

Outline

Brief motivation and structure Bud detection in dynamic networks Change point detertion Co-evolving networks In collaboration with Sayan Banerjee, Jain Carmichael and Zoe Huang

Structure of talk

- For each problem area I will describe the motivation of the area in words - 9 will describe our specific contributions

https://theconversation.com/patient-zero-why-its-such-a-toxic-term-134721

Our motivation in words - Dynamic network storted with a single node ("patient zero") or seed graph at time zero. - Observe network when it is of large size e.g. n=10⁶. with no temporal information only network topology (adjacency matrix) - Have a bixed budget say K= 30. - GOAL: Output 30 vertices such that with high prob. seed is in the output.

Change Point Delection

Source: Associated Press

Our motivation in words

- Suppose you have temporal network data. - Ex: Adjacency matrix at all or sub-sample of time points - Ez: Jime series observations at each node etc - Suppose network experiences a chock at some point. - Can we detect this change point forom observations? - Changes in structural properties of the system?

Network Co-evolution; our motivation - Most real world networks support some particular purpose leg diffusion of information on Twiller) Individuals Co- evolution: Network influences net works Individuals influence

- Jill date majority of models deal either with - Dynamics on a fixed network (e.g. random walk or epidemics on a fixed network). - Dynamics "Of" a notwork: Network itself changing in some tashion. - Howewr bupt these two disciplines largely " seperate". Most network practitioners believe co-evolving networks is the next prontier. Goal: Understand conjectured phase transitions in one tractable model

https://theconversation.com/patient-zero-why-its-such-a-toxic-term-134721

Our motivation in words - Dynamic network storted with a single node ("patient zero") or seed graph at time zero. - Observe network when it is of large size e.g. n=10⁶. with no temporal information only network topology (adjacency matrix) - Have a bixed budget say K= 30. - GOAL: Output 30 vertices such that with high prob. seed is in the output.

Probabilistic boundations

- Network model : Fix attachment bunchon f. Start with Ringer Read. - At each stage new vertex enters system. Connects to one pre-existing vertex

Probability connecting to a vertex u in the system proportional to f(degree (u)).

- $T_n =$ network of size n

SIMULATION (n = 3000 ?)

Example f(k)=k Preferential attachment \square

Simulation (n = 5000)

Setup:

- G: space of equivalence classes (upto isomorphisms) of finite unlabelled graphs.
- For finite labelled graph \mathcal{G} : \mathcal{G}° for the isomorphism class of \mathcal{G} in **G**.
- Root finding algorithm: Fix K ≥ 1 and a mapping H_K on G that takes an input finite unlabelled graph g ∈ G and outputs a subset of K vertices from g.

Root finding algorithms

Let $\{\mathcal{G}_n : n \ge 0\}$ be a sequence of growing random networks. Fix $0 < \varepsilon < 1$ and $K \ge 1$. A mapping H_K is called a budget K root finding algorithm with error tolerance ε for the sequence of networks if,

 $\liminf_{n\to\infty}\mathbb{P}(1\in H_{\mathcal{K}}(\mathcal{G}_n^\circ))\geq 1-\varepsilon.$

Question: can we choose K independent of n? Dependence on ε ?

Class of seed detection algorithms

- Contrality based measures - For each vertex obtain some measure of centrality so collection of numbers ξφ(u) : u= vertex in 2ng - Example: - Degree centrality: φ(u) = degree of u - εigen-vector centrality - Centroid or Jordan centrality

ALGORITHM

_ Suppose budget = K - Output the "top" K vertices (Could be smallest or largest depending on the measure) - bay that above has ervor tolerance E if lim P(seed & outputed set of 2n) >1-E

Persistence

Fix $K \ge 1$ and a network centrality measure Ψ . For a family of network models $\{\mathcal{G}_n : n \ge 1\}$ say that this sequence is (Ψ, K) **persistent** if $\exists n^* < \infty$ a.s. such that for all $n \ge n^*$ the optimal K vertices $(v_{1,\Psi}(\mathcal{G}_n^\circ), v_{2,\Psi}(\mathcal{G}_2^\circ), \ldots, v_{K,\Psi}(\mathcal{G}_n^\circ))$ remain the same and further the relative ordering amongst these K optimal vertices remains the same.

