Machine Learning on Large-Scale Graphs

Graph Limits, Nonparametric Models, and Estimation Workshop

Luana Ruiz

Simons / FODSI / JHU
Thanks to Luiz Chamon (U. Stuttgart) and Alejandro Ribeiro (UPenn)

- The why: need to process information on very large graphs in a wide range of applications
\Rightarrow E.g., product recommendation systems, control of teams of autonomous agents

product similarity graph

- Machine learning is solution of choice \Rightarrow has been shown to outperform other existing solutions

Graph Neural Networks

- The how: empirical and theoretical evidence to support using neural networks
\Rightarrow Standard neural networks are not scalable \Rightarrow use convolutional neural networks (CNNs)
- But convolutional neural networks only operate on regular, grid-like data...

- ... and we would like to process information on irregular structures better modeled as graphs
\Rightarrow Graph convolutions and graph neural networks (GNNs) (Kipf, T., Welling, M., 2017)

Q1: We have empirically observed that GNNs scale. Why do they scale?

Q2: Can success of GNNs on moderate-size graphs be used to create success at large-scale?

- To answer these questions, turn to CNNs \Rightarrow known to scale well for images and time sequences
- Discrete time/image signals converge to continuous time/image signals $\Rightarrow \downarrow$ intrinsic dimension

\Rightarrow From SP theory, CNNs have well-defined limits on the limits of images and time signals
- A1: Intrinsic dimensionality of the problem is less than the size of the image
- A2: Training with small images is sufficient \Rightarrow CIFAR 10 images are 32×32
- Discrete time/image signals converge to continuous time/image signals $\Rightarrow \downarrow$ intrinsic dimension

\Rightarrow From SP theory, CNNs have well-defined limits on the limits of images and time signals
- A1: Intrinsic dimensionality of the problem is less than the size of the image
- A2: Training with small images is sufficient \Rightarrow CIFAR 10 images are 32×32
- Discrete time/image signals converge to continuous time/image signals $\Rightarrow \downarrow$ intrinsic dimension

\Rightarrow From SP theory, CNNs have well-defined limits on the limits of images and time signals
- A1: Intrinsic dimensionality of the problem is less than the size of the image
- A2: Training with small images is sufficient \Rightarrow CIFAR 10 images are 32×32
- Discrete time/image signals converge to continuous time/image signals $\Rightarrow \downarrow$ intrinsic dimension

\Rightarrow From SP theory, CNNs have well-defined limits on the limits of images and time signals
- A1: Intrinsic dimensionality of the problem is less than the size of the image
- A2: Training with small images is sufficient \Rightarrow CIFAR 10 images are 32×32
- Discrete time/image signals converge to continuous time/image signals $\Rightarrow \downarrow$ intrinsic dimension

\Rightarrow From SP theory, CNNs have well-defined limits on the limits of images and time signals
- A1: Intrinsic dimensionality of the problem is less than the size of the image
- A2: Training with small images is sufficient \Rightarrow CIFAR 10 images are 32×32

Graphons

- Graphs also have limit objects that effectively limit their dimensionality \Rightarrow one is the graphon

$n=50$ nodes

$\rightarrow \quad n=100$ nodes $\quad \rightarrow$

- A graphon can be thought of as a graph with an uncountable number of nodes

Graphons

- Graphs also have limit objects that effectively limit their dimensionality \Rightarrow one is the graphon

- A graphon can be thought of as a graph with an uncountable number of nodes

Graphons

- Graphs also have limit objects that effectively limit their dimensionality \Rightarrow one is the graphon

\rightarrow
$n=100$ nodes

\rightarrow

- A graphon can be thought of as a graph with an uncountable number of nodes

Graphons

- Graphs also have limit objects that effectively limit their dimensionality \Rightarrow one is the graphon

$\rightarrow \quad n=100$ nodes
\rightarrow

$n=200$ nodes

- A graphon can be thought of as a graph with an uncountable number of nodes

Graphons

- Graphs also have limit objects that effectively limit their dimensionality \Rightarrow one is the graphon

- A graphon can be thought of as a graph with an uncountable number of nodes

Large-Scale Graphs

- Graphs however do not have the Euclidean structure time and image signals have in the limit

$n=30$ products

$n=50$ products

$n=100$ products
- So do graph convolutions and graph neural networks converge to limits on the graphon?

Large-Scale Graphs

- Graphs however do not have the Euclidean structure time and image signals have in the limit

$n=30$ products

$n=50$ products

$n=100$ products
- So do graph convolutions and graph neural networks converge to limits on the graphon?

Large-Scale Graphs

- Graphs however do not have the Euclidean structure time and image signals have in the limit

$n=30$ products

$n=50$ products

$n=100$ products
- So do graph convolutions and graph neural networks converge to limits on the graphon?

