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Large Population Systems and MFG Equilibria

Notation: Integer valued subscript for finite population
minor agents {4;: 1 <i < N}
R" valued states of .4; denoted x!'(r)

(Q, F, {FN}>0,P): a complete filtered probability space

]-"tN o= U{X;),wj(s) 1 <j<N,0<s<t}.
{x)}V iid L* Il iid Brownian motions {w;}
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Large Population Systems and MFG Equilibria
T N
Pd) = E / (N;zmivu»uév(t),xﬁ(tﬂ)dr
>
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Large Population Systems and MFG Equilibria

McKean-Vlasov Equation describes the infinite
population limit dynamics for uniform agents
using a uniform control law (when a soln. exists):

dx, = flx,u, p)dt + odw,
1
fleu ] 2 /Rf()@ u, y)(dy) = nggoﬁjz:;f(x,u,yj)

w() = of the popn. state distribution.

are in the
joint (x, 1) state.

Similar representation of infinite population limit

cost: T
J(u, ) = E/ 1z, g, 1) dt
0
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Information Patterns and Nash Equilibria

FNt) 2 o(xi(t);7<1), 1<i<N

1

Uppe i 1= F! adapted controls (+ system parameters)

FV(t) £ o(xi(t);7 <t,1 <j<N)

U:= F" adapted controls (+ system parameters)
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Information Patterns and Nash Equilibria

The controls 1/° = {u; 4 adapted to U, ;, 1 <i < N}
generate an w.rt. {J;;1 <i <N} if, for
all ;, a unilateral control law u; utilizing the global
information pattern I/ satisfies

Ji(ud ul,) —e < 1an(u,, D < Ji(ud d°))

u €U

So, by definition, a unilateral move against a population of
agents all of whom are utilizing a Nash strategy cannot
yield a benefit of more than ¢ > 0 for the unilateral agent.
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Mean Field Game MV HJB-FPK Theory

Formally, if an infinite agent population system with uniform agent
dynamics and uniform performance functions has a Nash
Equilibrium with generic agent Nash value V, generic agent state
measure (i.e. mean field) . and best response ¢, it would satsify
the MV-HJB MV-SDE (or FPK) equations:

ov o’ O’V

g ov
- & =it {5+ il + G5

V(T,x)=0, p(0,x)=po, (t,x)€[0,T] xR"

Op(t:x) _ o4l w, plp(t )} o’ &°p(t,x)
or Ox 2 Ox?

dx; :f[xf,(p(t%x':u‘%#/]d[_‘_ odw

U = arg iggH(xﬂ'thu‘f) = @(tvx|u1)7 (I,X) € [07 T} X RM
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Mean Field Game MV HJB-FPK Theory

Subject to technical conditions (U compact, Lipschitz and
boundedness conditions on all functions on R x U x R, and
existence of a unique continuous minimizer of the Hamiltonian):

(i) (HMC 2006, LL 2006) The MKV MFG Equations have a
unique solution with the Nash equilibrium generated by the best
response control:

(if) (HMC 2006) Furthermore, Ve > 0 IN(e) s.t. VN > N(e)

u;(t) € U adapted to FV(¢) := {o(x;(7);0< 7 < 1,1 <j<N)}.

Significance (ii): Finite population use of infinite pop. MFG BRs.

9/37



Program

Program

Large Population Systems and MFG Equilibria
Graphon MFG Systems and GMFG Equilibria

Critical Nodes in LQG GMFG Systems + Examples
Overview and Conclusion

10/37



Motivation for a Graphon Theory of Systems and MFG

Key variables are simply averaged when, as a mass, they play
a role in the behaviour of a large population system.

Equivalent to individual agents being distributed over the nodes
of a large scale network which is completely connected and
where all edges have equal weight.

The network examples depicted below do not satisfy this
assumption globally, but locally some do (approximately).
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Graphon Mean Field Games: Motivation

TRANSPORTATION
CLUSTERS

3.200 airports
60.000 routes

NORTH
AMERICA -

AFRICA

LATIN AMERICA

CC-BY martingrandjean.ch 2016
ights.org

Data: openfiigh

GEOGRAPHICAL LAYOUT

Color = Longitude
Size = Number of routes




Graphon Mean Field Games: Motivation

National Non-uniform Connections - Dense Network of Clusters
https://vega.github.io/vega/tutorials/airports
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Graphons

Graph Sequence Convergence to Graphons

Figures: Convergence of a Uniform Attachment Graph Sequence to a Limit Graphon.
(Each Cycle: N — 1 node graph; new node: attached with prob. 1/N to each old N — 1
node, and old unattached pairs attached with prob. 1/N.)