Example: If degree centrality was persistent this implies, the *identity* of the maximal degree vertex becomes fixed within finite time and no other vertex can overtake the degree of this vertex after this time.

Such phenomenon once again a hallmark of long range dependence.

* Only works for press. First analyzed by Bubeck - Devroye - Lugosi.

Banerice and B(2020)

Under above assumptions:

Suppose for some $\overline{C}_f > 0$, $\beta \ge 0$, f satisfies $f_* \le f(i) \le \overline{C}_f \cdot i + \beta$ for all $i \ge 1$. Then \exists positive constants C_1 , C_2 such that for any error tolerance $0 < \varepsilon < 1$, the budget requirement satisfies,

$$K_{\Psi}(\varepsilon) \leq rac{C_1}{arepsilon^{(2\overline{C}_f+eta)/f_*}} \exp(\sqrt{C_2\log 1/arepsilon}).$$

If further the attachment function *f* is in fact bounded with *f*(*i*) ≤ *f** for all *i* ≥ 1 then one has for any error tolerance 0 < ε < 1,</p>

$$K_{\Psi}(\varepsilon) \leq rac{C_1}{arepsilon^{f^*/f_*}} \exp(\sqrt{C_2 \log 1/arepsilon}).$$

If ∃ <u>C</u>_f > 0 and β ≥ 0 such that f(i) ≥ <u>C</u>_f · i + β for all i ≥ 1 then ∃ a positive constant C'₁ such that for any error tolerance 0 < ε < 1,

$${\sf K}_\Psi(arepsilon) \geq rac{C_1'}{arepsilon^{(2} \underline{C}_f + eta)/f(1)}.$$

• For general *f* one has for any error tolerance $0 < \varepsilon < 1$,

$$K_{\Psi}(\varepsilon) \geq rac{C'_1}{arepsilon^{f_*/f(1)}}.$$

Uniform attachment: f(k) = 1

$$rac{C_1'}{arepsilon} \leq \mathcal{K}_{\Psi}(arepsilon) \leq rac{C_1}{arepsilon} \exp(\sqrt{C_2\lograc{1}{arepsilon}})$$

Pure Preferential attachment: f(k) = k

$$rac{C_1'}{arepsilon^2} \leq \mathcal{K}_\Psi(arepsilon) \leq rac{C_1}{arepsilon^2} \exp(\sqrt{C_2\lograc{1}{arepsilon}})$$

• Affine preferential attachment: $f(k) = k + \beta$

$$\frac{C_1'}{\varepsilon^{\frac{2+\beta}{1+\beta}}} \leq \mathcal{K}_{\Psi}(\varepsilon) \leq \frac{C_1}{\varepsilon^{\frac{2+\beta}{1+\beta}}} \exp(\sqrt{C_2\log\frac{1}{\varepsilon}}).$$

Sublinear preferential attachment:

$$\frac{C_1'}{\varepsilon} \leq K_{\Psi}(\varepsilon) \leq \frac{C_1}{\varepsilon^2} \exp(\sqrt{C_2 \log \frac{1}{\varepsilon}}).$$

- Essentially need quite precise information of entire network
- *Natural question:* How do more local measures like degree centrality perform? Does there exist a *persistent hub* (i.e. maximal degree vertex fixates within finite time)?
- *Fake popularity:* Suppose *i*-th vertex enters the system with *m_i* edges that it attaches to the current existing system (again with popularity of vertices measured via some function *f*). How quickly does *m_i* ↑ ∞ to break persistence phenomenon?

