Long range dependence in evolving networks

Shankar Bhamidi
UNC Chapel Hill
Department of Statistics and OR

Out lineBrief motivation and structureSeed detection in dynamic networksChange point detectionCo-evolving networks
In collaboration with Sayan Banerjes, Jain Carmichacl and Zoe Huang
structure of talk

- For each problem area I will describe the motivation of the area in words
\longrightarrow Important
- I will describe our specific Contributions
\longrightarrow Potentially Irrelevant

Seed detection in evolving networks

Our motivation in words

- Dynamic network started with a single node ("patient zero") or seed graph at time zero.
- Observe network when it is of large size egg. $n=10^{6}$. with no temporal information only network topology (adjacency matrix)
- Have a bixed budget say $K=30$.
- GOAL: Output 30 vertices such that with high prob. seed is in the output.

Change Point Detection

Source: Associated Press

Our motivation in cords

- Suppose you have temporal network data.
- Ex: Adjacency matrix at all or sub-sample of time points
- ε_{x} : Time series observations at each node etc
- Suppose network experiences a shock at some point.
- Com we defect this change point from observations?
- Changes in structural properties of the system?

Network co-evolution: our motivation

- Most real world networks support some particular purpose (e.g. diffusion of information on Twitter)
- Co-evolustion: Network influences individuals Inctividuals influence networks

- Jill date majority of models deal either with
- Dynamics on a fixed network (e.g. random walk or epidemics on a fixed network).
- Dynamics "of" a network: Network itself changing in some fashion.
- Howewr best these two disciplines largely "seperate". Most network practitioners believe c_{0} evolving network is the next frontier.
\rightarrow Goal: Understand conjectured phase transitions in

Seed detection in evolving networks

Our motivation in words

- Dynamic network started with a single node ("patient zero") or seed graph at time zero.
- Observe network when it is of large size egg. $n=10^{6}$. with no temporal information only network topology (adjacency matrix)
- Have a bixed budget say $K=30$.
- GOAL: Output 30 vertices such that with high prob. seed is in the output.

Probabilistic foundations

- Network model: Fix attachment function f. Start with singh seed.
- At each stage new vertex enters system. Connect's to one preexisting vertex
- Probability connecting to a vertex u in the system proportional to $f($ degree $(u))$.

$$
-\Gamma_{n}=\text { network of size } n
$$

Example: $f=1$ (Randion recurseve tsee)

Example $f(k)=k \quad$ Preferential attachment

Simulation $(n=5000)$

Formal setup (Bubeck,Devroye,Lugosi Mossel,Miklos, Jog, Loh, ... IIII

Setup:

- G: space of equivalence classes (upto isomorphisms) of finite unlabelled graphs.
- For finite labelled graph \mathcal{G} : \mathcal{G}° for the isomorphism class of \mathcal{G} in \mathbf{G}.
- Root finding algorithm: Fix $K \geq 1$ and a mapping H_{K} on \mathbf{G} that takes an input finite unlabelled graph $\mathbf{g} \in \mathbf{G}$ and outputs a subset of K vertices from \mathbf{g}.

Root finding algorithms

Let $\left\{\mathcal{G}_{n}: n \geq 0\right\}$ be a sequence of growing random networks. Fix $0<\varepsilon<1$ and $K \geq 1$. A mapping H_{K} is called a budget K root finding algorithm with error tolerance ε for the sequence of networks if,

$$
\liminf _{n \rightarrow \infty} \mathbb{P}\left(1 \in H_{K}\left(\mathcal{G}_{n}^{\circ}\right)\right) \geq 1-\varepsilon .
$$

Question: can we choose K independent of n ? Dependence on ε ?