Definition: Graphon (Lovasz, AMS 2012) : A bounded
symmetric Lebesgue measurable function W : [0, 1]> — [0, 1].
May be interpreted as weighted undirected edge graphs on

vertex set [0, 1].
Principal Graphon Spaces W := {W: [0, 1]> — [0, 1]}
W= {W:[0,1* = I}
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Graphons

A Metric on the Space of Graphons

Cut norm
Wio = sup w<x,y>dxdy‘ (1)
M,TC[0,1] |/ MxT
Cut distance
do(W,V) == [|[W? — V|| 2)

Cut metric obtained by infimizing over all measure preserving
bijections on [0, 1]:

o(W, V) := inf IW? — V|5 )

072 metric
512 (W, V) := inf [W? — V], (4)

where W?(x,y) = W(4(x), o(y)).

IW(la < ||W||;2, so convgc. in d;. implies convgc. in ig.
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Graphons

Compactness of Graphon Space

Convergence to a Limit Graphon. Uniform Attachment Graph Sequence (Each Cycle:
N — 1 node graph; new node: attached with prob. 1/N to each old N — 1 node, and for
all old unattached pairs, attach them with prob. 1/N.)

[Lovasz and Szegedy, 2006; LL AMS2012]
Under the cut metric the graphon spaces (W), éo), are
compact, where I any closed interval in R.
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Finite Network Finite Population Mean Field Games

Consider aMfinite population distributed over a finite graph Gy.
Let xg, = Gk}{xiﬁ € C;} denote the states of all agents in the
total set oflzllusters of the Agopulation.

This gives a total of N = ZA: |C;| individual states.

For A4; in the cluster C(i),lt:hle two coupling terms in the
dynamics take the form

1
Jo(xi, ui, C(i)) = W Z Jo(xi, ui, x;), (5)
ka(-xz,M”gC( ch )Cl|c| Zf X,,M,,XJ (6)
JEC

They model intra- and inter-cluster couplings, respectively. The
defn. of f;, uses the sectional (i.e. vertex) information g’é(,.)..
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Finite Network Finite Population Games

The state process of 4; is then given by the SDE

|
dxi(t) = m Z fo(xi,ui,xj)dt
JEC(i)

My

1 1

v ﬁk Z glé(i)q@ Zf(xi; ui, xj)dt + odw; )
=1 jeq

— fO(-xia uij, C(l))dt +ka (xiv uj, glé’(l))dt + wai (8)
1<i<N
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Finite Network Finite Population Costs

Analogously, in the GMFG case, we define the running cost
coupling terms for agent .4; to be

lo(xi,u;, C(0)) = L Z l()(xi,ui,xj),
€O 26

le(xlvulagC ch CI|C|Z xlauhxj

J€C

Define the complete running cost as
le(-xi7 Ui, g]é(l)) — lO('xiv Ui, C(l)) + le(xi) uj, g]é(l))

The performance function for agent .4; in a finite
population on a finite graph G is then

T
]l' — E/ le (xi7 uiaglé(i))dt' (9)
0
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Infinite Network Infinite Population Games

Assume :

(i) The number of nodes of the graph G, tends to infinity
with assumed unique graphon limit g(«, 3).

(ii) The subpopulation at each node tends to infinity.
giving the local mean field ., the global set of mean fields

pe = {np;0 < 8 < 1}, and the graphon g(«o, §):
fO[—xOquénuOé] = fO(xouuom )ﬂa(dz) (10)

frastostcisal = [ [ Flrostas (e sta)ds, (1)

This yields the complete local limit graphon drift dynamics:

f[xonuaaNG§ga] L= fO[xouuocaNOc] +f[xaauaaNG;ga]- (12)

PAVEYS



Infinite Network Infinite Population Games

Parallel to the standard MFG case, in the infinite
population graphon case the generic agent state SDE is:

[MV—SDE](O&) dxa(t) :f[xa(t)v ua(t)> ,uG(t)? ga]dt + wa??

