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Large Population Systems and MFG Equilibria

Fundamentals of Mean Field Game Theory

Problem Formulation:
Notation: Integer valued subscript for finite population
minor agents {Ai : 1 ≤ i ≤ N}
Rn valued states of Ai denoted xN

i (t)
Agent Dynamics:

dxN
i (t) =

1
N

N∑

j=1

f (t, xN
i (t), uN

i (t), xN
j (t))dt

+
1
N

N∑

j=1

σ(t, xN
i (t), xN

j (t))dwi(t), xN
i (0) = x0

i 1 ≤ i ≤ N.

(Ω,F , {FN
t }t≥0,P): a complete filtered probability space

FN
t := σ{x0

j ,wj(s) : 1 ≤ j ≤ N, 0 ≤ s ≤ t}.
{x0

j }N
1 i.i.d. L2 |= i.i.d Brownian motions {wj}N

1
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Large Population Systems and MFG Equilibria

Cost - or Performance - Functions for a Generic
Agent:

JN
i (u

N
i ; uN

−i) := E
∫ T

0

( 1
N

N∑

j=1

l[t, xN
i (t), uN

i (t), xN
j (t)]

)
dt

l[., ., ., .] ≥ 0
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Large Population Systems and MFG Equilibria
Infinite Populations: Controlled McKean-Vlasov
Equations:

McKean-Vlasov Equation describes the infinite
population limit dynamics for uniform agents
using a uniform control law (when a soln. exists):

dxt = f [xt, ut, µt]dt + σdwt

f [x, u, µt] ≜
∫

R
f (x, u, y)µt(dy) = lim

N→∞

1
N

N∑

j=1

f (x, u, yj)

µt(·) = measure of the popn. state distribution.

McKean-Vlasov Systems are Markovian in the
joint (x, µ) state.

Similar representation of infinite population limit
cost:

J(u, µ) ≜ E
∫ T

0
l[xt, ut, µt]dt
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Information Patterns and Nash Equilibria

Information Patterns:

Information Pattern of MFG Systems: Decentralized
and Individual to each Agent i:

FN
i (t) ≜ σ(xi(τ); τ ≤ t), 1 ≤ i ≤ N

Uloc,i := FN
i adapted controls (+ system parameters)

Information Pattern of MF Control Systems:
Global/Centralized with respect to the Population :

FN(t) ≜ σ(xj(τ); τ ≤ t, 1 ≤ j ≤ N)

U:= FN adapted controls (+ system parameters)
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Information Patterns and Nash Equilibria

Fundamental Notion of Non-cooperative Game
Equilibrium:

The controls U0 = {u0
i ; u0

i adapted to Uloc,i, 1 ≤ i ≤ N}
generate an ε-Nash Equilibrium w.r.t. {Ji; 1 ≤ i ≤ N} if, for
all i, a unilateral control law ui utilizing the global
information pattern U satisfies

Ji(u0
i , u0

−i)− ε ≤ inf
ui∈U

Ji(ui, u0
−i) ≤ Ji(u0

i , u0
−i)

So, by definition, a unilateral move against a population of
agents all of whom are utilizing a Nash strategy cannot
yield a benefit of more than ε > 0 for the unilateral agent.
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Mean Field Game MV HJB-FPK Theory

Mean Field Game Equations
Formally, if an infinite agent population system with uniform agent
dynamics and uniform performance functions has a Nash
Equilibrium with generic agent Nash value V, generic agent state
measure (i.e. mean field) µ and best response φ, it would satsify
the MV-HJB MV-SDE (or FPK) equations:

[MF-HJB] − ∂V
∂t

= inf
u∈U

{
f [x, u, µt]

∂V
∂x

+ l[x, u, µt]

}
+

σ2

2
∂2V
∂x2

V(T, x) = 0, p(0, x) = p0, (t, x) ∈ [0, T]× Rn

[MF-FPK (if µ a.c.Lb.)]
∂p(t, x)

∂t
= −∂{f [x, u, µ]p(t, x)}

∂x
+

σ2

2
∂2p(t, x)