Large-Scale Graphs

- Graphs however do not have the Euclidean structure time and image signals have in the limit

$n=30$ products

$n=50$ products

$n=100$ products
- So do graph convolutions and graph neural networks converge to limits on the graphon?

Graph Neural Networks Have Limits

Q1: We have empirically observed that GNNs scale. Why do they scale?

- A1: Because graph convolutions and GNNs have well-defined limits on graphons

Ruiz, L., Chamon, L. F. O., Ribeiro, A., Graphon Signal Processing, IEEE TSP, 2021

Q2: Can success of GNNs on moderate-size graphs be used to create success at large-scale?

- A2: Yes, as GNNs are transferable \Rightarrow can be trained on moderate-size and executed on large-scale

Ruiz, L., Chamon, L. F. O., Ribeiro, A., Transferability Properties of Graph Neural Networks, Submitted to IEEE TSP

- Transferability of graph neural networks useful in practice \Rightarrow recommendation system

- Performance difference on training and target graphs decreases as size of training graph grows
- GNNs appear to be more transferable than graph convolutional filters \Rightarrow better ML model
- Transferability of graph neural networks useful in practice \Rightarrow decentralized robot control

- Performance difference on training and target graphs decreases as size of training graph grows
- GNNs appear to be more transferable than graph convolutional filters \Rightarrow better ML model

Graph Convolutions

Convolutions in Time and Space

- Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices \mathbf{S}

Description of time with a directed line graph

Description of images (space) with a grid graph

- Filter with coefficients $h_{k} \Rightarrow$ Output $z=h_{0} S^{0} x+h_{1} S^{1} x+h_{2} S^{2} x+h_{3} S^{3} x+\ldots=\sum h_{k} S^{k} x$

Convolutions in Time and Space

- Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices \mathbf{S}

Description of time with a directed line graph

Description of images (space) with a grid graph

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=$

```
\(h_{0} S^{0} x+h_{1} S^{1} x+h_{2} S^{2} x+h_{3} S^{3} x\)
```


Convolutions in Time and Space

- Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices \mathbf{S}

Description of time with a directed line graph Description of images (space) with a grid graph

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}$

Convolutions in Time and Space

- Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices \mathbf{S}

Description of time with a directed line graph Description of images (space) with a grid graph

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}$
- Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices \mathbf{S}

Description of time with a directed line graph Description of images (space) with a grid graph

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}$
- Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}+h_{3} \mathbf{S}^{3} \mathbf{x}$
- Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}+h_{3} \mathbf{S}^{3} \mathbf{x}+\ldots=\sum_{k=0}^{K-1} h_{k} \mathbf{S}^{k} \mathbf{x}$

Convolutions in Time and Space

- Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices \mathbf{S}

Description of time with a directed line graph

Description of images (space) with a grid graph

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=$

```
\(h_{0} S^{0} x+h_{1} S^{1} x+h_{2} S^{2} x+h_{3} S^{3} x\)
```


Convolutions in Time and Space

- Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices \mathbf{S}

Description of time with a directed line graph

Description of images (space) with a grid graph

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}$

Convolutions in Time and Space

- Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices \mathbf{S}

Description of time with a directed line graph

Description of images (space) with a grid graph

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}$

Convolutions in Time and Space

- Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices \mathbf{S}

Description of time with a directed line graph

Description of images (space) with a grid graph

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}$

Convolutions in Time and Space

- Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices \mathbf{S}

Description of time with a directed line graph

Description of images (space) with a grid graph

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}+h_{3} \mathbf{S}^{3} \mathbf{x}$

Convolutions in Time and Space

- Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices \mathbf{S}

Description of time with a directed line graph

Description of images (space) with a grid graph

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}+h_{3} \mathbf{S}^{3} \mathbf{x}+\ldots=\sum_{k=0}^{k-1} h_{k} \mathbf{S}^{k} \mathbf{x}$

Convolutions in Time and Space

- Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices \mathbf{S}

Description of time with a directed line graph

Description of images (space) with a grid graph

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}+h_{3} \mathbf{S}^{3} \mathbf{x}+\ldots=\sum_{k=0}^{k-1} h_{k} \mathbf{S}^{k} \mathbf{x}$
- For graph signals we define graph convolutions as polynomials on matrix representations of graphs

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=$
- To analyze their convergence to a limit object on the graphon \Rightarrow need to define graphons

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M. F, Vandergheynst, P., Graph Signal Processing, Proc. IEEE, 2018

- For graph signals we define graph convolutions as polynomials on matrix representations of graphs

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}$
- To analyze their convergence to a limit object on the graphon \Rightarrow need to define graphons

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M. F, Vandergheynst, P., Graph Signal Processing, Proc. IEEE, 2018

- For graph signals we define graph convolutions as polynomials on matrix representations of graphs

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}$
- To analyze their convergence to a limit object on the graphon \Rightarrow need to define graphons

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M. F, Vandergheynst, P., Graph Signal Processing, Proc. IEEE, 2018

