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OUTLINE:

(1) LDP for the inhomogeneous ERRG.

(2) LDP for the spectral radius of the adjacency matrix.

(3) LDP for the spectral radius of the Laplacian matrix.

Parts (2) and (3) are joint work with:
A. Chakrabarty, R.S. Hazra, M. Markering, M. Sfragara
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§ LDP FOR THE INHOMOGENEOUS ERRG

1. Let

W =
{
h : [0,1]2 → [0,1]: h(x, y) = h(y, x) ∀x, y ∈ [0,1]

}
denote the set of graphons. Let M denote the set of
Lebesgue measure-preserving bijective maps φ : [0,1] 7→
[0,1]. The cut-distance on W is defined by

d�(h1, h2) = sup
S,T⊂[0,1]

∣∣∣∣∣
∫
S×T

dxdy
[
h1(x, y)− h2(x, y)

]∣∣∣∣∣,
and the cut-metric by

δ�(h1, h2) = inf
φ∈M

d�(h1, h
φ
2),

where h
φ
2(x, y) = h2(φ(x), φ(y)).
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The cut-metric defines an equivalence relation ∼ on W by
declaring h1 ∼ h2 if and only if δ�(h1, h2) = 0, and leads
to the quotient space W̃ = W/∼. For h ∈ W, write h̃ to
denote the equivalence class of h in W̃. The pair (W̃, δ�)
is a compact metric space.

2. Let r ∈ W be a measurable reference graphon satisfying

log r, log(1− r) ∈ L1.

Fix N ∈ N and consider the random graph GN with vertex
set [N ] = {1, . . . , N} where the pair of vertices i, j ∈ [N ],
i 6= j, is connected by an edge with probability rN( iN ,

j
N ),

independently of other pairs of vertices, with rN an N ×N
block graphon satisfying

lim
N→∞

‖rN − r‖L1 = 0,

and similarly for log rN and log(1− rN).
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3. Write PN to denote the law of GN . Use the same symbol

for the law on W induced by the map that associates with

the graph GN its empirical graphon hGN , defined by

hGN(x, y) =

{
1, if dNxe ∼ dNye,
0, otherwise,

(x, y) ∈ [0,1]2.

Write P̃N to denote the law of h̃GN .
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The following LDP is an extension of the celebrated LDP

for homogeneous ERRG derived by Chatterjee, Varadhan 2011

THEOREM 1 Dhara & Sen 2021, Markering 2022

The sequence (P̃N)N∈N satisfies the LDP on (W̃, δ�) with

rate
(
N
2

)
and with rate function Jr : W̃ → R given by

Jr(h̃) = inf
φ∈M

Ir(h
φ),

where h is any representative of h̃ and

Ir(h) =
∫

[0,1]2
dxdy R

(
h(x, y) | r(x, y)

)
, h ∈ W,

with

R(a | b) = a log a
b + (1− a) log 1−a

1−b .
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§ GRAPHON OPERATORS

With h ∈ W we associate a graphon operator acting on

L2([0,1]), defined as the linear integral operator

(Thu)(x) =
∫

[0,1]
dy h(x, y)u(y), x ∈ [0,1].

The operator norm of Th is defined as

‖Th‖ = sup
u∈L2([0,1])
‖u‖2=1

‖Thu‖2,

Given a graphon h ∈ W, we have ‖Th‖ ≤ ‖h‖2. Therefore, any
graphon sequence converging in the L2-norm is also converging in
the operator norm.

6



SOME BASIC FACTS:

For any h ∈ W:

(i) Th is self-adjoint, bounded and continuous.

(ii) The maximal eigenvalue and associated eigenfunction

of Th are strictly positive.

(iii) The maximal eigenvalue of Th equals the operator

norm ‖Th‖.

7



§ LDP FOR THE ADJACENCY MATRIX

Chakarabarty, Hazra, den Hollander, Sfragara 2021

Let λN be the maximal eigenvalue of the adjacency matrix
AN of GN . Write P∗N to denote the law of λN/N .

THEOREM 2

The sequence (P∗N)N∈N satisfies the LDP on R with rate(
N
2

)
and with rate function

ψr(β) = inf
h̃∈W̃
‖Th̃‖=β

Jr(h̃) = inf
h∈W
‖Th‖=β

Ir(h), β ∈ R.