Class of seed detection algorithms

- Centrality based measures
- For each vertex obtain some measure of centrality so collection of numbers $\left\{\phi(u): u=\right.$ vertex in $\left.\tau_{n}\right\}$
- Example:
- Degree centrality: $\phi(u)=$ degree of u
- Eigen - vector centrality
- Centroid or Jordan centrality

ALGORITHM

- Suppose budget $=K$
- Output the "top" k vertices (Could be smallest or largest depending on the measure)
- bay that above has error tolerance ε if $\lim _{n \rightarrow \infty} \mathbb{P}\left(\right.$ seed \in outputted set of $\left.\tau_{n}\right) \geqslant 1-\varepsilon$

Fundamental questions

- For given error tolerance \mathcal{E} (e.g. $\varepsilon=.01$) can we select ct k independent of $n=s i z$ of network?
- How dos $K=K(\varepsilon)$ depend on ε ?

$$
\frac{1}{\varepsilon} ? \frac{1}{\varepsilon^{100}} ? \frac{1}{\varepsilon^{10000}} ?
$$

Related notion: Robustness (Morters-Dietrich; Jog-Loh)

Persistence

Fix $K \geq 1$ and a network centrality measure ψ. For a family of network models $\left\{\mathcal{G}_{n}: n \geq 1\right\}$ say that this sequence is (Ψ, K) persistent if $\exists n^{*}<\infty$ a.s. such that for all $n \geq n^{*}$ the optimal K vertices $\left(v_{1, \psi}\left(\mathcal{G}_{n}^{\circ}\right), v_{2, \psi}\left(\mathcal{G}_{2}^{\circ}\right), \ldots, v_{K, \psi}\left(\mathcal{G}_{n}^{\circ}\right)\right)$ remain the same and further the relative ordering amongst these K optimal vertices remains the same.

Example: If degree centrality was persistent this implies, the identity of the maximal degree vertex becomes fixed within finite time and no other vertex can overtake the degree of this vertex after this time.

Such phenomenon once again a hallmark of long range dependence.

Jordan or centroid centrality*

$\phi(v)=$ size of the largest subteen of a child of v

Only works for trees. First analyzed by Bubeck-Devroye - Lugosi.

Centroid centrality sufficiency bounds

technical

\uparrow

Banerjee and B(2020)

Under above assumptions:
(1) Suppose for some $\bar{C}_{f}>0, \beta \geq 0, f$ satisfies $f_{*} \leq f(i) \leq \bar{C}_{f} \cdot i+\beta$ for all $i \geq 1$. Then \exists positive constants C_{1}, C_{2} such that for any error tolerance $0<\varepsilon<1$, the budget requirement satisfies,

$$
K_{\Psi}(\varepsilon) \leq \frac{C_{1}}{\varepsilon^{\left(2 \bar{C}_{f}+\beta\right) / f_{*}}} \exp \left(\sqrt{C_{2} \log 1 / \varepsilon}\right)
$$

(2) If further the attachment function f is in fact bounded with $f(i) \leq f^{*}$ for all $i \geq 1$ then one has for any error tolerance $0<\varepsilon<1$,

$$
K_{\Psi}(\varepsilon) \leq \frac{C_{1}}{\varepsilon^{f * / f_{*}}} \exp \left(\sqrt{C_{2} \log 1 / \varepsilon}\right)
$$

Centroid centrality necessary bounds

- If $\exists \underline{C}_{f}>0$ and $\beta \geq 0$ such that $f(i) \geq \underline{C}_{f} \cdot i+\beta$ for all $i \geq 1$ then \exists a positive constant C_{1}^{\prime} such that for any error tolerance $0<\varepsilon<1$,

$$
K_{\Psi}(\varepsilon) \geq \frac{C_{1}^{\prime}}{\varepsilon^{\left(2 \underline{C}_{f}+\beta\right) / f(1)}}
$$

- For general f one has for any error tolerance $0<\varepsilon<1$,

$$
K_{\Psi}(\varepsilon) \geq \frac{C_{1}^{\prime}}{\varepsilon^{f_{*} / f(1)}}
$$