- For graph signals we define graph convolutions as polynomials on matrix representations of graphs

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}$
- To analyze their convergence to a limit object on the graphon \Rightarrow need to define graphons

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M. F, Vandergheynst, P., Graph Signal Processing, Proc. IEEE, 2018

- For graph signals we define graph convolutions as polynomials on matrix representations of graphs

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}+h_{3} \mathbf{S}^{3} \mathbf{x}$
- To analyze their convergence to a limit object on the graphon \Rightarrow need to define graphons

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M. F, Vandergheynst, P., Graph Signal Processing, Proc. IEEE, 2018

- For graph signals we define graph convolutions as polynomials on matrix representations of graphs

- Filter with coefficients $h_{k} \Rightarrow$ Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}+h_{3} \mathbf{S}^{3} \mathbf{x}+\ldots=\sum_{k=0}^{k-1} h_{k} \mathbf{S}^{k} \mathbf{x}$
- To analyze their convergence to a limit object on the graphon \Rightarrow need to define graphons

Ortega, A., Frossard, P., Kovačević, J., Moura, J. M. F, Vandergheynst, P., Graph Signal Processing, Proc. IEEE, 2018

Graphons

Graphons

Definition (Graphon) (Borgs, C., Chayes, J., Lovász, L., Sós, V., Vesztergombi, K., 2008)
A graphon \mathbf{W} is a bounded symmetric measurable function $\Rightarrow \mathbf{W}:[0,1]^{2} \rightarrow[0,1]$

- Can think of a graphon as a weighted symmetric graph with an uncountable number of nodes
\Rightarrow Labels are graphon arguments $u \in[0,1]$, weights are graphon values $W(u, v)=W(v, u)$
\rightarrow Interpreted as the limit of a sequence of graphs in the sense that densities of motifs converge
- Interpreted as a generative model of graph families by sampling edges $\left(u_{i}, u_{j}\right) \sim \mathcal{B}\left(\mathbf{W}\left(u_{i}, u_{j}\right)\right)$

Graphons

Definition (Graphon) (Borgs, C., Chayes, J., Lovász, L., Sós, V., Vesztergombi, K., 2008)
A graphon \mathbf{W} is a bounded symmetric measurable function $\Rightarrow \mathbf{W}:[0,1]^{2} \rightarrow[0,1]$

- Can think of a graphon as a weighted symmetric graph with an uncountable number of nodes
\Rightarrow Labels are graphon arguments $u \in[0,1]$, weights are graphon values $W(u, v)=W(v, u)$
- Interpreted as the limit of a sequence of graphs in the sense that densities of motifs converge
- Interpreted as a generative model of graph families by sampling edges $\left(u_{i}, u_{j}\right) \sim \mathcal{B}\left(\mathbf{W}\left(u_{i}, u_{j}\right)\right)$

Graphons

Definition (Graphon) (Borgs, C., Chayes, J., Lovász, L., Sós, V., Vesztergombi, K., 2008)
A graphon \mathbf{W} is a bounded symmetric measurable function $\Rightarrow \mathbf{W}:[0,1]^{2} \rightarrow[0,1]$

- Can think of a graphon as a weighted symmetric graph with an uncountable number of nodes
\Rightarrow Labels are graphon arguments $u \in[0,1]$, weights are graphon values $W(u, v)=W(v, u)$
- Interpreted as the limit of a sequence of graphs in the sense that densities of motifs converge
- Interpreted as a generative model of graph families by sampling edges $\left(u_{i}, u_{j}\right) \sim \mathcal{B}\left(\mathbf{W}\left(u_{i}, u_{j}\right)\right)$

Uniform Graphon as a Limit Object

- A sequence of Erdős-Rényi graphs converges to Erdős-Rényi graphons

$n=50$ nodes

$$
\rightarrow
$$

$$
n=100 \text { nodes }
$$

$$
\rightarrow \quad n=200 \text { nodes }
$$

$$
\rightarrow \quad \text { Graphon } W(u, v)=p
$$

- The Erdős-Rényi graphon can be used to sample uniform graphs with 200,100 , and 50 nodes

Uniform Graphon as a Limit Object

- A sequence of Erdős-Rényi graphs converges to Erdős-Rényi graphons

$n=50$ nodes
\rightarrow

$$
n=100 \text { nodes }
$$

$$
\rightarrow \quad n=200 \text { nodes }
$$

$\rightarrow \quad$ Graphon $W(u, v)=p$

- The Erdős-Rényi graphon can be used to sample uniform graphs with 200, 100, and 50 nodes

SBM as a Limit Object

- A sequence of stochastic block model graphs converges to stochastic block model graphons

$$
n=20 \text { nodes } \quad \rightarrow \quad n=30 \text { nodes }
$$

$$
\rightarrow \quad n=40 \text { nodes }
$$

\rightarrow
Graphon $W(u, v)$

- The stochastic block model graphon can be used to sample SBM graphs with 40, 30, and 20 nodes