Note that λN/N = ‖ThGN‖, because ‖Th̃‖ = ‖Thφ‖ for all φ ∈ M.

Since h̃ 7→ ‖Th̃‖ is bounded and continuous on W̃, the claim follows
from Theorem 1 via the contraction principle.
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Put

Cr = ‖Tr‖.

When β = Cr, the graphon h that minimizes Ir(h) such that
‖Th‖ = Cr equals r almost everywhere, for which Ir(r) = 0 and
no large deviation occurs.

THEOREM 3

(i) ψr is continuous and unimodal on [0,1], with a unique

zero at Cr.

(ii) ψr is strictly decreasing on [0, Cr] and strictly increasing

on [Cr,1].

(iii) For every β ∈ [0,1], the set of minimisers in the first

variational formula for ψr(β) is non-empty and compact in

W̃.
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The LDP says that

P∗N(λN/N ≈ β) ≈ exp
[
−
(N

2

)
ψr(β)

]
.

Cr 10
β

ψr(β)

∞∞

•

•

•
◦◦

Graph of β 7→ ψr(β).
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§ SCALING NEAR THE BOTTOM

If the reference graphon r is of rank 1, i.e.,

r(x, y) = ν(x) ν(y), (x, y) ∈ [0,1]2,

for some ν : [0,1]→ [0,1] that is bounded away from 0 and

1, then we are able to say more.

Define

mk =
∫

[0,1]
νk, k ∈ N.

It is easily shown that Cr = m2 when r is rank 1. Put

Br =
∫

[0,1]2
r3(1− r) = m2

3 −m
2
4.
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THEOREM 4

(i) If r is rank 1, then

ψr(β) ∼ Kr (β − Cr)2, β → Cr,

with

Kr =
(Cr)2

2Br
=

m2
2

2(m2
3 −m

2
4)
.

(ii) If r is rank 1, then any hβ ∈ W that minimises the
second variational formula for the rate function ψr satisfies

lim
β→Cr

(β − Cr)−1‖hβ − r − (β − Cr)∆‖2 = 0,

with

∆(x, y) =
Cr

Br
r(x, y)2[1− r(x, y)], (x, y) ∈ [0,1]2.

12



§ REMARKS

1. It remains open whether ψr is convex or not. We do not expect ψr
to be analytic, because bifurcations may occur in the set of minimisers
of ψr as β is varied.

2. Note that the scaling corrections are not rank 1. It remains open
to determine what happens near Cr when r is not of rank 1. Higher
rank can be included, but at the cost of more technicalities.

3. The inverse curvature 1/Kr equals the variance in the central limit
theorem derived in Chakrabarty, Chakraborty, Hazra 2020. This is in
line with the standard folklore of large deviation theory.
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§ LDP FOR THE LAPLACIAN MATRIX

Hazra, den Hollander, Markering, in progress

The Laplacian matrix is defined as

LN = DN −AN ,

where DN is the diagonal matrix whose elements are the

degrees of the vertices.

The LDP for the spectral radius of LN poses new challenges,
because LN is a more delicate object than AN .

The upward and the downward large deviations live on different
scales, and the norm of the Laplacian operator lacks certain
continuities properties that hold for the norm of the adjacency
operator.
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GRAPHON OPERATORS:

Define the degree function for a graphon h ∈ W as

dh(x) =
∫

[0,1]
dy h(x, y), x ∈ [0,1].

The degree operator is defined by

(Dhu)(x) = dh(x)u(x), x ∈ [0,1].

The Laplacian operator is defined by

(Lhu)(x) =
∫

[0,1]
dy h(x, y)[u(x)− u(y)], x ∈ [0,1].

Note that

Lh = Dh − Th.
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The operator Lh is not as well-behaved as the operator Th.
In fact, even if a sequence of graphons (hn)n∈N converges in
the cut-distance to a graphon h, then the eigenvalues and
eigenvectors of Lhn may not converge to those of Lh.

If hGN is the empirical graphon of the graph GN , then
N‖Th‖ is the largest eigenvalue of GN , and N‖Dh‖ is the
maximum degree of GN . In fact, for any graphon h the
operator norm of Dh equals

‖Dh‖ = ‖dh‖∞,
Let

‖Lh‖ = sup
u∈L2([0,1])
‖u‖2=1

‖Lhu‖2

be the operator norm of Lh, which equals the maximal
eigenvalue of Lh.
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SOME BASIC FACTS:

(i) Lh is bounded and h 7→ ‖Lh‖ is lower semi-continuous

in the cut-distance.