- Uniform attachment: $f(k)=1$

$$
\frac{C_{1}^{\prime}}{\varepsilon} \leq K_{\psi}(\varepsilon) \leq \frac{C_{1}}{\varepsilon} \exp \left(\sqrt{C_{2} \log \frac{1}{\varepsilon}}\right)
$$

- Pure Preferential attachment: $f(k)=k$

$$
\frac{C_{1}^{\prime}}{\varepsilon^{2}} \leq K_{\Psi}(\varepsilon) \leq \frac{C_{1}}{\varepsilon^{2}} \exp \left(\sqrt{C_{2} \log \frac{1}{\varepsilon}}\right) .
$$

- Affine preferential attachment: $f(k)=k+\beta$

$$
\frac{C_{1}^{\prime}}{\varepsilon^{\frac{2+\beta}{1+\beta}}} \leq K_{\psi}(\varepsilon) \leq \frac{C_{1}}{\varepsilon^{\frac{2+\beta}{1+\beta}}} \exp \left(\sqrt{C_{2} \log \frac{1}{\varepsilon}}\right)
$$

- Sublinear preferential attachment:

$$
\frac{C_{1}^{\prime}}{\varepsilon} \leq K_{\Psi}(\varepsilon) \leq \frac{C_{1}}{\varepsilon^{2}} \exp \left(\sqrt{C_{2} \log \frac{1}{\varepsilon}}\right) .
$$

Disadvantages of Centroid centrality

- Essentially need quite precise information of entire network
- Natural question: How do more local measures like degree centrality perform? Does there exist a persistent hub (i.e. maximal degree vertex fixates within finite time)?
- Fake popularity: Suppose i-th vertex enters the system with m_{i} edges that it attaches to the current existing system (again with popularity of vertices measured via some function f). How quickly does $m_{i} \uparrow \infty$ to break persistence phenomenon?

Assumptions and notation

- $f_{*}:=\inf _{i \geq 0} f(i)>0$; further at most linear growth $f(i) \leq C_{f}(i)$.
- $\sum_{i=0}^{\infty} \frac{1}{f(i)}=\infty$.
- $\Phi_{k}(x)=\int_{0}^{x} \frac{1}{k^{k}(z)} d z$.
- $\mathcal{K}(t)=\Phi_{2} \circ \Phi_{1}^{-1}(t), t \geq 0$.
- $d_{\text {max }}(n):=\max _{0 \leq k \leq n} d_{k}(n)$.
- Index of the maximal degree:

$$
\mathcal{I}_{n}^{*}:=\inf \left\{0 \leq i \leq n: d_{i}(n) \geq d_{j}(n) \text { for all } j \leq n\right\} .
$$

Persistence of hubs

Banerjee + B(2020)

Under a few technical assumptions on f and f is increasing:

- Suppose $\Phi_{2}(\infty)<\infty$ (e.g. $f(k)=k^{\alpha}$ for $\left.\alpha \in(1 / 2,1]\right)$ and that $\lim \sup _{n \rightarrow \infty} \frac{\Phi_{1}\left(m_{n}\right)}{\log s_{n}} \leq \frac{1}{8 C_{f}}$. Then a persistent hub emerges almost surely in the random graph sequence

Do not need increasing assumption for trees.

Lack of persistence

Banerjee + B(2020)

- Assume $\Phi_{2}(\infty)=\infty$ (e.g. $f(k)=k^{\alpha}$ for $\alpha \in(0,1 / 2)$) and (we are working in the tree case) and $f(k) \rightarrow \infty$ as $k \rightarrow \infty$. Then index of maximal degree satisfies:

$$
\frac{\log \mathcal{I}_{n}^{*}}{\mathcal{K}\left(\frac{1}{\lambda^{*}} \log n\right)} \xrightarrow{P} \frac{\lambda^{* 2}}{2}, \text { as } n \rightarrow \infty .
$$

where λ^{*} is the Malthusian rate of growth of the continuous time embedding.