- $f_* := \inf_{i \ge 0} f(i) > 0$; further at most linear growth $f(i) \le C_f(i)$.
- $\sum_{i=0}^{\infty} \frac{1}{f(i)} = \infty$.
- $\Phi_k(x) = \int_0^x \frac{1}{f^k(z)} dz.$
- $\mathcal{K}(t) = \Phi_2 \circ \Phi_1^{-1}(t), t \ge 0.$
- $d_{max}(n) := \max_{0 \le k \le n} d_k(n).$
- Index of the maximal degree:

 $\mathcal{I}_n^* := \inf\{0 \le i \le n : d_i(n) \ge d_j(n) \text{ for all } j \le n\}.$

Banerjee + B(2020)

Under a few technical assumptions on f and f is increasing:

• Suppose $\Phi_2(\infty) < \infty$ (e.g. $f(k) = k^{\alpha}$ for $\alpha \in (1/2, 1]$) and that $\limsup_{n \to \infty} \frac{\Phi_1(m_n)}{\log s_n} \le \frac{1}{8C_f}$. Then a persistent hub emerges almost surely in the random graph sequence

Do not need increasing assumption for trees.

Banerjee + B(2020)

Assume Φ₂(∞) = ∞ (e.g. f(k) = k^α for α ∈ (0, 1/2)) and (we are working in the tree case) and f(k) → ∞ as k → ∞. Then index of maximal degree satisfies:

$$\frac{\log \mathcal{I}_n^*}{\mathcal{K}\left(\frac{1}{\lambda^*}\log n\right)} \xrightarrow{P} \frac{\lambda^{*2}}{2}, \text{ as } n \to \infty.$$

where λ^* is the Malthusian rate of growth of the continuous time embedding.

• For
$$f(k) = k^{\alpha}$$
 for $\alpha \in (0, 1/2)$,

$$\frac{\log \mathcal{I}_n^*}{(\log n)^{\frac{1-2\alpha}{1-\alpha}}} \xrightarrow{P} \frac{(\lambda^*)^{\frac{1}{1-\alpha}}}{2}, \text{ as } n \to \infty.$$

Inspired by Morters and Dietrich who proved similar results for a different evolving network model.

Change Point Delection

Source: Associated Press

Our motivation in words

- Suppose you have temporal network data. - Ex: Adjacency matrix at all or sub-sample of time points - Ez: Jime series observations at each node etc - Suppose network experiences a shock at some point. - Can we detect this change point forom observations? - Changes in structural properties of the system?

Recall : Probabilistic boundations

- Network model : Fix attachment function f. Start with single seed. - At each stage new vertex enters system. Connects to one pre-existing vertex
 - Probability connecting to a vertex u in the system proportional to f(degree (u)).