∂x2

[MF-MKV SDE] dxt = f [xt, φ(t, x|µ·), µt]dt + σdwt

[MF-BR] ut = arg inf
u∈U

H(x, u, µt) =: φ(t, x|µt), (t, x) ∈ [0, T]× R⋉
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Mean Field Game MV HJB-FPK Theory

Theorem

Subject to technical conditions (U compact, Lipschitz and
boundedness conditions on all functions on R× U × R, and
existence of a unique continuous minimizer of the Hamiltonian):

(i) (HMC 2006, LL 2006) The MKV MFG Equations have a
unique solution with the Nash equilibrium generated by the best
response control:

u0
i = φ(t, x|µt), 0 ≤ t ≤ T, 1 ≤ i ≤ N.

(ii) (HMC 2006) Furthermore, ∀ϵ > 0 ∃N(ϵ) s.t. ∀N ≥ N(ϵ)

JN
i (u

0
i , u0

−i)− ϵ ≤ inf
ui∈U

JN
i (ui, u0

−i) ≤ JN
i (u

0
i , u0

−i),

ui(t) ∈ U adapted to FN(t) := {σ(xj(τ); 0 ≤ τ ≤ t, 1 ≤ j ≤ N)}.

Significance (ii): Finite population use of infinite pop. MFG BRs. 9 / 37
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Motivation for a Graphon Theory of Systems and MFG

The Classical MFG Model:
Key variables are simply averaged when, as a mass, they play
a role in the behaviour of a large population system.

Equivalent to a Uniformity Assumption:
Equivalent to individual agents being distributed over the nodes
of a large scale network which is completely connected and
where all edges have equal weight.

Uniformity Assumption Often Does Not Hold.
The network examples depicted below do not satisfy this
assumption globally, but locally some do (approximately).
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Graphon Mean Field Games: Motivation

Global non-uniform Connections - Dense Network of Clusters
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Graphon Mean Field Games: Motivation

National Non-uniform Connections - Dense Network of Clusters
https://vega.github.io/vega/tutorials/airports
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Graphons
Graph Sequence Convergence to GraphonsFinally, consider the following inductively defined sequence of graphs (Gn)n. Let G1 = . For n � 2,

construct Gn from Gn�1 by adding one new vertex, then, considering each pair of non-adjacent vertices in
turn, drawing an edge between them with probability 1/n. This is called a growing uniform attachment
graph sequence, and the pixel pictures below come from one particular instance of a such a sequence.
This sequence of graphs almost surely limits to the graphon 1 � max(x, y).

It is finally time to define graphons properly.

Definitions A labeled graphon is a symmetric, Lebesgue-measurable function from [0, 1]2 to [0, 1] (mod-
ulo the usual identification almost everywhere). An unlabeled graphon is a graphon up to relabeling,
where a relabeling is given by an invertible, measure preserving transformation of the [0, 1] interval.
More formally, a labeled graphon W determines the equivalence class of graphons

[W ] =

⇢
W' : (x, y) 7! W

�
'(x),'(y)

� ����
' an invertible, measure

preserving transformation of [0, 1]

�
.

Such equivalence classes are called unlabeled graphons.

It is helpful to think of graphons as edge-weighted graphs on the vertex set [0, 1]. In this sense, the
sequence (Rn)n of instances of random graphs with edge probability 1/2 almost surely limits to the
complete graph on a continuum of vertices, each edge with weight 1/2. Also, note that any graph gives
rise to several labeled graphons via its various pixel pictures and that each of these graphons correspond
to the same unlabeled graphon.

This viewpoint also allows us to extend homomorphism densities to graphons in an intuitive way. This
will allow us to see how the limit of the graph sequence (Rn)n, the constant 1/2 graphon, solves the
minimization problem from the previous section.

For a finite graph G, the value t( , G) may be computed by giving each vertex of G a mass of 1/n and
integrating the edge indicator function over all ordered pairs of vertices. In complete analogy, the edge
density of a graphon W is given by the expression

t( , W ) =

Z

[0,1]2
W (x, y) dxdy.

