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Machine Learning on Large-Scale Graphs

▶ The why: need to process information on very large graphs in a wide range of applications

⇒ E.g., product recommendation systems, control of teams of autonomous agents

product similarity graph robot swarm (Tolstaya, E. et al., 2019)

▶ Machine learning is solution of choice ⇒ has been shown to outperform other existing solutions
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Graph Neural Networks

▶ The how: empirical and theoretical evidence to support using neural networks

⇒ Standard neural networks are not scalable ⇒ use convolutional neural networks (CNNs)

▶ But convolutional neural networks only operate on regular, grid-like data...

▶ ... and we would like to process information on irregular structures better modeled as graphs

⇒ Graph convolutions and graph neural networks (GNNs) (Kipf, T., Welling, M., 2017)
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Do Graph Neural Networks Scale?

Q1: We have empirically observed that GNNs scale. Why do they scale?

Q2: Can success of GNNs on moderate-size graphs be used to create success at large-scale?

▶ To answer these questions, turn to CNNs ⇒ known to scale well for images and time sequences
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Convolutional Neural Networks Have Limits

▶ Discrete time/image signals converge to continuous time/image signals ⇒ ↓ intrinsic dimension

143 × 95 → 205 × 136 → 294 × 195 → 600 × 399

⇒ From SP theory, CNNs have well-defined limits on the limits of images and time signals

▶ A1: Intrinsic dimensionality of the problem is less than the size of the image

▶ A2: Training with small images is sufficient ⇒ CIFAR 10 images are 32× 32
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Graphons

▶ Graphs also have limit objects that effectively limit their dimensionality ⇒ one is the graphon

n = 50 nodes → n = 100 nodes → n = 200 nodes → Graphon W (u, v) = p

▶ A graphon can be thought of as a graph with an uncountable number of nodes
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Large-Scale Graphs

▶ Graphs however do not have the Euclidean structure time and image signals have in the limit

n = 30 products n = 50 products n = 100 products

▶ So do graph convolutions and graph neural networks converge to limits on the graphon?
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Graph Neural Networks Have Limits

Q1: We have empirically observed that GNNs scale. Why do they scale?

▶ A1: Because graph convolutions and GNNs have well-defined limits on graphons

Ruiz, L., Chamon, L. F. O., Ribeiro, A., Graphon Signal Processing, IEEE TSP, 2021

Q2: Can success of GNNs on moderate-size graphs be used to create success at large-scale?

▶ A2: Yes, as GNNs are transferable ⇒ can be trained on moderate-size and executed on large-scale

Ruiz, L., Chamon, L. F. O., Ribeiro, A., Transferability Properties of Graph Neural Networks, Submitted to IEEE TSP
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Transferability of Graph Neural Networks

▶ Transferability of graph neural networks useful in practice ⇒ recommendation system

→
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▶ Performance difference on training and target graphs decreases as size of training graph grows

▶ GNNs appear to be more transferable than graph convolutional filters ⇒ better ML model
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Transferability of Graph Neural Networks

▶ Transferability of graph neural networks useful in practice ⇒ decentralized robot control
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▶ Performance difference on training and target graphs decreases as size of training graph grows

▶ GNNs appear to be more transferable than graph convolutional filters ⇒ better ML model
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Graph Convolutions
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Convolutions in Time and Space

▶ Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph
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▶ Filter with coefficients hk ⇒ Output z = h0 S
0x + h1 S

1x + h2 S
2x + h3 S

3x + . . . =
K−1∑
k=0

hk S
kx
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Convolutions on Graphs

▶ For graph signals we define graph convolutions as polynomials on matrix representations of graphs

1

23

4

5 6

7

89

10

11 12

x1

x2x3

x4

x5 x6

x7

x8x9

x10

x11 x12

▶ Filter with coefficients hk ⇒ Output z = h0 S
0x + h1 S

1x + h2 S
2x + h3 S

3x + . . . =
K−1∑
k=0

hk S
kx

▶ To analyze their convergence to a limit object on the graphon ⇒ need to define graphons

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M. F, Vandergheynst, P., Graph Signal Processing, Proc. IEEE, 2018
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Ortega, A., Frossard, P., Kovačević, J., Moura, J. M. F, Vandergheynst, P., Graph Signal Processing, Proc. IEEE, 2018

12



Graphons

13



Graphons

Definition (Graphon) (Borgs, C., Chayes, J., Lovász, L., Sós, V., Vesztergombi, K., 2008)

A graphon W is a bounded symmetric measurable function ⇒ W : [0, 1]2 → [0, 1]

▶ Can think of a graphon as a weighted symmetric graph with an uncountable number of nodes

⇒ Labels are graphon arguments u ∈ [0, 1], weights are graphon values W (u, v) = W (v , u)