- For $f(k)=k^{\alpha}$ for $\alpha \in(0,1 / 2)$,

$$
\frac{\log \mathcal{I}_{n}^{*}}{(\log n)^{\frac{1-2 \alpha}{1-\alpha}}} \xrightarrow{P} \frac{\left(\lambda^{*}\right)^{\frac{1}{1-\alpha}}}{2}, \text { as } n \rightarrow \infty .
$$

Inspired by Morters and Dietrich who proved similar results for a different evolving network model.

Change Point Detection

Source: Associated Press

Our motivation in cords

- Suppose you have temporal network data.
- Ex: Adjacency matrix at all or sub-sample of time points
- Ex: Time series observations at each nock etc
- Suppose network experiences a shock at some point.
- Com we detect this change point from observations?
- Changes in structural properties of the system?

Recall: Probabilistic foundations

- Net work model: Fix attachment function f. Start with singh seed.
- At each stage new vertex enters system. Connect's to one preexisting vertex
- Probability connecting to a vertex u in the system proportional to $f($ degree $(u))$.

$$
-\eta_{n}=\text { network of size } n
$$

$f(k)=k+\alpha \quad$ Preferential attechment
barabasi albert
Scholar About 47.400 results (0.03 san)
User profiles for barabasi albert
Albert-L deszlo EBarabisi
Northeastern University, Marvard Medioal sohool
Veritied Email zt neu Cited by 269202
Statistical meshanios of complese networks
[PDF] aps.org
R Albert. AL Barababi-lenviewn of modearn phystem, 2002 - Aps
Complox notworke deeoribo a wide rango of eyetorne in nature and eoolety. Froquontly oited
internet, a network of routers and computers oonneded by phyaical links. Nithile treditionally ...
Fe D\& Dited by 24531 Related artioles All 11 versions ए®
Emergence of scaling in random networks
[PDF] sciencemaghorg
AL Barababi, E Albert-seiances, 1990 - secianced-suciancumaag-org \square
Systems as diverse as genetio networke or the World Wide Web are boet deseribed as
meitworks with compleax topology. A eommon proptarty of many large nantworka ia that the

Scale-free networke: a decade and beyond \qquad [PDF] sciencemag-org
Al Earablati-scienoe, 2009 - soiencesoiencemagorg \qquad

If Dص Gited by 2040 Related articlee All 14 versione
reoon The structure and dynamice of networke.

From the Internet to networke of friondehip, diegase tranemiesion, fand oven terroriem, the
concepi-arnd the reality-of networkz has eorme to pervade modelern soelety, Eht what expetly
₹ D D Dited by 3922 Related artioles All 8 versions \&s

Related searches
barabasi albert model
barabasi albert degree distribution
barabaei albert ssaph
barabasi albert omersence of ecealing
barabasi albert preferential attaolnment
barabasi albert jeong
barabasi albert taszis
barabasi albert ordss-ronyi
HTML Interactome networks and human diseeasee
H-TMLI sciencedirect.c...

Known results for $f(k)=k+\alpha$

- $N_{k}(n)=\#$ of vertices of degree k in τ_{n}

$$
\begin{aligned}
& \frac{N_{n}(n)}{n} \stackrel{p_{n}}{ } \quad P_{n} \sim \frac{C}{k^{\alpha+3}} \quad \begin{array}{c}
\text { Degree } \\
\text { exponent }
\end{array}=\alpha+3 \\
& -\quad \text { max-degree }=M_{n} \sim n^{\frac{1}{\alpha+2}}
\end{aligned}
$$

Example of standard change point model

- fix $\gamma \in(0,1)$.
- For $t \in[1, n \gamma]$, network uses attachment function

$$
f(k)=k+\alpha
$$

- For $t \in[n \gamma+1, n]$, network uses

$$
g(h)=\alpha+\beta
$$

Any guess on the degree exponent? f

Recall under no change

$$
f(k)=k+\alpha
$$

degree exponent $=\alpha+3$
$g(h)=h+\beta$
degree exponent $=\beta+3$

Punchline of the Theorems
f

Irrespective of how small γ is (e.g $\gamma=.0)$ or $\gamma=.00000001$), the initialized function Always wins!
standard change point model