It is not hard to see then that

t( , W ) =

Z

[0,1]4
W (x1, x2)W (x2, x3)W (x3, x4)W (x4, x1) dx1dx2dx3dx4.

It is straightforward from here to write down the formula for the homomorphism density t(H, W ) of a
finite graph H into a graphon W .

Finally, in the case of W ⌘ 1/2 as the limit graphon of (Rn)n, we see that t( , W ) = 1/2 and
t( , W ) = 1/16, solving the minimization problem from the previous section elegantly.

4

Figures: Convergence of a Uniform Attachment Graph Sequence to a Limit Graphon.

(Each Cycle: N − 1 node graph; new node: attached with prob. 1/N to each old N − 1

node, and old unattached pairs attached with prob. 1/N.)

Definition: Graphon (Lovasz, AMS 2012) : A bounded
symmetric Lebesgue measurable function W : [0, 1]2 → [0, 1].
May be interpreted as weighted undirected edge graphs on
vertex set [0, 1].

Principal Graphon Spaces W := {W : [0, 1]2 → [0, 1]}
WI := {W : [0, 1]2 → I}
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Graphons
A Metric on the Space of Graphons

Cut norm

∥W∥□ := sup
M,T⊂[0,1]

∣∣∣∣
∫

M×T
W(x, y)dxdy

∣∣∣∣ (1)

Cut distance
d□(W,V) := ∥Wϕ − V∥□ (2)

Cut metric obtained by infimizing over all measure preserving
bijections on [0, 1]:

δ□(W,V) := inf
ϕ

∥Wϕ − V∥□ (3)

δL2 metric
δL2(W,V) := inf

ϕ
∥Wϕ − V∥2 (4)

where Wϕ(x, y) = W(ϕ(x), ϕ(y)).

∥W∥□ ≤ ∥W∥L2 , so convgc. in δL2 implies convgc. in δ□.
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Graphons
Compactness of Graphon Space

Finally, consider the following inductively defined sequence of graphs (Gn)n. Let G1 = . For n � 2,
construct Gn from Gn�1 by adding one new vertex, then, considering each pair of non-adjacent vertices in
turn, drawing an edge between them with probability 1/n. This is called a growing uniform attachment
graph sequence, and the pixel pictures below come from one particular instance of a such a sequence.
This sequence of graphs almost surely limits to the graphon 1 � max(x, y).

It is finally time to define graphons properly.

Definitions A labeled graphon is a symmetric, Lebesgue-measurable function from [0, 1]2 to [0, 1] (mod-
ulo the usual identification almost everywhere). An unlabeled graphon is a graphon up to relabeling,
where a relabeling is given by an invertible, measure preserving transformation of the [0, 1] interval.
More formally, a labeled graphon W determines the equivalence class of graphons

[W ] =

⇢
W' : (x, y) 7! W

�
'(x),'(y)

� ����
' an invertible, measure

preserving transformation of [0, 1]

�
.

Such equivalence classes are called unlabeled graphons.

It is helpful to think of graphons as edge-weighted graphs on the vertex set [0, 1]. In this sense, the
sequence (Rn)n of instances of random graphs with edge probability 1/2 almost surely limits to the
complete graph on a continuum of vertices, each edge with weight 1/2. Also, note that any graph gives
rise to several labeled graphons via its various pixel pictures and that each of these graphons correspond
to the same unlabeled graphon.

This viewpoint also allows us to extend homomorphism densities to graphons in an intuitive way. This
will allow us to see how the limit of the graph sequence (Rn)n, the constant 1/2 graphon, solves the
minimization problem from the previous section.

For a finite graph G, the value t( , G) may be computed by giving each vertex of G a mass of 1/n and
integrating the edge indicator function over all ordered pairs of vertices. In complete analogy, the edge
density of a graphon W is given by the expression

t( , W ) =

Z

[0,1]2
W (x, y) dxdy.

It is not hard to see then that

t( , W ) =

Z

[0,1]4
W (x1, x2)W (x2, x3)W (x3, x4)W (x4, x1) dx1dx2dx3dx4.