Example f(k)=k+d Preferential attachment

1/25 PM Fri Sep 2 ~ 79% ->														
=	baraba	asi alb	ert									×	Q	
+	Scholar	About	47,400 resu	Its (0.03 sec	•)						Ŷ	EAR -	-	
	Albert-L Northeas Verified e Cited by	for bar aszlo Bi tem Univ imail at r 269202	rabasi al arabàsi versity, Harv ieu.edu	bert ard Medical	i School									
Statistical mechanics of complex networks Calance . All emails in Provide models in the source and society. Prequently olded complex relevants describe a wide range of systems in relater and society. Prequently olded complex include the cells, a network of otherwises linked by chemical reactions, and the intervet, a network of outles and computers connected by physical links. While traditionally ϕ^{+} DD Cited by 24531. Related unrices and link unreasons 500										[PDF] aps.org				
AL Bai System networ vertex	rgence c rabási. B.A ns as diver rks with cor connectivi 19 Cited b	Albert - s me as ge mplex toj ties follos ay 40032	ng in rand icience, 199 netic netwo pology, A co w a scale-fre Related a	fom netw 9 - science. *ss or the W mmon prope e power-law ticles All 6	Vorks sciencemag Vorld Wide W erty of many v distribution 39 versions	Jorg Veb are be Large net 5. This fea	at described works is that ture was fou	as the nd to be		(PDF) S	olence	mag.o	ng	
Scale-free networks: a decade and beyond AL Barkada, is earned, 200 - settines astronomy and the settine settines and the settines as the settine settines as the settine the settine of the method of the settine settines and the settine the settine of the method of the settine settine is the settine of 0^{-1} (Director 200). Related articles and 14 versions										(PDF) sciencemag.org				
teooris) The structure and dynamics of networks. ME Newman: ALE Barabaki. DJ Walta = 2000 - payrinet apa cmg. concepti-and the reality-of networks has come to payrade nodem society. But what exectly is a network? What different bypes of networks are there? Why are they interesting, and what of 100 Cinde VJ3022 Related articles. All 6 variances														
Relat	ted sean	ohes												
barab	asi albert	model			baraba	asi albert	degree di	stribution						
barab	asi albert	graph			baraba	asi albert	emergenc	e of scalir	ng .					
barab	asi albert	prefer	ential atta	chment	baraba	asi albert	jeong							
barab	asi albert	lászló			baraba	asi albert	erdös-rén	y!						
M Vida	Interact	ione n	etworks a arabási - C ns and celu	ell, 2011 - El lar networks	an diseas Isevier Smay under	e	enotype to	100		Внтмгј	scienc	edireo	t.o	

Known results for fike=ktd - Nk(n) = # of vertices of degree k in 2n NE(n) I > Pk $p_{R} \sim \frac{C}{k^{d+3}} \qquad Degree = \alpha+3$ $k^{d+3} \qquad exponent$ - max-degree = $M_n \sim n^{d+2}$

Example of Standard Change point model

- Fix VE (0,1).

- for tE[1, no], network uses attackment function f(k) = k + d- For t E [no+1, n], network uses $g(k) = k + \beta$

Standard Change point model

- Fix VE (0,1).

- for tE[1, no], network uses attackment function f(k) = general function - For t E [no+1, n], network uses g(k) = general function

Fix t E [0,1]. Let Nk (nt) = # g vertices of Orgree & in Cat Under conditions on f and g \exists explicit probability moss functions $\exists (p_k(t))_{k \ge 1}$: $t \in [0, 1]$ such that shat $\frac{\sup_{t \in [0,1]} N_{k}(ut)}{nt} - \frac{p_{k}(t)}{p_{k}(t)} \longrightarrow 0$

Under above technical conditions on f & Z, irrespective of how small & is f always wins - So if degree exponent with f and no change point is & &o is the model with Change point. Change point estimator : For each $t \in (0,1)$ compare degree distan $(N_{k}(nt))_{k \ge 1}$ with the degree distribution nt cohen net work is of size n (recall change) and become alarmed the first time there seence to be a dig change in degree distan

Change point estimator

Nonparametric change point estimator

Fix any two sequences $h_n \to \infty$, $b_n \to \infty$: $\frac{\log h_n}{\log n} \to 0$, $\frac{\log b_n}{\log n} \to 0$. Define

$$\hat{T}_n = \inf \left\{ t \ge \frac{1}{h_n} : \sum_{k=0}^{\infty} 2^{-k} \left| \frac{D_n(k, \mathcal{T}_{\lfloor nt \rfloor}^{\theta})}{nt} - \frac{D_n(k, \mathcal{T}_{\lfloor n/h_n \rfloor}^{\theta})}{n/h_n} \right| > \frac{1}{b_n} \right\}.$$

Then $\hat{T}_n \xrightarrow{\mathrm{P}} \gamma$.