SBM as a Limit Object

- A sequence of stochastic block model graphs converges to stochastic block model graphons

$\rightarrow \quad n=40$ nodes
$\rightarrow \quad$ Graphon $W(u, v)$
$n=20$ nodes \rightarrow

$$
n=30 \text { nodes }
$$

$$
\rightarrow
$$

- The stochastic block model graphon can be used to sample SBM graphs with 40, 30, and 20 nodes

Graphon Convolutions

- Graph convolution \Rightarrow Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}$

- Note that the graph convolution is parametrized by the operator $z_{k}=S z_{k-1} \Rightarrow$ graph shift operator
- Graph convolution \Rightarrow Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}$

- Note that the graph convolution is parametrized by the operator $z_{k}=S z_{k-1} \Rightarrow$ graph shift operator

Convolutions on Graphs

- Graph convolution \Rightarrow Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}$

- Note that the graph convolution is parametrized by the operator $z_{k}=S z_{k-1} \Rightarrow$ graph shift operator

Convolutions on Graphs

- Graph convolution \Rightarrow Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}+h_{3} \mathbf{S}^{3} \mathbf{x}$

- Note that the graph convolution is parametrized by the operator $z_{k}=S z_{k-1} \Rightarrow$ graph shift operator

Convolutions on Graphs

- Graph convolution \Rightarrow Output $\mathbf{z}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}+h_{3} \mathbf{S}^{3} \mathbf{x}+\ldots=\sum_{k=0}^{k-1} h_{k} \mathbf{S}^{k} \mathbf{x}$

- Note that the graph convolution is parametrized by the operator $z_{k}=S z_{k-1} \Rightarrow$ graph shift operator

Graphon Shift Operator

- Graphon convolutions are analogously parametrized by the graphon shift operator

Definition (Graphon Shift Operator) (Ruiz, L., Chamon, L. F. O., Ribeiro A., TSP'21)
The graphon shift operator of a graphon \mathbf{W} is defined as

$$
Y(v)=\left(T_{\mathrm{W}} X\right)(v)=\int_{0}^{1} \mathbf{W}(u, v) X(u) d u .
$$

- The graphon shift operator is an integral linear operator with kernel given by the graphon W

Graphon Convolutions

- Graphon convolution $\Rightarrow Z=h_{0} T_{\mathrm{W}}^{0} X$

Graphon Convolutions

- Graphon convolution $\Rightarrow Z=h_{0} T_{W}^{0} X+h_{1} T_{W}^{1} X$

Graphon Convolutions

- Graphon convolution $\Rightarrow Z=h_{0} T_{W}^{0} X+h_{1} T_{W}^{1} X+h_{2} T_{W}^{2} X$

Graphon Convolutions

- Graphon convolution $\Rightarrow Z=h_{0} T_{\mathrm{W}}^{0} X+h_{1} T_{\mathrm{W}}^{1} X+h_{2} T_{\mathrm{W}}^{2} X+h_{3} T_{\mathrm{W}}^{3} X$

Graphon Convolutions

- Graphon convolution $\Rightarrow Z=h_{0} T_{\mathrm{w}}^{0} X+h_{1} T_{\mathrm{w}}^{1} X+h_{2} T_{\mathrm{w}}^{2} X+h_{3} T_{\mathrm{w}}^{3} X \ldots=\sum_{k=0}^{k-1} h_{k} T_{\mathrm{w}}^{k} X$

- The graph (which is symmetric) admits the eigenvector decomposition $\mathbf{S}_{n}=\mathbf{V}_{n} \boldsymbol{\Lambda}_{n} \mathbf{V}_{n}^{H}$

Theorem (Graph frequency representation of graph filters)
Consider graph filter with coefficients h_{k}, graph signal \mathbf{x}_{n} and the filtered signal $\mathbf{y}_{n}=\sum_{k=0}^{K-1} h_{k} \mathbf{S}_{n}^{k} \mathbf{x}_{n}$.
The Graph Fourier Transforms $\tilde{\mathbf{x}}_{n}=\mathbf{V}_{n}^{H} \mathbf{x}_{n}$ and $\tilde{\mathbf{y}}_{n}=\mathbf{V}_{n}^{H} \mathbf{y}_{n}$ are related by

$$
\tilde{y}_{n j}=\sum_{k=0}^{K-1} h_{k} \lambda_{n j}^{k} \tilde{x}_{n j} \quad \Rightarrow \quad \tilde{h}(\lambda)=\sum_{k=0}^{K-1} h_{k} \lambda^{k}
$$

- This is a simple eigenvalue decomposition of the graph filter polynomial \Rightarrow Nonetheless interesting \Rightarrow It is not only that the operator is pointwise, it also decouples the filter from the graph