It is straightforward from here to write down the formula for the homomorphism density t(H, W ) of a
finite graph H into a graphon W .

Finally, in the case of W ⌘ 1/2 as the limit graphon of (Rn)n, we see that t( , W ) = 1/2 and
t( , W ) = 1/16, solving the minimization problem from the previous section elegantly.

4

Convergence to a Limit Graphon. Uniform Attachment Graph Sequence (Each Cycle:

N − 1 node graph; new node: attached with prob. 1/N to each old N − 1 node, and for

all old unattached pairs, attach them with prob. 1/N.)

Theorem [Lovasz and Szegedy, 2006; LL AMS2012]
Under the cut metric the graphon spaces (WI, δ□), are
compact, where I any closed interval in R.
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Finite Network Finite Population Mean Field Games

Consider a finite population distributed over a finite graph Gk.

Let xGk =

Mk⊕

l=1

{xi|i ∈ Cl} denote the states of all agents in the

total set of clusters of the population.

This gives a total of N =

Mk∑

l=1

|Cl| individual states.

For Ai in the cluster C(i), the two coupling terms in the
dynamics take the form

f0(xi, ui, C(i)) =
1

|C(i)|
∑

j∈C(i)

f0(xi, ui, xj), (5)

fGk(xi, ui, gk
C(i)) =

1
Mk

Mk∑

l=1

gk
C(i)Cl

1
|Cl|

∑

j∈Cl

f (xi, ui, xj). (6)

They model intra- and inter-cluster couplings, respectively. The
defn. of fGk uses the sectional (i.e. vertex) information gk

C(i)•.
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Finite Network Finite Population Games

The state process of Ai is then given by the SDE

dxi(t) =
1

|C(i)|
∑

j∈C(i)

f0(xi, ui, xj)dt

+
1

Mk

Mk∑

l=1

gk
C(i)Cl

1
|Cl|

∑

j∈Cl

f (xi, ui, xj)dt + σdwi (7)

= f0(xi, ui, C(i))dt + fGk(xi, ui, gk
C(i))dt + σdwi (8)

1 ≤ i ≤ N
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Finite Network Finite Population Costs

Analogously, in the GMFG case, we define the running cost
coupling terms for agent Ai to be

l0(xi, ui, C(i)) =
1

|C(i)|
∑

j∈C(i)

l0(xi, ui, xj),

lGk(xi, ui, gk
C(i)) =

1
Mk

Mk∑

l=1

gk
C(i)Cl

1
|Cl|

∑

j∈Cl

l(xi, ui, xj).

Define the complete running cost as
l̃Gk(xi, ui, gk

C(i)) = l0(xi, ui, C(i)) + lGk(xi, ui, gk
C(i)).

The performance function for agent Ai in a finite
population on a finite graph Gk is then

Ji = E
∫ T

0
l̃Gk(xi, ui, gk

C(i))dt. (9)
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Infinite Network Infinite Population Games

Assume :
(i) The number of nodes of the graph Gk tends to infinity
with assumed unique graphon limit g(α, β).
(ii) The subpopulation at each node tends to infinity.
giving the local mean field µα, the global set of mean fields
µG = {µβ; 0 ≤ β ≤ 1}, and the graphon g(α, β):

f0[xα, uα, µα] :=

∫

Rn
f0(xα, uα, z)µα(dz), (10)

f [xα, uα, µG; gα] : =

∫ 1

0

∫

Rn
f (xα, uα, z)g(α, β)µβ(dz)dβ, (11)

This yields the complete local limit graphon drift dynamics:

f̃ [xα, uα, µG; gα] : = f0[xα, uα, µα] + f [xα, uα, µG; gα]. (12)
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Infinite Network Infinite Population Games

Parallel to the standard MFG case, in the infinite
population graphon case the generic agent state SDE is:

[MV-SDE](α) dxα(t) = f̃ [xα(t), uα(t), µG(t); gα]dt + σdwα
t ,

0 ≤ t ≤ T, α ∈ [0, 1],
(13)

with l̃[., .] defined similarly to f̃ [., .], the generic agent α has
the cost, or performance, function