(13)
0<t<T, aclol],

with [, ] defined similarly to f]., ], the generic agent « has
the cost, or performance, function

T~
Joe(”a?ﬂG(')) :E/O l[xoc(t)7ua(t)ﬂﬂG(t);ga]dt' (14)
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Graphon Mean Field Game (GMFG) Equations

ove(x) . [~ oL 0Ve(tx)
OBl G = it (el 7
~ o2 9*Ve(t, x)
Jrl[x)unU/G;ga]} + B O

V¥(T,x) = 0, (t,x)€[0,T]xR", «ae€]l0,l1]"

[FPK](a) apaa(?x) _ _3{f[x7u0,/LG8;xga}pa(t,x)}
2 92 7
$ 20D o) =py  (16)

2 Ox
[BRI(e) u® = o(t,x|1G; 8a)-
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Graphon Mean Field Game (GMFG) Equations

[PEC-Minyi Huang CDC2018,CDC 2019, SICON 2021]

For U compact, subject to boundedness and Lipschitz
conditions on all functions on R x U x R, together with the
existence of a unique continuous minimizer of the Hamiltonian,
there solution

(VY pa(:))acpo,1) to the GMFG equations (15) and (16).

The feedback control best response (BR) strategy
o(t, xa|pc(+); o) for each agent depends only upon the agent’s
state and the graphon mean fields: (x,, c)-
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Graphon Mean Field Games

The sequence {G;; 1 < k < oo} and the graphon limit satisfy

My

| /
= SO = 8rx, dﬁ‘ =0,
— A4k ) [364' i B

where I; is the midpoint of the subinterval I; € {I; - - - s, } of
length 1/M;.
For the e-Nash equilibrium analysis, we consider a sequence of

games each defined on a finite graph G;. Recall that there is a
M

total of N = " |C| agents.

=1
Suppose the cluster C(i) of agent .A; corresponds to the
subinterval I(i) € {I,,--- , Iy, }. Then the agent A; uses the
, namely it takes the midpoint 7*(i) of the
subinterval I(i) and uses the GMFG equations solution to

determine its control law.
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Graphon Mean Field Games

[PEC-M.Huang CDC2018,CDC 2019, SICON 2021]

In addition to the conditions of the GMFG E+U Theorem,
assume (GCA) holds.

Then when the Midpoint BR Controls are applied to a sequence
of finite graph systems {Gy; 1 < k < oo} with limit G the e-Nash
equilibrium property holds:

where ¢ — 0 as k — oo, and where the unilateral agent A; uses
a centralized Lipschitz feedback strategy u; € U/ adapted to
FN .= {o(xj(r);7 <t,1<j<N)}.

Significance: Finite network & population use of GMFG BRs.
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Critical Nodes in Graphon Mean Field Games

Critical Nodes for GMFG Systems

Assume a GMFG system has Nash values which are
differentiable with respect to node values in [0, 1], then a is a

if the local Nash value
stationarity condition holds at «:

a‘iv}’g =0, Vtelo,T] (17)
A=«
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LQG GMFG Critical Nodes [Foguen-Tcheundom, CDC

2021, (extended in Tcheundom-Gao, CDC 2022)]

Assume a sequence of graphs G, converges to a unique
graphon limit in the cut metric

g:[0,1]x[0,1] —[0,1],  (a, ) = g(ex, ).

and a representative (aka generic) agent at a graphon node
a € [0, 1] has the linear controlled dynamics:

dx = (ax{* + buf')dt + odw?,
X3 = €%~ N(m,v?) Vre[0,T], Vae€l0,1],

where (£%).¢(0,1] @re pairwise independent.