Graph Frequency Response

- The frequency response is independent of the graph. It is a polynomial on a scalar variable λ
-Graph determines eigenvalues at which response is instantiated $\Rightarrow \tilde{y}_{n j}=\sum_{k=0}^{K-1} h_{k} \lambda_{n j}^{k} \tilde{x}_{n j}=h\left(\lambda_{n j}\right) \tilde{x}_{n j}$

Frequency Representation of Graphon Filters

- Since graphon shifts are Hilbert-Schmidt operators, the same can be done for graphon filters
- The eigenfunction representation of the graphon shift is $W(u, v)=\sum_{j \in \mathbb{Z} \backslash\{0\}} \lambda_{j} \phi_{j}(u) \varphi_{j}(v)$

Theorem (Graphon frequency representation of graphon filters)

Consider graphon filter with coefficients h_{k}, graphon signal X and the filtered signal Y. The
Graphon Fourier Transforms $\tilde{X}_{j}=\int_{0}^{1} \varphi_{j}(u) X(u) d u$ and $\tilde{Y}_{j}=\int_{0}^{1} \varphi_{j}(u) Y(u) d u$ are related by

$$
\tilde{Y}_{j}=\sum_{k=0}^{K-1} h_{k} \lambda_{j}^{k} \tilde{X}_{j} \quad \Rightarrow \quad \tilde{h}(\lambda)=\sum_{k=0}^{K-1} h_{k} \lambda^{k}
$$

- Like graph filters, graphon filters have pointwise spectra and are decoupled from the graphon
- Graphon-independent. More importantly the same as the graph response for the same coefficients h_{k}
- Graphon determines eigenvalues at which response is instantiated $\Rightarrow \tilde{Y}_{j}=\sum_{k=0}^{K-1} h_{k} \lambda_{j} \tilde{X}_{j}=h\left(\lambda_{j}\right) \tilde{X}_{j}$

- Spectral response of graph and graphon convolution is given by the same function $h(\lambda)$

- Spectral response of the graph convolution determined by evaluating $h(\lambda)$ at graph eigenvalues
- Spectral response of the graphon convolution determined by evaluating $h(\lambda)$ at graphon eigenvalues
- Graph convolutions converge to graphon convolutions \Rightarrow provided that $h(\lambda)$ is Lipschitz

Theorem (Convergence of Graph Convolutions) (Ruiz, L. et al., EUSIPCO'20, TSP'21)
Given convergent graph signal sequence $\left(G_{n}, \mathbf{x}_{n}\right) \rightarrow(W, X)$ and convolutions $\mathbf{H}\left(\mathbf{S}_{n}\right)$ and T_{H} generated by the same coefficients h_{k}, if the spectral response $h(\lambda)$ is Lipschitz,

$$
\left(\mathbf{G}_{n}, \mathbf{y}_{n}\right) \rightarrow(\mathbf{W}, Y)
$$

i.e., the sequence of output graph signals converges to the output graphon signal.

- Lipschitz continuity restriction better understood in the graph and graphon spectral domain

Graphon Spectrum and Convergence of Spectra

Due to $T_{\mathbf{w}}$ being compact, graphon eigenvalues accumulate at $\lambda=0 \Rightarrow \lim _{i \rightarrow \infty} \lambda_{i}=\lim _{i \rightarrow \infty} \lambda_{-i}=0$

If a graph sequence $\left\{\mathbf{G}_{n}\right\}$ converges to a graphon \mathbf{W}, then

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{j}\left(\mathbf{S}_{n}\right)}{n}=\lambda_{j}\left(T_{\mathrm{w}}\right) \text { for all } j(\text { Borgs, C. et al., 2012) }
$$

- But for $\neq j, \neq n_{0}$ are needed to show that $\exists n_{0}$ s.t. for all $n>n_{0},\left|\frac{\lambda_{j}\left(\mathbf{S}_{n}\right)}{n}-\lambda_{j}\left(T_{\mathrm{w}}\right)\right|<\epsilon$

Convergence of Graph Convolutions

- Because eigenvalues converge, we can expect graph convolutions to converge

- But convergence near $\lambda=0$ is complicated by eigenvalue convergence not being uniform
- Filters attempting to discriminate spectral components near $\lambda=0$ do not converge
- This problem can be solved if we amplify these spectral components similarly for $|\lambda| \leq c$

- Lipschitz filters ensure no mismatch between eigenspaces of $\left|\lambda_{j}\left(\mathbf{S}_{n}\right)\right| \leq c$ and $\left|\lambda_{j}(\mathbf{W})\right|$
- Lipschitz condition means that convergence comes at the cost of spectral discriminability
- This problem can be solved if we amplify these spectral components similarly for $|\lambda| \leq c$

- Lipschitz filters ensure no mismatch between eigenspaces of $\left|\lambda_{j}\left(\mathbf{S}_{n}\right)\right| \leq c$ and $\left|\lambda_{j}(\mathbf{W})\right| \leq c$
- Lipschitz condition means that convergence comes at the cost of spectral discriminability
- This problem can be solved if we amplify these spectral components similarly for $|\lambda| \leq c$