Jα(uα;µG(·)) = E
∫ T

0
l̃[xα(t), uα(t), µG(t); gα]dt. (14)
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Graphon Mean Field Game (GMFG) Equations

[HJB](α) − ∂Vα(t, x)
∂t

= inf
u∈U

{
f̃ [x, u, µG; gα]

∂Vα(t, x)
∂x

+ l̃[x, u, µG; gα]
}
+

σ2

2
∂2Vα(t, x)

∂x2 ,

Vα(T, x) = 0, (t, x) ∈ [0,T]× Rn, α ∈ [0, 1]m,
(15)

[FPK](α)
∂pα(t, x)

∂t
= − ∂{f̃ [x, u0, µG; gα]pα(t, x)}

∂x

+
σ2

2
∂2pα(t, x)

∂x2 , pα(0) = p0 (16)

[BR](α) u0 = φ(t, x|µG; gα).
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Graphon Mean Field Game (GMFG) Equations

Theorem: GMFG Existence and Uniqueness (GMFG E+U)
[PEC-Minyi Huang CDC2018,CDC 2019, SICON 2021]

For U compact, subject to boundedness and Lipschitz
conditions on all functions on R× U × R, together with the
existence of a unique continuous minimizer of the Hamiltonian,
there exists a unique Nash equilibrium solution
(Vα, µα(·))α∈[0,1] to the GMFG equations (15) and (16).

The feedback control best response (BR) strategy
φ(t, xα|µG(·); gα) for each agent depends only upon the agent’s
state and the graphon mean fields: (xα, µG).
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Graphon Mean Field Games

Graph Convergence Assumption (GCA)
The sequence {Gk; 1 ≤ k < ∞} and the graphon limit satisfy

lim
k→∞

max
i

Mk∑

j=1

∣∣∣ 1
Mk

gk
Ci,Cj

−
∫

β∈Ij

gI∗i ,βdβ
∣∣∣ = 0,

where I∗i is the midpoint of the subinterval Ii ∈ {I1 · · · IMk} of
length 1/Mk.
For the ϵ-Nash equilibrium analysis, we consider a sequence of
games each defined on a finite graph Gk. Recall that there is a

total of N =

Mk∑

l=1

|Cl| agents.

Suppose the cluster C(i) of agent Ai corresponds to the
subinterval I(i) ∈ {I1, · · · , IMk}. Then the agent Ai uses the
Midpoint BR Control, namely it takes the midpoint I∗(i) of the
subinterval I(i) and uses the GMFG equations solution to
determine its control law.

25 / 37



Graphon Mean Field Games

Theorem: GMFG epsilon Nash Property ( ϵ− NP )
[PEC-M.Huang CDC2018,CDC 2019, SICON 2021]

In addition to the conditions of the GMFG E+U Theorem,
assume (GCA) holds.
Then when the Midpoint BR Controls are applied to a sequence
of finite graph systems {Gk; 1 ≤ k < ∞} with limit G the ϵ-Nash
equilibrium property holds:

∀ϵ > 0 ∃N(ϵ) s.t. ∀N ≥ N(ϵ)

JN
i (u

0
i , u0

−i)− ϵ ≤ inf
ui∈U

JN
i (ui, u0

−i) ≤ JN
i (u

0
i , u0

−i)

where ϵ → 0 as k → ∞, and where the unilateral agent Ai uses
a centralized Lipschitz feedback strategy ui ∈ U adapted to
FN := {σ(xj(τ); τ ≤ t, 1 ≤ j ≤ N)}.