Simulations

Jots

of open froblems

Figure: $n = 2 * 10^5$, $\gamma = 0.5$, $f_0(i) = i + 2$, $f_1(i) = \sqrt{i + 2}$, $h_n = \log \log n$, $b_n = n^{1/\log \log n}$

$$d_n(m) := \sum_{k=0}^{\infty} 2^{-k} \left| \frac{D_n(k, \mathcal{T}^{\Theta}_m)}{m} - \frac{D_n(k, \mathcal{T}^{\Theta}_{\lfloor n/h_n \rfloor})}{n/h_n} \right|, \qquad \frac{n}{\log \log n} < m \le n.$$

The big bang model: What if the change happened very early in the system?

Figure: Big Bang: Getty images

Fix functions $f_0, f_1 : \{0, 1, 2, \ldots\} \rightarrow \mathbb{R}_+$ and $\gamma \in (0, 1)$. Let $\theta = (f_0, f_1, \gamma)$.

Model

- Time $1 \le m \le n^{\gamma}$ Vertices perform attachment with probability proportional to $f_0(out deg)$.
- Time $n^{\gamma} < m \le n$ Vertices perform attachment with probability probability proportional to $f_1(out deg)$.

Result 1

- Here change point at n^{γ} (e.g. \sqrt{n}).
- Here

$$\frac{N_n(k)}{n} \stackrel{\mathrm{P}}{\longrightarrow} p_k^1$$

namely the degree distribution of the model run purely with attachment function f_1

So what changes?

O Uniform \rightsquigarrow Linear: $f_0 \equiv 1$ whilst $f_1(k) = k + 1 + \alpha$ for fixed $\alpha > 0$. Then for $\omega_n \uparrow \infty$,

$$\frac{n^{\frac{1-\gamma}{2+\alpha}}\log n}{\omega_n} \ll M_n(1) \ll n^{\frac{1-\gamma}{2+\alpha}} (\log n)^2.$$

Linear \rightarrow **Uniform:** $f_0(k) = k + 1 + \alpha$ whilst $f_1(\cdot) \equiv 1$.

$$\frac{n^{\frac{\gamma}{2+\alpha}}\log n}{\omega_n} \ll M_n(1) \ll n^{\frac{\gamma}{2+\alpha}} (\log n)^2.$$

Linear \rightsquigarrow Linear: $f_0(k) = k + 1 + \alpha$ whilst $f_1(k) = k + 1 + \beta$ where $\alpha \neq \beta$. Then $M_n(1)/n^{\eta(\alpha,\beta)}$ is tight where

$$\eta(\alpha,\beta) := \frac{\gamma(2+\beta) + (1-\gamma)(2+\alpha)}{(2+\alpha)(2+\beta)}.$$

Shankar Bhamidi (UNC Chapel Hill)

Motivation

- Most real world networks support some particular purpose leg. diffusion of information on Twitter) Co- evolution: Network influences individuals and vice-versa

Motivation 2: More Sophisticated models for PA Motivations Despite PA being heavily used, number of limitations I Assumes global knowledge of network. Each new vertex needs complete knowledge of network I In principle attractiveness should not depend ONLY on degree but potentially on " orthen wated" meighborhood features Example : Page rank score attachment scheme.

Defn [Page rank scores] Fix "damping factor" C. For directed graph &= (2, E), page rank score (The: very) is the stationary distan of a random walk that at each step - with prob c does usual random walk using outgoing edges D (F) computerscience wiki - with prob 1-c jumps to a randomly Hr. Mckenty selected vertex uniformly at random

Motivation which might be contradictory to the previous motivations: Local exploration based otterchment schemes - Might want network evolution schemes where vertices decide to attach to a previous vertex after exploring the network "web - surfing"

TIL

Co-evolutionary network modul (P) (1) Having Constructed Th 191 2 entire system $T_1 =$ 3) Selects vertex "u. a.r in Th 4) Selects #of " exploration steps to root" variable Entin P 5 Goes up that many steps and attaches, stopping at root if need be $P = Pmf = \{P_0, P_1, \dots\} \quad P(z=i) = P_i \mid z > 0$