(ii) ‖LN‖/N = ‖LhG‖ for all N .

Note that h 7→ ‖Lh‖ is not continuous in the cut-distance. For
example, consider the sequence of graphons (hN)N∈N such that
hN is the empirical graphon of the N-star graph. Then hN ↓ 0
as N →∞ in the cut-distance, but ‖LhN‖ = 1 for all N ∈ N.

Define

Ĉr = ‖Lr‖.
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§ DOWNWARD LDP

Let λ̂N be the maximal eigenvalue of the Laplacian matrix

LN of GN . Write P∗N to denote the law of λ̂N/N .

THEOREM 5

Suppose that limN→∞ ‖rN − r‖∞ = 0. Then the sequence

(P∗N)N∈N satisfies the downward LDP on R with rate
(
N
2

)
and with rate function

ψ−r (β) = inf
h̃∈W̃
‖L

h̃
‖≤β

Jr(h̃) = inf
h∈W
‖Lh‖≤β

Ir(h).

The second equality uses that ‖Lr‖ = ‖Lrφ‖ for any φ ∈ M. Since
the maximal eigenvalue is invariant under relabelling of the vertices,
we need not worry about the equivalence classes.

18



The downward LDP says that

P∗N(λ̂N/N ≤ β) ≈ exp
[
−
(N

2

)
ψ−r (β)

]
.

THEOREM 6

(i) ψ−r is right-continuous and strictly decreasing on [0, Ĉr],
with ψ−r (0) > 0 and ψ−r (Ĉr) = 0.

(ii) For every β ∈ [0, Ĉr], the set of minimisers in the first
variational formula for ψ−r (β) is non-empty and compact.

Ĉr 10
β

ψ−r (β)
∞

•

•

◦

Graph of β 7→ ψ−r (β).
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Under the additional assumption that

(x, y) 7→ r(x, y) is positive definite,

which is weaker than rank 1, we are able to say more. Put

Jr(x, β) =
∫

[0,1]
dyR

(
r̂(x, y) | r(x, y)

)
, x ∈ [0,1],

where

r̂(x, y) =
eθ(x)r(x, y)

eθ(x)r(x, y) + [1− r(x, y)]

with θ(x), x ∈ [0,1], chosen such that∫
[0,1]

dy r̂(x, y) = β, x ∈ [0,1].

Recall that dr(x) =
∫
[0,1] dy r(x, y). It is easily shown that

Ĉr = ‖dr‖∞ when r is positive definite.
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THEOREM 7

If r is positive-definite, then

ψ−r (β) = 2
∫
Sr(β)

dx Jr(x, β), β ∈ [0, Ĉr],

where

Sr(β) = {x ∈ [0,1]: dr(x) ≥ β} .

THEOREM 8

If r is positive-definite, then

ψ−r (β) � (Ĉr − β)2 |Sr(β)|, β ↑ Ĉr.

Note that lim
β↑Ĉr

|Sr(β)| = 0 because dr(x) ≤ Ĉr for all x ∈ [0,1].

Hence the decay is faster than quadratic. Several scenarios are
possible, depending on how dr scales near its maximum.
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§ UPWARD LDP

THEOREM 9

The sequence (P∗N)N∈N satisfies the upward LDP on R with

rate N and with rate function

ψ+
r (β) = inf

x∈[0,1]
Jr(x, β).

THEOREM 10

If r is positive-definite, then

ψ̂r(β) � (β − Ĉr)2, β ↓ Ĉr.
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The upward LDP says that

P∗N(λ̂N/N ≥ β) ≈ exp
[
−Nψ+

r (β)
]
.

Ĉr 10
β

ψ+
r (β) ∞

•

•

Graph of β 7→ ψ+
r (β).
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§ REMARKS

1. The fine properties of ψ−r and ψ+
r remain elusive.

2. It remains open to determine what happens near Ĉr when r is not
positive-definite.

3. No central limit theorem is known for λ̂N/N .

Challenge: What can be said about the
second largest eigenvalue of AN and LN?
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