(18)
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Critical Nodes in LQG Graphon Mean Field Games

For the specific LQG-GMFG problem under consideration, take
the generic agent’s performance function to be

@ Tlr a2 | 9(. a,g\2
Ja(u®, 1) :]E/ > |uf'| +7(xt — % ) dt, (19)
. 12 2

where at a € [0, 1], the o component of the global (mean) mean
field term, denoted z"%, ¢ € [0, 7], is defined as

1
£ /0 2, B) /R ydu(8,)()dB, 1€ [0,T],  (20)

where for all « € [0, 1],¢ € [0, T], p(e, ) is assumed to lie in the
set of probability measures with finite second moment, P, (R).
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Critical Nodes in LQG Graphon Mean Field Games

1 (GMFG Control Problem) Find a family of
{F0 < s <1t0<t<T} adapted square integrable
optimal controls, denoted u® := (u;"),c(o,7) € A, such that

J(@®?, p) = min J(u®, p) (21)
T
] [ (G 2 97)]
dx = (ax + bul)dt + odwy®, x§ =&°, (22)
1
4 = [ s(0.8)[ | w(B.0(@nlas. (23)

2 (MFG Consistency Conditions) And such that the solution
family of optimal state trajectories (x;"***)c(0.7}, Vor € [0, 1],
solving (21) satisfies the MFG-consistency conditions:

pla, 1) = L(x"7),  Y(a,1) €[0,1] x [0,T]. (24)

Assume the LQG-GMFG above admits a unique solution. 31/37



Critical Nodes in LQG Graphon Mean Field Games

uy (1) = —rilb[H,xa(t) + 50/(1)]
—1II, = all, 4+ Ia — ILbr—'bIL, + g, Iy = gr
—5a(t) = (a — br 'bIL,)sa(f) — g%, sa(T) = qrva(T)

1
o = /0 2(a, B)[ / va(B, (@)}, o e [0,1],
X = lim ’ij / xgpg(dxg)

c (&)
| 5|—+OO ‘ B JG(?

X = (a—br7'bIL)%q — br'bss, a€0,1].
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Critical Nodes in LQG Graphon Mean Field Games

[Critical Mean Field Nodes for LQG-GMFG]

Aefo,1]isa for an LQG-GMFG system
if the local mean field stationarity condition holds:
d

—z =0, Vre|0,T]. 25
aazl‘ - ) € [ ) ] ( )
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Critical Nodes in Graphon Mean Field Games

Two examples of graphons for which one can readily identify
critical mean field nodes for the specified LQG-GMFG problem.
11 Case 1: Consider the first graphon to be the limit of a
sequence of finite Erdés-Rényi graphs. :

For some p € (0,1), g(a, 8) := p ¥(a, B) € [0,1].
Then the solution of the LQG-GMFG equations gives:

1
T :p/ E[x)°]dB, Y(a,1) € [0,1] x [0,T].
(0]

From which it follows that, for all o € [0, 1]:

0 g

N
Hence for Erdds-Renyi graphons the associated
LQG-GMFG problem is such that all nodes \ € [0, 1] are
critical mean field nodes.

=0, Vrelo,T].
A=«
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Critical Nodes in LQG Graphon Mean Field Games

# Case 2: The uniform attachment graphon (UAG) :
gla, B) = 1 —max{a, 8}, V(a, B) € [0, 1]%.

1
ot = / (1 — max{a, BHE[x]dB V(a,1) € [0,1] x [0,7]
0

a 1
= (1 —a)/O E[xtﬁ’”]dﬁnL/ (1 - B)E[x*]dB. (26)
Differentiation with respect to « yields:
0 a, - B,0
o e —/0 E[x*]dB, vt € [0,1]. (27)
Hence ata =0 € [0, 1]:
0 ag
" = T).
90 - 0, Vrel0,T]

Consequently for the UAG the root node is a critical mean

field node.
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Critical Nodes in LQG Graphon Mean Field Games

Denote the LQG-GMFG equilibrium controls by
{u:"%, Y(a,1) € 10,1] x [0, 7]}

Proposition

Assume that the LQG-GMFG problem (18),(19) admits critical
mean field nodes denoted X\ € [0, 1]. Then the LQG-GMFG
equilibrium controls are stationary at A € [0, 1], that is, Vt € [0, T]

oug™’ b [H ox;? " Osp*

S ‘a:A = = t P 804:| |oz:)\ — 07 (28)

’
and, further, they are critical nodes for the LQG-GMFG system
(18),(19) since the value function is stationary there:

oV (a, t,x)

la=x =0, ¥(2,x) € [0,T] x R. (29)
oo
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The extension of the analysis above to
parameterizations and thence differentiation in

R™ . m > 1, is enabled by the theory of vertexons and
embedded graphons.

The initial development of that work together with
examples is to be presented at the IEEE Control
Systems Society Conference on Decision and Control,
Cancun, Mexico, 2022.
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