▶ Interpreted as the limit of a sequence of graphs in the sense that densities of motifs converge

▶ Interpreted as a generative model of graph families by sampling edges (ui , uj) ∼ B(W(ui , uj))
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Uniform Graphon as a Limit Object

▶ A sequence of Erdős-Rényi graphs converges to Erdős-Rényi graphons

n = 50 nodes → n = 100 nodes → n = 200 nodes → Graphon W (u, v) = p

▶ The Erdős-Rényi graphon can be used to sample uniform graphs with 200, 100, and 50 nodes
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SBM as a Limit Object

▶ A sequence of stochastic block model graphs converges to stochastic block model graphons

n = 20 nodes → n = 30 nodes → n = 40 nodes → Graphon W (u, v)

▶ The stochastic block model graphon can be used to sample SBM graphs with 40, 30, and 20 nodes
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Graphon Convolutions
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Convolutions on Graphs

▶ Graph convolution ⇒ Output z = h0 S
0x + h1 S

1x + h2 S
2x + h3 S

3x + . . . =
K−1∑
k=0

hk S
kx
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S S S

+ + + +

S0x S1x S2x S3x

h0 h1 h2 h3

y = h ⋆ x

h0S
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1x h2S
2x h3S

3x

▶ Note that the graph convolution is parametrized by the operator zk = Szk−1 ⇒ graph shift operator
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Graphon Shift Operator

▶ Graphon convolutions are analogously parametrized by the graphon shift operator

Definition (Graphon Shift Operator) (Ruiz, L., Chamon, L. F. O., Ribeiro A., TSP’21)

The graphon shift operator of a graphon W is defined as

Y (v) = (TWX )(v) =

∫ 1

0

W(u, v)X (u)du.

▶ The graphon shift operator is an integral linear operator with kernel given by the graphon W
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Graphon Convolutions

▶ Graphon convolution ⇒ Z = h0 T
0
WX + h1 T

1
WX + h2 T

2
WX + h3 T

3
WX . . . =

K−1∑
k=0
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k
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Frequency Representation of Graph Filters

▶ The graph (which is symmetric) admits the eigenvector decomposition Sn = VnΛnV
H
n

Theorem (Graph frequency representation of graph filters)

Consider graph filter with coefficients hk , graph signal xn and the filtered signal yn =
K−1∑
k=0

hkS
k
nxn.

The Graph Fourier Transforms x̃n = VH
n xn and ỹn = VH

n yn are related by

ỹnj =
K−1∑
k=0

hkλ
k
nj x̃nj ⇒ h̃(λ) =

K−1∑
k=0

hkλ
k

▶ This is a simple eigenvalue decomposition of the graph filter polynomial ⇒ Nonetheless interesting

⇒ It is not only that the operator is pointwise, it also decouples the filter from the graph
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Graph Frequency Response

▶ The frequency response is independent of the graph. It is a polynomial on a scalar variable λ

▶ Graph determines eigenvalues at which response is instantiated ⇒ ỹnj =
K−1∑
k=0

hkλ
k
nj x̃nj = h(λnj)x̃nj

-1.0 0 1.0
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Frequency Representation of Graphon Filters

▶ Since graphon shifts are Hilbert-Schmidt operators, the same can be done for graphon filters

▶ The eigenfunction representation of the graphon shift is W (u, v) =
∑

j∈Z\{0}

λjϕj(u)φj(v)

Theorem (Graphon frequency representation of graphon filters)

Consider graphon filter with coefficients hk , graphon signal X and the filtered signal Y . The

Graphon Fourier Transforms X̃j =

∫ 1

0

φj(u)X (u)du and Ỹj =

∫ 1

0

φj(u)Y (u)du are related by

Ỹj =
K−1∑
k=0

hkλ
k
j X̃j ⇒ h̃(λ) =

K−1∑
k=0

hkλ
k

▶ Like graph filters, graphon filters have pointwise spectra and are decoupled from the graphon
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Graph Frequency Response

▶ Graphon-independent. More importantly the same as the graph response for the same coefficients hk

▶ Graphon determines eigenvalues at which response is instantiated ⇒ Ỹj =
K−1∑
k=0

hkλ
k
j X̃j = h(λj)X̃j

-1.0 0 1.0
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Spectral Representation of the Graph and Graphon Convolution

▶ Spectral response of graph and graphon convolution is given by the same function h(λ)

-1.0 0 1.0

▶ Spectral response of the graph convolution determined by evaluating h(λ) at graph eigenvalues

▶ Spectral response of the graphon convolution determined by evaluating h(λ) at graphon eigenvalues
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Convergence of Graph Convolutions

▶ Graph convolutions converge to graphon convolutions ⇒ provided that h(λ) is Lipschitz

Theorem (Convergence of Graph Convolutions) (Ruiz, L. et al., EUSIPCO’20, TSP’21)

Given convergent graph signal sequence (Gn, xn) → (W ,X ) and convolutions H(Sn) and TH

generated by the same coefficients hk , if the spectral response h(λ) is Lipschitz,

(Gn, yn) → (W,Y )

i.e., the sequence of output graph signals converges to the output graphon signal.