- fix $\gamma \in(0,1)$.
- For $t \in[1, n \gamma]$, network uses attachment function

$$
f(k)=\text { general function }
$$

- For $t \in[n \gamma+1, n]$, network uses
$g(h)=$ general function

Fix $t \in[0,1]$. Let $N_{k}(n t)=\#$ vertices of degree k in $\tau_{n t}$
under conditions on f and g explict probability moss functions $\left\{\left(p_{k}(t)\right)_{k \geq 1}: t \in[0,1]\right\}$ such that

$$
\sup _{t \in[0,1]}\left|\frac{N_{k}(n t)}{n t}-p_{k}(t)\right| \longmapsto 0
$$

Theorem
Under above technical inditions on $f \& g$, irrespective of how small γ is f always wins!

- So if degree exponent with f and no change point is δ so is the model wite Change point.

Change point estimator: For each $t \in(0,1)$ compare degree distan $\left.\frac{N_{k}(n t)}{n t}\right)_{k} \geqslant 1$ with the degree distribection when network is of size $\frac{n}{h_{n}}$ (recall change) and become alarmed the first time there seence to be a dig change in degree distin.
$\mathbf{0} \frac{h_{n} / n}{\mathbf{d}_{n}\left(n / h_{n}\right)} \cdot \frac{\gamma}{\mathbf{d}_{n}} \cdot \frac{t}{}$
Nonparametric change point estimator
Fix any two sequences $h_{n} \rightarrow \infty, b_{n} \rightarrow \infty: \frac{\log h_{n}}{\log n} \rightarrow 0, \frac{\log b_{n}}{\log n} \rightarrow 0$. Define

$$
\hat{T}_{n}=\inf \left\{t \geq \frac{1}{h_{n}}: \sum_{k=0}^{\infty} 2^{-k}\left|\frac{D_{n}\left(k, \mathcal{T}_{\lfloor n t\rfloor}^{\theta}\right)}{n t}-\frac{D_{n}\left(k, \mathcal{T}_{\left\lfloor n / h_{n}\right\rfloor}^{\theta}\right)}{n / h_{n}}\right|>\frac{1}{b_{n}}\right\}
$$

Then $\hat{T}_{n} \xrightarrow{\mathrm{P}} \gamma$.

Simulations

Figure: $n=2 * 10^{5}, \gamma=0.5, f_{0}(i)=i+2, f_{1}(i)=\sqrt{i+2}, h_{n}=\log \log n, b_{n}=n^{1 / \log \log n}$

$$
d_{n}(m):=\sum_{k=0}^{\infty} 2^{-k}\left|\frac{D_{n}\left(k, \mathcal{T}_{m}^{\theta}\right)}{m}-\frac{D_{n}\left(k, \mathcal{T}_{\left\lfloor n / h_{n}\right\rfloor}^{\theta}\right)}{n / h_{n}}\right|, \quad \frac{n}{\log \log n}<m \leq n
$$

The big bang model: What if the change happened very early in the

 system?

Figure: Big Bang: Getty images

Fix functions $f_{0}, f_{1}:\{0,1,2, \ldots\} \rightarrow \mathbb{R}_{+}$and $\gamma \in(0,1)$. Let $\boldsymbol{\theta}=\left(f_{0}, f_{1}, \gamma\right)$.

Model

- Time $1 \leq m \leq n^{\gamma}$ Vertices perform attachment with probability proportional to f_{0} (out - deg).
- Time $n^{\gamma}<m \leq n$ Vertices perform attachment with probability probability proportional to $f_{1}($ out $-d e g)$.

Change point detection: Quick big bang

Result 1

- Here change point at n^{γ} (e.g. \sqrt{n}).
- Here

$$
\frac{N_{n}(k)}{n} \xrightarrow{\mathrm{P}} p_{k}^{1}
$$

namely the degree distribution of the model run purely with attachment function f_{1}

So what changes?