Example $C(2) = 10_1, \quad \Xi_2 = 0$ $(13) = v_2, z_3 = 4$ $C(4) = 19_2, Z_4 = 1$

2 1 1 21

v d d ve

Special cases

Po = 1 → Random recursive tree
 (Uniform Attachment)

② P= P , Pi= I-P → Preferential attachment f(k) = k + (1-2p)3 Po=P, P_= P(I-P), P_2 = P(I-P), "Page rank model" Theorem [Chebolu + Melsted 200x] (3) \equiv Page rank attachment scheme with 1-c = p

Theorems [Chebolut Melsted] Phase transition! - \$ P = 1 E(degree of root) = (H)(n) $- \frac{4}{5} \frac{P}{2} = \underbrace{F}(\frac{4}{5} \frac{P}{2})$ E(dugree of root) = $\underbrace{F}(\frac{4}{5} \frac{P}{2})$ * A to O(n log^A(n)) REZ

= bor example bor every bixed k=0 NR(m) = # of vertices with k children Then $N_{k}(n) \mapsto P_{k} \to \{P_{k}\}_{k \geq 0} = P_{MF}$ $\sum_{k=0}^{\infty} k p_k = 1$ \rightarrow $\mathcal{Y} = E(z) \leq 1$ 2 RAZ < 1 ~ Som Intuition for mass escaping -> & E(2) 71 to - CONDENSA

Assumptions => by work of [Daley 69] with a few more technical assumptions* ⇒ if we let To = inf { n≥1! Sn=0} then □ \$ E(Z) ≠ 1 then P.(n<To<00) ~ e-nlog-R □ gf E(2)=1 then R=1 * Aperiodicity + analyticity of PSf at S=1.

E.g. Random surfer model P<2 above is time!

Connection between Random Walks + Trees - what is the first step in studying such models? - [Chebolut Melsted idea for Page rank driven model] - Fix a vertex U = root - Fix a vertex t+1 at time 24 - What is P(t+1 attaches to u / info till time t)?

$P(L_{k}(t+1) = L_{k}(t) + 1 | L(t))$

$= \frac{\beta_{0} L_{k-1}(t) + \beta_{1} \frac{h_{k}(t)}{t} + \cdots}{t}$ $= \left[A \cdot \frac{L}{2} (t) \right]_{k} \quad \text{where}$ t

mass escoping above 4.

 $A = \begin{pmatrix} 0 & 0 & 0 & \cdots \\ p_0 & p_1 & p_2 & \cdots \\ 0 & p_0 & p_1 & \cdots \\ 0 & 0 & p_0 & \cdots \\ 0 & \cdots & \cdots \end{pmatrix}.$

-> Easier to do things in continuous time Continuous time version of what is happening below a vertex life root: Let \mathbb{T} denote the space of rooted, directed, labelled trees. Let $\mathcal{T}^*(\cdot)$ be the continuous time process of growing trees started with $\mathcal{T}^*(0) = \{v_0\}$, where v_0 is the root of the tree. The vertices in $\mathcal{T}^*(\cdot)$ are labelled v_0, v_1, v_2, \ldots in order of appearance. $\mathcal{T}^*(\cdot)$ is generated by the following procedure:

Each vertex reproduces at rate 1. When vertex v reproduces, a random variable Z following the law F is sampled independently.

- If $Z \leq dist(v_0, v)$, then a new vertex \tilde{v} is attached to the unique vertex u lying on the path between v and v_0 that satisfies dist(v, u) = Z via a directed edge from \tilde{v} to u.
- If $Z > dist(v_0, v)$, nothing occurs.

probability of new vertex being born to a Current vertex = Uniform distan

* former Branching process: Let Lk(t) = # of vertices in generation R in the tree process described on previous page Jemma : $\frac{lemma}{E(L_{k}(t))} = \sum_{l=0}^{\infty} \frac{t^{i}}{l!} P(T_{k}=i)$

ANY QUESTIONS ?