▶ Lipschitz continuity restriction better understood in the graph and graphon spectral domain
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Graphon Spectrum and Convergence of Spectra

▶ Due to TW being compact, graphon eigenvalues accumulate at λ = 0 ⇒ lim
i→∞

λi = lim
i→∞

λ−i = 0

If a graph sequence {Gn} converges to a graphon W, then

lim
n→∞

λj(Sn)

n
= λj(TW) for all j (Borgs, C. et al., 2012)

-1 0 1

▶ But for ̸= j , ̸= n0 are needed to show that ∃ n0 s.t. for all n > n0,

∣∣∣∣λj(Sn)

n
− λj(TW)

∣∣∣∣ < ϵ
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Convergence of Graph Convolutions

▶ Because eigenvalues converge, we can expect graph convolutions to converge

-1.0 0 1.0

▶ But convergence near λ = 0 is complicated by eigenvalue convergence not being uniform

▶ Filters attempting to discriminate spectral components near λ = 0 do not converge
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Lipschitz Graph Convolutions

▶ This problem can be solved if we amplify these spectral components similarly for |λ| ≤ c

-1.0 0 1.0

▶ Lipschitz filters ensure no mismatch between eigenspaces of |λj(Sn)| ≤ c and |λj(W)| ≤ c

▶ Lipschitz condition means that convergence comes at the cost of spectral discriminability
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Transferability
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Transferability of Graph Convolutions

▶ Have established an asymptotic result ⇒ graph convolutions converge, but with a condition

▶ Depending on the value of the Lipschitz constant of h(λ), convergence may be faster or slower

-0.4 0 0.4-c c

▶ In order to exploit this result in practice, need a non-asymptotic analysis for finite n
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Approximating Graphon Convolutions with Graph Convolutions

Theorem (Graphon Filter Approximation) (Ruiz, L. et al., Proc. IEEE’21)

Consider a graph signal (Sn, xn) sampled from the graphon signal (W ,X ) along with convolution

outputs yn = H(Sn)xn and Y = THX . The difference norm of the respective graphon induced

signals is bounded by

∥Yn − Y ∥ ≤ 2Aw

(
Ah+π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1

n

)
∥X∥+Ax(Ahc + 2)

(
1

n

)
+ 2Ahc∥X∥

▶ Bound decreases with n ⇒ graph filters better approximate graphon filter for large n as expected

▶ As n → ∞ we can afford smaller bandwith c ⇒ convergence of filters closer to λ = 0
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▶ Discriminating around λ = 0 needs large Lipschitz constant Ah ⇒ large approximation error

▶ Filters that are more discriminative (large Ah) converge more slowly with n ⇒ tradeoff
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Transferability Paradigm

▶ Consider graphs Gn and Gm with n ̸= m nodes which are both sampled from the graphon W

▶ Can upper bound the approximation error between H(Sn) and TH. And between H(Sm) and TH

n nodes m nodes Graphon W (u, v) = p

▶ By the triangle inequality, can upper bound the transferability error between H(Sn) and H(Sm)
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Transferability-Discriminability Tradeoff

▶ If filter is sharp near λ = 0, spectral components of λj(Sn) and λj(W) are amplified differently

0 0.35

▶ Transferability and discriminability are not compatible for graph convolutional filters
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Graph Neural Networks
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Convergence of Graph Convolutions

▶ So far we have talked at length about graph convolutions and graphon convolutions

⇒ Graph Convolution ⇒ Graphon Convolution

zn =
K−1∑
k=0

hkS
k
nxn Z =

K−1∑
k=0

hkT
(k)
W X

▶ But we have not talked much about graph neural networks and graphon neural networks

⇒ Graph and graphon NNs are a minor variation of graph convolutions and graphon convolutions
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Graph Neural Networks

▶ A graph NN composes a cascade of layers

▶ Each of which are themselves compositions

⇒ Of graph convolutions H(S)

⇒ With pointwise nonlinearities σ

▶ Define the learnable parameter set H = {hkl}

▶ GNN can be represented as y = Φ(H;S; x)

