W ∥−1
1 W (x , y).

• Stretched cut metric (sparse graphs):

W
(
∥W ∥1/21 x , ∥W ∥1/21 y

)
.

• And more...

We are particularly interested in the stretched cut metric as it
strips away the size information of the observed graph
(alternatively, graph size is unobserved).



Classical, rescaled, and stretched graphons.



A toy example

We now investigate a power-law random graph model and cast it
in the sparse graph limit theory framework. As discussed in Yin
(2022), intriguing phenomena arise even in this näıve-looking
model, as we will soon see.

Our model is closely connected to a motivating example in Borgs,
Chayes, Cohn, and Zhao (2019). We introduce their model first
and our model next.



The original model in Borgs, Chayes, Cohn, and Zhao (2019):

Consider a discrete graph of n vertices numbered 1 through n.
Connect vertices i , j with probability

pn(i , j) = min
{
1, nβ−2/α(i/n)−1/α(j/n)−1/α

}
,

where α > 1 and β ∈ (0, 2/α) are parameters.

Intuitively, the edge connection probability between vertices i , j
behaves like (ij)−1/α, but boosted by a factor of nβ in case it
becomes too small.



The graph is sparse with expected edge density nβ−2/α.

The limiting graphon in the rescaled cut metric is

W r (x , y) = (1− 1/α)2(xy)−1/α,

which lies in Lp([0, 1])2 for any p < α.



The adapted model in Yin (2022):

Consider a discrete graph of n vertices numbered 1 through n.
Connect vertices i , j with probability

pn(i , j) = 1{XiXj/an>1},

where an = n−β+2/α is a parameter, Xi
d
= U

−1/α
i , and Ui are i.i.d.

(0, 1)-uniform random variables.

Graphs may be equivalently formulated as adjacency measures, and
there are standard Poisson convergence results at the critical
regime (an ∼ n2/α): A typical realization of this adapted model
exhibits a small clique and large numbers of follower vertices
asymptotically. See Dabrowski, Dehling, Mikosch, and Sharipov
(2002). The limit structure of the model away from criticality on
the other hand is less understood, and will be the central focus of
this talk.



Original model: a power-law random graph with Bernoulli edges

Adapted model: a power-law random graph without Bernoulli
edges

Difference between the two models lies in the edge connection
probability:

min
{
1, nβ−2/α(i/n)−1/α(j/n)−1/α

}
→ min

{
1,

XiXj

an

}
→ 1{Xi Xj

an
>1

},
where an = n−β+2/α.

The parameter range α > 1 and β > 0 in the original model
translates to α > 1 and an ≪ n2/α in the adapted model, and will
be referred to as the super-critical regime in a moment.



The first step in the adaptation continualizes the discrete
normalized vertex labels into a uniform measure, and implicitly
relabels the vertices 1, . . . , n using the order statistics of their
associated random variables X1, . . . ,Xn, the latter not having a
real impact on the structure of the graph.

The second step in the adaptation is more significant. For edges
that our adapted model connects, the original model connects them
too. Call these “hard edges”. However, the original construction is
not that strict with those edges that we drop. Instead they choose
whether to connect them or not depending on a Bernoulli sampling
probability between [0, 1]. Call these “Bernoulli edges”.



We introduce an auxiliary parameter γ > 0 and set aαn = nγ log n.
The sub-critical regime an ≫ n2/α translates to γ ≥ 2 and the
super-critical regime an ≪ n2/α translates to γ < 2. (The log n
factor is not essential and more for technical convenience.)

Recall that the critical regime corresponds to an ∼ n2/α.

In the sub-critical regime, we will show that although there is no
graph in the limit, in the rare event that we do see a non-empty
graph, typically it contains exactly one edge. Contrarily, in the
super-critical regime, we will show that a limit random graph exists
in the stretched cut metric, and universality emerges in the limiting
graphon.
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Some simulations of the empirical graphons of our adapted model.
Vertices are labeled according to decreasing vertex values.



First estimates:

Given a realization X1, . . . ,Xn of vertex values and a chosen
normalization an, we group the non-isolated vertices of the graph
into two parts depending on whether Xi >

√
an or Xi ≤

√
an,

respectively referred to as “clique” and “followers”. Since two
vertices only get connected when the product of their vertex values
exceeds an, a split graph is produced, as vertices are all connected
within the clique and form a complete subgraph, while follower
vertices can only be connected to clique vertices but not to
themselves.



A split graph: clique vs. followers.



Straightforward calculations:

We compute the expected number of edges of the random graph:

E|En| ∼
γ

2
n2−γ ,

and the expected number of non-isolated vertices of the random
graph:

E|Vn| ∼


0 γ > 2,

(γ − 1)n2−γ γ ∈ (1, 2],

n log log n
log n γ = 1,

n γ ∈ (0, 1).



The sub-critical regime (γ ≥ 2):

Let Kn,0 denote the number of vertices with large weight (vertex
value >

√
an). It is Binomial distributed with parameter(

n, a
−α/2
n

)
. These vertices are clique vertices if they are in

addition non-isolated.

The conditional law of L(Kn,0 | Kn,0 ≥ 1) is:

P (Kn,0 ≥ 1) ∼ P (Kn,0 = 1) ∼ n1−γ/2

log1/2 n
,

Therefore, given the appearance of a non-trivial random graph, the
clique part (conditioning on non-empty) typically only contains one
vertex.



Fine point:

P (Kn,0 = 1) does not necessarily imply the appearance of a star
graph as the edge number may still be zero. Let Kn,1 denote the
number of follower vertices. Then

P (one clique vertex) ∼ P (one clique vertex,Kn,1 = 1)

∼
(γ
2
− 1

)
n2−γ .