- Lipschitz filters ensure no mismatch between eigenspaces of $\left|\lambda_{j}\left(\mathbf{S}_{n}\right)\right| \leq c$ and $\left|\lambda_{j}(\mathbf{W})\right| \leq c$
- Lipschitz condition means that convergence comes at the cost of spectral discriminability

Transferability

- Have established an asymptotic result \Rightarrow graph convolutions converge, but with a condition
- Depending on the value of the Lipschitz constant of $h(\lambda)$, convergence may be faster or slower

- In order to exploit this result in practice, need a non-asymptotic analysis for finite n

Approximating Graphon Convolutions with Graph Convolutions

Theorem (Graphon Filter Approximation) (Ruiz, L. et al., Proc. IEEE'21)
Consider a graph signal $\left(\mathbf{S}_{n}, \mathbf{x}_{n}\right)$ sampled from the graphon signal (W, X) along with convolution outputs $\mathbf{y}_{n}=\mathbf{H}\left(\mathbf{S}_{n}\right) \mathbf{x}_{n}$ and $Y=T_{H} X$. The difference norm of the respective graphon induced signals is bounded by

$$
\left\|Y_{n}-Y\right\| \leq 2 A_{w}\left(A_{h}+\pi \frac{\max \left(B_{n c}, B_{m c}\right)}{\min \left(\delta_{n c}, \delta_{m c}\right)}\right)\left(\frac{1}{n}\right)\|X\|+A_{x}\left(A_{h} c+2\right)\left(\frac{1}{n}\right)+2 A_{h} c\|X\|
$$

- Bound decreases with $n \Rightarrow$ graph filters better approximate graphon filter for large n as expected
- As $n \rightarrow \infty$ we can afford smaller bandwith $c \Rightarrow$ convergence of filters closer to $\lambda=0$

Approximating Graphon Convolutions with Graph Convolutions

Theorem (Graphon Filter Approximation) (Ruiz, L. et al., Proc. IEEE'21)
Consider a graph signal $\left(\mathbf{S}_{n}, \mathbf{x}_{n}\right)$ sampled from the graphon signal (W, X) along with convolution outputs $\mathbf{y}_{n}=\mathbf{H}\left(\mathbf{S}_{n}\right) \mathbf{x}_{n}$ and $Y=T_{\mathbf{H}} X$. The difference norm of the respective graphon induced signals is bounded by

$$
\left\|Y_{n}-Y\right\| \leq 2 A_{w}\left(A_{h}+\pi \frac{\max \left(B_{n c}, B_{m c}\right)}{\min \left(\delta_{n c}, \delta_{m c}\right)}\right)\left(\frac{1}{n}\right)\|X\|+A_{x}\left(A_{h} c+2\right)\left(\frac{1}{n}\right)+2 A_{h} c\|X\|
$$

- Bound decreases with $n \Rightarrow$ graph filters better approximate graphon filter for large n as expected
- As $n \rightarrow \infty$ we can afford smaller bandwith $c \Rightarrow$ convergence of filters closer to $\lambda=0$

Approximating Graphon Convolutions with Graph Convolutions

Theorem (Graphon Filter Approximation) (Ruiz, L. et al., Proc. IEEE'21)

Consider a graph signal $\left(\mathbf{S}_{n}, \mathbf{x}_{n}\right)$ sampled from the graphon signal (W, X) along with convolution outputs $\mathbf{y}_{n}=\mathbf{H}\left(\mathbf{S}_{n}\right) \mathbf{x}_{n}$ and $Y=T_{\mathbf{H}} X$. The difference norm of the respective graphon induced signals is bounded by

$$
\left\|Y_{n}-Y\right\| \leq 2 A_{w}\left(A_{h}+\pi \frac{\max \left(B_{n c}, B_{m c}\right)}{\min \left(\delta_{n c}, \delta_{m c}\right)}\right)\left(\frac{1}{n}\right)\|X\|+A_{x}\left(A_{h} c+2\right)\left(\frac{1}{n}\right)+2 A_{h} c\|X\|
$$

- Discriminating around $\lambda=0$ needs large Lipschitz constant $A_{h} \Rightarrow$ large approximation error
- Filters that are more discriminative (large A_{h}) converge more slowly with $n \Rightarrow$ tradeoff