Layer 1

Layer 2

Layer 3

x

z1 =

K−1∑
k=0

h1k Sk x x1 = σ
[
z1

]z1

z2 =

K−1∑
k=0

h2k Sk x1 x2 = σ
[
z2

]z2

z3 =

K−1∑
k=0

h3k Sk x2 x3 = σ
[
z3

]z3

x1

x1

x2

x2

x3 = Φ(x; S,H)
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Graphon Neural Networks

▶ A graphon NN (WNN) composes layers

▶ Each of which are themselves compositions

⇒ Of graphon convolutions TH

⇒ With pointwise nonlinearities σ

▶ Define the learnable parameter set H = {hkl}

▶ WNN can be represented as Y = Φ(H;W;X )

Layer 1

Layer 2

Layer 3

x

Z1 =

K−1∑
k=0

h1k T
(k)
W X X1 = σ

[
Z1

]z1

Z2 =

K−1∑
k=0

h2k T
(k)
W X1 X2 = σ

[
Z2

]z2

Z3 =

K−1∑
k=0

h3k T
(k)
W X2 X3 = σ

[
Z3

]z3

x1

x1

x2

x2

X3 = Φ(X ;W,H)
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Transferability of Graph Neural Networks

▶ The transferability properties of graph filters are inherited by graph neural networks

Theorem (GNN Transferability) (Ruiz, L. et al., NeurIPS’20, Proc. IEEE’21)

Consider graph signals (Sn, xn) and (Sm, xm) sampled from graphon signal (W ,X ) along with GNN

outputs yn = Φ(H; Sn, xn) and ym = Φ(H; Sm, xm). The difference norm of the respective graphon

induced signals is bounded by

∥Yn − Ym∥ ≤

LF L−12Aw

(
Ah+π

max(Bnc ,Bmc)

min(δnc , δmc)

)(
1

n
+

1

m

)
∥X∥+Ax(Ahc + 2)

(
1

n
+

1

m

)
+ 4LF L−1Ahc∥X∥

39



Graph Filters vs. Graph Neural Networks

▶ The difference in GNNs is that the nonlinearities scatter spectral components all over the spectrum

-1 -c 0 c 1

▶ Which allows increasing discriminability without hurting transferability. Hence:

⇒ For the same level of transferability ⇒ GNNs are more discriminative than graph filters

⇒ For the same level of discriminability ⇒ GNNs are more transferable than graph filters
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Transferability of Graph Neural Networks

▶ Transferability of graph neural networks observed empirically ⇒ recommendation system

→

600 800 1000 1200 1400 1600 1800 2000
Nodes

0.00

0.02

0.04

0.06

0.08

0.10

Re
la

tiv
e 

RM
SE

 d
iff

er
en

ce

Graph Filter
GNN
Lipschitz GNN

▶ Performance difference on training and target graphs decreases as size of training graph grows

▶ GNNs are more transferable than graph convolutional filters. Especially if their filters are Lipschitz
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Transferability of Graph Neural Networks

▶ Transferability of graph neural networks observed empirically ⇒ decentralized robot control
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▶ Performance difference on training and target graphs decreases as size of training graph grows

▶ GNNs are more transferable than graph convolutional filters. Especially if their filters are Lipschitz
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Takeaways

GNNs are more transferable than graph convolutional filters

GNNs are more transferable because of their mixing properties

▶ Empirical and theoretical evidence support using GNNs for large-scale graph machine learning
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Thank you!

Luana Ruiz

Simons / FODSI / JHU

rubruiz@seas.upenn.edu
www.seas.upenn.edu/∼rubruiz
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Definitions

▶ We fix a bandwidth c > 0 to separate eigenvalues not close to λ = 0 and define

(D1) The c-band cardinality of Gn is the number of eigenvalues with absolute value larger than c

Bnc = #
{
λni : |λni | > c

}
(D2) The c-eigenvalue margin of of graph Gn is the

δnc = min
i,j ̸=i

{
|λni − λj | : |λni | > c

}

▶ Where λni are eigenvalues of the shift operator Sn and λj are eigenvalues of graphon W
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Assumptions

(A1) The graphon W is Aw -Lipschitz ⇒ For all arguments (u1, v1) and (u2, v2), it holds∣∣∣W(u2, v2)−W (u1, v1)
∣∣∣ ≤ Aw

( ∣∣ u2 − u1
∣∣ +

∣∣ v2 − v1
∣∣ )

(A2) The filter’s response is Ah-Lipschitz and normalized ⇒ For all λ1, λ2 and λ we have

∣∣ h(λ2)− h(λ1)
∣∣ ≤ Ah

∣∣λ2 − λ1

∣∣ and
∣∣ h(λ) ∣∣ ≤ 1

(A3) The graphon signal X is Ax -Lipschitz ⇒ For all u1 and u2

∣∣X (u2)− X (u1)
∣∣ ≤ Ax

∣∣u2 − u1
∣∣
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