(Uniform \rightsquigarrow Linear: $f_{0} \equiv 1$ whilst $f_{1}(k)=k+1+\alpha$ for fixed $\alpha>0$. Then for $\omega_{n} \uparrow \infty$,

$$
\frac{n^{\frac{1-\gamma}{2+\alpha}} \log n}{\omega_{n}} \ll M_{n}(1) \ll n^{\frac{1-\gamma}{2+\alpha}}(\log n)^{2}
$$

(2) Linear \rightsquigarrow Uniform: $f_{0}(k)=k+1+\alpha$ whilst $f_{1}(\cdot) \equiv 1$.

$$
\frac{n^{\frac{\gamma}{2+\alpha}} \log n}{\omega_{n}} \ll M_{n}(1) \ll n^{\frac{\gamma}{2+\alpha}}(\log n)^{2} .
$$

(3) Linear \rightsquigarrow Linear: $f_{0}(k)=k+1+\alpha$ whilst $f_{1}(k)=k+1+\beta$ where $\alpha \neq \beta$. Then $M_{n}(1) / n^{\eta(\alpha, \beta)}$ is tight where

$$
\begin{equation*}
\eta(\alpha, \beta):=\frac{\gamma(2+\beta)+(1-\gamma)(2+\alpha)}{(2+\alpha)(2+\beta)} \tag{5}
\end{equation*}
$$

Motivation

- Most real world networks support some particular purpose (e.g. diffusion of information on Twitter)
- Co- evolution: Network influences Individuals and vice-versa

Motivation 2: More Sophisticated models for PA
Motivations Despite PA being heavily used, number of limitations
(7) Assumes global knowledge of network. Each new vertex needs Complete knowle age of network
II. In principle attractiveness should not depend ONLY on degree but potentially on "attenuated" neighborhood features.
Example: Page rank score attachment scheme.

Defn [Page rank scores] Fix "damping factor" C .
For directed graph $f_{y}=(\gamma, \varepsilon)$, page rank score (Tv: ven \mathcal{J}) is the stationary distin of a random walk that at each step

- with prob c does usual random walk using outgoing edges

- with prob 1-c jumps to a randomly selected vertex uniformly at random

Thus $\left(\pi_{v}\right)$ satisfies linear system of equations

$$
\pi_{v}=\frac{1-c}{x}+c \sum_{u \in \mathcal{N}^{-}(v)} \pi d^{+}(u)
$$

Special case Directed tree, directions to the root
can check For $v \neq$ root

$W(v)$

$$
\pi_{\vartheta}=\frac{1-c}{n} \sum_{n=0}^{\infty} c^{k} L_{k}(\theta)
$$

$L_{k}(v)=\#$ of individuals at lie R vern

Thus if one does Preferential attachment using Page rank scores, then one does attachment using move global
 attractiveness function

III Motivation which might be contradictory to the previous motivations: Local exploration based attachment schemes

- Might want network evolution schemes where vertices decide to attach to a previous vertex after exploring the network "web - surfing"
for Sometime.

Co-evdutionavy network model

$$
T_{1}=
$$

(1) Having constructed τ_{n}
(2) At time $n+1$ a new vertex v_{n+1} enters system
(3) Selects vertex ${ }_{n}^{V_{n}} u \cdot a \cdot r$ in τ_{n}
(4) Selects \# of "explor ation steps to root" variable $Z_{n+1} \sim$
(5) Goes up that many steps and attaches,

$$
P=p_{m} f=\left\{p_{0}, p_{1}, \ldots\right\} \quad P(z=i)=p_{i} \quad i \geqslant 0
$$

Example

$$
\begin{aligned}
& c(2)=v_{1}, z_{2}=0 \\
& c(3)=v_{2}, z_{3}=4 \\
& c(4)=v_{2}, z_{4}=1 \\
& c(5)=v_{0}, z_{5}=2 \\
& c(6)=v_{2}, z_{1}=1
\end{aligned}
$$