Approximating Graphon Convolutions with Graph Convolutions

Theorem (Graphon Filter Approximation) (Ruiz, L. et al., Proc. IEEE'21)
Consider a graph signal $\left(\mathbf{S}_{n}, \mathbf{x}_{n}\right)$ sampled from the graphon signal (W, X) along with convolution outputs $\mathbf{y}_{n}=\mathbf{H}\left(\mathbf{S}_{n}\right) \mathbf{x}_{n}$ and $Y=T_{\mathbf{H}} X$. The difference norm of the respective graphon induced signals is bounded by

$$
\left\|Y_{n}-Y\right\| \leq 2 A_{w}\left(A_{h}+\pi \frac{\max \left(B_{n c}, B_{m c}\right)}{\min \left(\delta_{n c}, \delta_{m c}\right)}\right)\left(\frac{1}{n}\right)\|X\|+A_{x}\left(A_{h} c+2\right)\left(\frac{1}{n}\right)+2 A_{h} c\|X\|
$$

- Discriminating around $\lambda=0$ needs large Lipschitz constant $A_{h} \Rightarrow$ large approximation error
- Filters that are more discriminative (large A_{h}) converge more slowly with $n \Rightarrow$ tradeoff
- Consider graphs \mathbf{G}_{n} and \mathbf{G}_{m} with $n \neq m$ nodes which are both sampled from the graphon \mathbf{W} - Can upper bound the approximation error between $H\left(S_{n}\right)$ and T_{H}. And between $H\left(S_{m}\right)$ and T_{H}

n nodes

m nodes

Graphon $W(u, v)=p$

- By the triangle inequality, can upper bound the transferability error between $H\left(S_{n}\right)$ and $H\left(S_{m}\right)$
- Consider graphs \mathbf{G}_{n} and \mathbf{G}_{m} with $n \neq m$ nodes which are both sampled from the graphon \mathbf{W}
- Can upper bound the approximation error between $\mathbf{H}\left(\mathbf{S}_{n}\right)$ and $T_{\mathbf{H}}$. And between $H\left(S_{m}\right)$ and T_{H}

n nodes

m nodes

Graphon $W(u, v)=p$

- By the triangle inequality, can upper bound the transferability error between $H\left(S_{n}\right)$ and $H\left(S_{m}\right)$
- Consider graphs \mathbf{G}_{n} and \mathbf{G}_{m} with $n \neq m$ nodes which are both sampled from the graphon \mathbf{W}
- Can upper bound the approximation error between $\mathrm{H}\left(\mathrm{S}_{n}\right)$ and T_{H}. And between $\mathbf{H}\left(\mathbf{S}_{m}\right)$ and $T_{\mathbf{H}}$

n nodes

m nodes

Graphon $W(u, v)=p$

- By the triangle inequality, can upper bound the transferability error between $H\left(S_{n}\right)$ and $H\left(S_{m}\right)$
- Consider graphs G_{n} and G_{m} with $n \neq m$ nodes which are both sampled from the graphon W - Can upper bound the approximation error between $H\left(S_{n}\right)$ and T_{H}. And between $H\left(S_{m}\right)$ and T_{H}

n nodes

m nodes

Graphon $W(u, v)=p$

- By the triangle inequality, can upper bound the transferability error between $\mathbf{H}\left(\mathbf{S}_{n}\right)$ and $\mathbf{H}\left(\mathbf{S}_{m}\right)$
- If filter is sharp near $\lambda=0$, spectral components of $\lambda_{j}\left(\mathbf{S}_{n}\right)$ and $\lambda_{j}(\mathbf{W})$ are amplified differently

- Transferability and discriminability are not compatible for graph convolutional filters

Graph Neural Networks

- So far we have talked at length about graph convolutions and graphon convolutions

$$
\begin{array}{ll}
\Rightarrow \text { Graph Convolution } & \Rightarrow \text { Graphon Convolution } \\
\mathbf{z}_{n}=\sum_{k=0}^{K-1} h_{k} \mathbf{S}_{n}^{k} \mathbf{x}_{n} & Z=\sum_{k=0}^{K-1} h_{k} T_{\mathrm{w}}^{(k)} X
\end{array}
$$

- But we have not talked much about graph neural networks and graphon neural networks
\Rightarrow Graph and graphon NNs are a minor variation of graph convolutions and graphon convolutions

Graph Neural Networks

- A graph NN composes a cascade of layers
- Each of which are themselves compositions
\Rightarrow Of graph convolutions $\mathbf{H}(\mathbf{S})$
\Rightarrow With pointwise nonlinearities σ
Define the learnable parameter set $\mathcal{H}=\left\{h_{k l}\right\}$
- GNN can be represented as $\mathbf{y}=\boldsymbol{\Phi}(\mathcal{H} ; \mathbf{S} ; \mathbf{x})$

- A graphon NN (WNN) composes layers
- Each of which are themselves compositions
\Rightarrow Of graphon convolutions T_{H}
\Rightarrow With pointwise nonlinearities σ

Define the learnable parameter set $\mathcal{H}=\left\{h_{k l}\right\}$

- WNN can be represented as $Y=\boldsymbol{\Phi}(\mathcal{H} ; \mathbf{W} ; X)$

- The transferability properties of graph filters are inherited by graph neural networks