Conclusion: Given that the graph is non-empty, in the limit
predominantly it has exactly two vertices, one clique vertex and
one follower vertex.



Physical interpretation:

For a typical behavior, with probability going to one we would not
see any graph eventually. In the rare event that we do see one, we
would need certain “extra energy” (than typical) to push some of
the Xi values up, and the most “economical” way to do so is to
push one up to the clique and another up as a follower. Pushing
up two to the clique or pushing up more than one follower or any
other construction, by comparison, might be too costly.

*To infuse physical intuition into math models, Frank den
Hollander and Charles Radin are good sources!



The super-critical regime (γ < 2):

Let Kn,0 denote the number of vertices with large weight (vertex
value >

√
an).

Height function: For 0 ≤ x ≤ 1, let Hn(x) denote the number of
not-in-clique vertices that are connected to the top ⌈xKn,0⌉ clique
vertices, where clique vertices are ordered according to increasing
vertex values. (More technical details later...)

• Hn(1) is the number of followers of the leader from the clique.

• Hn(0) ≡ 0 by convention.



Main Theorem:

1√
EKn,0

{
Hn(x)− EKn,0 ·

x

1− x

}
x∈[0,1)

f .d .d .⇒
{
Bx/(1−x) +Gx

}
x∈[0,1) ,

where f .d .d . indicates convergence of finite-dimensional
distributions, {Bt}t∈[0,∞) is a standard Brownian motion,
{Gx}x∈[0,1) is a generalized Brownian bridge with covariance
function

Cov (Gx ,Gy ) =
min(x , y)(1−max(x , y))

(1− x)2(1− y)2
, x , y ∈ [0, 1),

and B and G are independent.

*Svante Janson strengthened f .d .d . to process convergence in the
Skorokhod topology in the space D[0, 1) (personal
communications).



Implications of Main Theorem:

EHn(x) ∼ EKn,0
x

1− x
,

VarHn(x) ∼ EKn,0
x

1− x

(
1 +

1

(1− x)2

)
.

Switching from increasing to decreasing order statistics introduces
a simple transformation x 7→ 1− x , so the boundary line

h(x) = 1 + lim
n→∞

EHn(x)

EKn,0
=

1

x
.

Having the same asymptotic order for the expected value and the
variance of the height function Hn(x) also explains why the
simulations look so regular.



Further implications of Main Theorem:

Let Wn denote the graphon of our model with n vertices without
scaling, i.e. a {0, 1}-valued function on [0, n]2. We have

Wn (EKn,0 · x , EKn,0 · y) → W s(x , y) = 1{xy≤1}, x , y ∈ (0,∞).

This is a universal result independent of the parameters.

Recall that ∥Wn∥1 = E|En| ∼ (γ/2)n2−γ while
EKn,0 ∼ n1−γ/2/(log n)1/2. In the super-critical regime where there
is a non-trivial random graph in the limit, our adapted model may
be viewed as an example that lies at the boundary of stretched
convergence.



Idea of proof:

Recall that Xi
d
= U

−1/α
i and Ui are i.i.d. (0, 1)-uniform random

variables. Introduce two i.i.d. sequences of random variables:
{Yn,i}i∈N are i.i.d. with law as L(X1 | X1 >

√
an) and {Zn,i}i∈N are

i.i.d. with law as L(X1 | X1 ≤
√
an) (with scaling adjustment).

We order {Yn,i}i=1,...,Kn in increasing order statistics

Yn,Kn:Kn > · · · > Yn,1:Kn >
√
an >

an
Yn,1:Kn

> · · · > an
Yn,Kn:Kn

,

where listed on the right hand side of
√
an are the thresholds for

different groups of followers.



For x ∈ (0, 1), define

τn(x) =
an

Yn,⌈xKn⌉:Kn

, Bn,i (x) = 1{Zn,i>τn(x)}.

The height function may be written as

Hn(x) =
n−Kn∑
i=1

Bn,i (x).

We then study the order statistics of Y−1
n,i and nested Bernoulli

random variables Bn,i (x), utilizing convergence of quantile
processes in Shorack (1972, 1973).



More details:

Introduce Kn := σ(Kn,Yn,1, . . . ,Yn,Kn). Then

n−Kn∑
i=1

(Bn,i (x)− E(Bn,i (x)|Kn))

contributes to the B part (Brownian motion), and the difference
between the above expression and Hn(x) contributes to the G part
(Brownian bridge).

*Recall Bhaswar Bhattacharya’s talk on Monday and Siva
Athreya’s talk on Thursday for more background on these
methods. They are experts!



Some remarks: Let W (x , y) = 1{xy≤1}.

• W (x , y) is not L1-integrable and so does not exactly fit in the
stretched convergence framework as discussed in Borgs,
Chayes, Cohn, and Holden (2017).

• W (x , y) is however locally finite and satisfies weak
integrability conditions as discussed in Veitch and Roy (2015,
2019), with graphex marginal µW (x) = 1/x .

• After scaling with EKn,0, the explicit asymptotics for this toy
model agree well with the generic formulas in Veitch and Roy
(2015, 2019), including the number of edges, non-isolated
vertices, and degree distribution.

• Certain technical conditions of the toy model may be relaxed,
for example, distributions with regularly varying tail.

• The Brownian phenomenon is intriguing. Is this purely
conincidental? Intimately tied to “hard edges”? Some
intuitive arguments are suggested by Svante Janson.
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Thank You! Questions?