Special cases
(1) $P_{0} \equiv 1 \rightarrow$ Random recursive tree (Uniform Attachment)
(2) $P_{0}=P, p_{1}=1-P \rightarrow$ Preferential attachment $f(k)=k+\frac{(1-2 p)}{p}$
(3) $p_{0}=p, p_{1}=p(1-p), p_{2}=p(1-p)^{2}, \ldots$
"Page rank model')
Theorem [Chebolut Heisted 200x]
(3) (Page rank attachment scheme with $1-c=P$

Theorems [Chebolut Melted]

$$
\begin{aligned}
& \text { - If } P \leqslant \frac{1}{2} \\
& E(\text { degree of root })=\tilde{(H}(n) \\
& \text { - If } P>\frac{1}{2} \\
& E(\text { degree of root })=\widetilde{(})\left(n^{4 p q}\right)
\end{aligned}
$$

* $\widetilde{\oplus} \Leftrightarrow O\left(n \log ^{k}(n)\right) \quad k \in \mathbb{Z}$

Theorem (s) [Banerjee, SB, Huang]
Let $Z \sim P$
1 Assume $E(Z)<\infty$. Then the sequence of trees $\left\{\tau_{n}\right\}_{n \geqslant 1}$ converge in the tical weak convergence sense to a limiting infinite sin-tree
sin: tree with single infinite path to ∞
\Rightarrow for example for every fixed $k \geq 0$ $N_{k}(n)=\#$ of vertices with k children

$$
\begin{aligned}
& \frac{N_{k}(u)}{n} \stackrel{a \cdot s}{\mapsto} p_{k} \rightarrow\left\{p_{k}\right\}_{k \geqslant 0}=P M F \\
& \rightarrow \text { If } E(z) \leqslant 1 \quad \sum_{k=0}^{\infty} k p_{k}=1 \\
& \rightarrow \text { If } E(z)>1 \quad \sum_{k=0}^{\infty} k p_{k}<1 \leadsto \wp_{0} \text { gnturition for } \text { mass escaping } \\
& \text { to } \infty \text { ConDense }
\end{aligned}
$$

2] Let $\left\{z_{i}\right\}_{i \geqslant 1}=11 P p \quad f(s)=p g f=\sum_{k=0}^{\infty} p_{k} s_{k}$ Let $S_{n}=S_{0}+\sum_{k=1}^{n}\left(z_{i}-1\right)=$ random $w a l k$ Started at S_{0}

Assumptions (1) $p_{0} \in(0,1), p_{0}+p_{1}<1$ [else if $p_{0}+h_{i}=1 \Leftrightarrow$ preferential
(2) $f(s)$ is analytic at $s=1$ $\left.\begin{array}{c}\substack{\text { a } \\ \text { a trachiment } \\ \text { regime }}\end{array}\right]$

Assumptions \Rightarrow by work of [Daley 69] with a few more technical assumptions*
\Rightarrow if we let $T_{0}=\inf \left\{n \geqslant 1: S_{n}=0\right\}$ thenIf $E(z) \neq 1$ then

$$
P_{1} \cdot\left(n<T_{0}<\infty\right) \approx e^{-n \log }
$$

1.e. $S_{0}=1$If $E(z)=1$ then $R=1$

* Aperioticify + analyticity of psf at $s=1$.