Theorem (GNN Transferability) (Ruiz, L. et al., NeurIPS'20, Proc. IEEE'21)

Consider graph signals $\left(\mathbf{S}_{n}, \mathbf{x}_{n}\right)$ and $\left(\mathbf{S}_{m}, \mathbf{x}_{m}\right)$ sampled from graphon signal (W, X) along with GNN outputs $\mathbf{y}_{n}=\Phi\left(\mathcal{H} ; S_{n}, x_{n}\right)$ and $\mathbf{y}_{m}=\Phi\left(\mathcal{H} ; S_{m}, x_{m}\right)$. The difference norm of the respective graphon induced signals is bounded by

$$
\begin{aligned}
& \left\|Y_{n}-Y_{m}\right\| \leq \\
& L F^{L-1} 2 A_{w}\left(A_{h}+\pi \frac{\max \left(B_{n c}, B_{m c}\right)}{\min \left(\delta_{n c}, \delta_{m c}\right)}\right)\left(\frac{1}{n}+\frac{1}{m}\right)\|X\|+A_{x}\left(A_{h} c+2\right)\left(\frac{1}{n}+\frac{1}{m}\right)+4 L F^{L-1} A_{h} c\|X\|
\end{aligned}
$$

Graph Filters vs. Graph Neural Networks

- The difference in GNNs is that the nonlinearities scatter spectral components all over the spectrum

- Which allows increasing discriminability without hurting transferability. Hence:
\Rightarrow For the same level of transferability \Rightarrow GNNs are more discriminative than graph filters
\Rightarrow For the same level of discriminability \Rightarrow GNNs are more transferable than graph filters

Graph Filters vs. Graph Neural Networks

- The difference in GNNs is that the nonlinearities scatter spectral components all over the spectrum

- Which allows increasing discriminability without hurting transferability. Hence:
\Rightarrow For the same level of transferability \Rightarrow GNNs are more discriminative than graph filters
\Rightarrow For the same level of discriminability \Rightarrow GNNs are more transferable than graph filters
- The difference in GNNs is that the nonlinearities scatter spectral components all over the spectrum

- Which allows increasing discriminability without hurting transferability. Hence:
\Rightarrow For the same level of transferability \Rightarrow GNNs are more discriminative than graph filters
\Rightarrow For the same level of discriminability \Rightarrow GNNs are more transferable than graph filters
- Transferability of graph neural networks observed empirically \Rightarrow recommendation system

- Performance difference on training and target graphs decreases as size of training graph grows
- GNNs are more transferable than graph convolutional filters. Especially if their filters are Lipschitz
- Transferability of graph neural networks observed empirically \Rightarrow decentralized robot control

- Performance difference on training and target graphs decreases as size of training graph grows
- GNNs are more transferable than graph convolutional filters. Especially if their filters are Lipschitz

GNNs are more transferable than graph convolutional filters

GNNs are more transferable because of their mixing properties

- Empirical and theoretical evidence support using GNNs for large-scale graph machine learning

Thank you!

Luana Ruiz
Simons / FODSI / JHU
rubruiz@seas.upenn.edu
www.seas.upenn.edu/~rubruiz

- We fix a bandwidth $c>0$ to separate eigenvalues not close to $\lambda=0$ and define
(D1) The c-band cardinality of G_{n} is the number of eigenvalues with absolute value larger than c

$$
B_{n c}=\#\left\{\lambda_{n i}:\left|\lambda_{n i}\right|>c\right\}
$$

(D2) The c-eigenvalue margin of of graph G_{n} is the

$$
\delta_{n c}=\min _{i, j \neq i}\left\{\left|\lambda_{n i}-\lambda_{j}\right|:\left|\lambda_{n i}\right|>c\right\}
$$

- Where $\lambda_{n i}$ are eigenvalues of the shift operator S_{n} and λ_{j} are eigenvalues of graphon W
(A1) The graphon W is A_{w}-Lipschitz \Rightarrow For all arguments $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$, it holds

$$
\left|\mathbf{W}\left(u_{2}, v_{2}\right)-W\left(u_{1}, v_{1}\right)\right| \leq A_{w}\left(\left|u_{2}-u_{1}\right|+\left|v_{2}-v_{1}\right|\right)
$$

(A2) The filter's response is A_{h}-Lipschitz and normalized \Rightarrow For all λ_{1}, λ_{2} and λ we have

$$
\left|h\left(\lambda_{2}\right)-h\left(\lambda_{1}\right)\right| \leq A_{h}\left|\lambda_{2}-\lambda_{1}\right| \quad \text { and } \quad|h(\lambda)| \leq 1
$$

(A3) The graphon signal X is A_{x}-Lipschitz \Rightarrow For all u_{1} and u_{2}

$$
\left|X\left(u_{2}\right)-X\left(u_{1}\right)\right| \leq A_{x}\left|u_{2}-u_{1}\right|
$$