Results [non-root degree]
Fix $k>0$ and consider $D_{v_{k}}(n)=$ degree of v_{k} at time n
then $\forall \delta>0$

$$
\frac{D_{v_{k}}(n)}{n^{\frac{1}{R}-\delta}} \rightarrow \infty \quad \frac{D_{v k}(n)}{n^{1 / R}(\log n)^{1+\delta}} \mapsto 0
$$

Results Let $D=$ random variable with limiting degree dissing

$$
\lim _{k \rightarrow \infty} \frac{\log P(D \geqslant k)}{\log k}=-R
$$

Intuitively $P(\Delta \geqslant k) \approx \frac{c}{k^{R}}$
\hookrightarrow for $E(z)>1$ get upper + lower bounds for degree exponent

CONDENSATION

- Assume $E(z)>1$
- Few more technical Conditions
$\xrightarrow[\text { root }]{\text { Then }}{\underset{v}{v_{0}}}_{D_{n}} \stackrel{\text { ass. }}{\rightarrow}$ limit random
E.g. Random surfer model $P<\frac{1}{2}$ above is true!

No phase transition in Height

$$
\begin{aligned}
x_{0} & =\operatorname{lnf}_{s \in(0,1)} \frac{f(s)}{s \log (1 / s)} \\
\frac{\mathcal{H}_{n}}{\log n} & \stackrel{p}{\longmapsto} x_{0}
\end{aligned}
$$

Connection between Random Walks + Trees

- What is the first step in studying such models?
- [Chebolut Melsted idea for Page rank driven model]
- Fix a vertex $u \neq$ root
- Fix a vertex $t+1$ at time $\geq u$
- What is $P(t+1$ attaches to u l info till time $t)$?

$$
\begin{aligned}
& L_{0}(t ; u)=1 \\
& L_{1}(t ; u)=3 \\
& L_{2}(t ; u)=4 \\
& L_{3}(t ; u)=3
\end{aligned}
$$

Let $L_{i}(t ; u)=\#$ of vertices at distance i below vertex h at time t

$$
\left.\begin{array}{rl}
P(t+\mid & \rightarrow u \mid \text { information till } \\
\text { time } t
\end{array}\right)
$$

Check: This leads to evolution equation for $\left\{L_{R}(t ; u): k \geqslant 0\right\}$ as

$$
\begin{aligned}
& P\left(L_{k}(t+1)=L_{k}(t)+1 \mid L_{\sim}^{L}(t)\right) \\
& =p_{0} \frac{L_{k-1}(t)}{t}+p_{1} L_{k}(t)+\cdots \\
& =\frac{[A \cdot L(t)]_{k}}{t} \text { where } \\
& t=\left(\begin{array}{ccc}
0 & 0 & 0 \\
p_{1} & 0 & p_{2} \\
0 & p_{0} & p_{1} \\
0 & 0 & p_{1} \\
0 & p_{0} & \cdots
\end{array}\right)
\end{aligned}
$$

\rightarrow Easier to do things in continuous time continuous time version of what is happening below a vertex $u f f$

Let \mathbb{T} denote the space of rooted, directed, labelled trees. Let $\mathcal{T}^{*}(\cdot)$ be the continuous time process of growing trees started with $\mathcal{T}^{*}(0)=\left\{v_{0}\right\}$, where v_{0} is the root of the tree. The vertices in $\mathcal{T}^{*}(\cdot)$ are labelled $v_{0}, v_{1}, v_{2}, \ldots$ in order of appearance. $\mathcal{T}^{*}(\cdot)$ is generated by the following procedure:
Each vertex reproduces at rate 1 . When vertex v reproduces, a random variable Z following the law F is sampled independently.

- If $Z \leq \operatorname{dist}\left(v_{0}, v\right)$, then a new vertex \tilde{v} is attached to the unique vertex u lying on the path between v and v_{0} that satisfies $\operatorname{dist}(v, u)=Z$ via a directed edge from \tilde{v} to u.
- If $Z>\operatorname{dist}\left(v_{0}, v\right)$, nothing occurs.

Two at first disjoint objects
\qquad

Branching process: Let $L_{k}(t)=\#$ of vertices in generation k in the tree process described on previous page

Lemma:

$$
E\left(L_{k}(t)\right)=\sum_{l=0}^{\infty} \frac{t^{i}}{l!} P\left(T_{k}=i\right)
$$

ANY QUESTIONS ?