Significance: Finite network & population use of GMFG BRs.
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Critical Nodes in Graphon Mean Field Games

Definition Critical Nodes for GMFG Systems

Assume a GMFG system has Nash values which are
differentiable with respect to node values in [0, 1], then α is a
critical node for the GMFG system if the local Nash value
stationarity condition holds at α:

∂

∂λ
Vλ,g

t

∣∣∣∣
λ=α

= 0, ∀t ∈ [0,T]. (17)
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LQG GMFG Critical Nodes [Foguen-Tcheundom, CDC
2021, (extended in Tcheundom-Gao, CDC 2022)]

Assume a sequence of graphs Gk converges to a unique
graphon limit in the cut metric where the metric is defined
without infimization over measurable bijections i.e. with fixed
indexing:

g : [0, 1]× [0, 1] −→ [0, 1], (α, β) 7→ g(α, β).

and a representative (aka generic) agent at a graphon node
α ∈ [0, 1] has the linear controlled dynamics:

dxαt =
(
axαt + buαt

)
dt + σdwα

t ,

xα0 = ξα ∼ N (m, v2) ∀t ∈ [0,T], ∀α ∈ [0, 1],
(18)

where (ξα)α∈[0,1] are pairwise independent.
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Critical Nodes in LQG Graphon Mean Field Games

For the specific LQG-GMFG problem under consideration, take
the generic agent’s performance function to be

Jα(uα, µ) := E
∫ T

0

[
r
2
|uαt |2 +

q
2
(
xαt − zα,gt

)2
]

dt, (19)

where at α ∈ [0, 1], the α component of the global (mean) mean
field term, denoted zα,gt , t ∈ [0,T], is defined as

zα,gt :=

∫ 1

0
g(α, β)

∫

R
ydµ(β, t)(y)dβ, t ∈ [0,T], (20)

where for all α ∈ [0, 1], t ∈ [0,T], µ(α, t) is assumed to lie in the
set of probability measures with finite second moment, P2

(
R
)
.
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Critical Nodes in LQG Graphon Mean Field Games

1 (GMFG Control Problem) Find a family of
{F t; 0 ≤ s ≤ t; 0 ≤ t ≤ T} adapted square integrable
optimal controls, denoted uα,o := (uα,ot )t∈[0,T] ∈ A, such that

J(uα,o, µ) = min
uα∈A

J(uα, µ) (21)

= min
uα∈A

E
[ ∫ T

0

(
r
2
(
uαt

)2
+

q
2
(
xαt − zα,gt

)2
)

dt
]

dxαt =
(
axαt + buαt

)
dt + σdwα

t , xα0 = ξα, (22)

zα,gt =

∫ 1

0
g(α, β)[

∫

R
vµ(β, t)(dv)]dβ. (23)

2 (MFG Consistency Conditions) And such that the solution
family of optimal state trajectories (xα,µ,ot )t∈[0,T],∀α ∈ [0, 1],
solving (21) satisfies the MFG-consistency conditions:

µ(α, t) = L
(
xα,µ,ot

)
, ∀(α, t) ∈ [0, 1]× [0,T]. (24)

Assume the LQG-GMFG above admits a unique solution. 31 / 37



Critical Nodes in LQG Graphon Mean Field Games

Optimal tracking (BR) control for any agent in cluster Cα:

uα(t) = −r−1b[Πtxα(t) + sα(t)]

−Π̇t = aΠt +Πta −Πtbr−1bΠt + q, ΠT = qT

−ṡα(t) =
(
a − br−1bΠt

)
sα(t)− qzα,gt , sα(T) = qTνα(T)

Graphon local mean field (mean) and tracked process (cost coupling)

zα,gt =

∫ 1

0
g(α, β)[

∫

R
vµ(β, t)(dv)]dβ, α ∈ [0, 1],

x̄β ≜ lim
|Cβ |→∞

1
|Cβ|

∑

j∈Cβ

xj =

∫

Rn
xβµβ(dxβ)

The GMFG scheme closes with the local mean state process of xα
˙̄xα =

(
a − br−1bΠt

)
x̄α − br−1bsα, α ∈ [0, 1].
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Critical Nodes in LQG Graphon Mean Field Games

Definition [Critical Mean Field Nodes for LQG-GMFG]

λ ∈ [0, 1] is a critical mean field node for an LQG-GMFG system
if the local mean field stationarity condition holds:

∂

∂α
zα,gt

∣∣∣∣
α=λ

= 0, ∀t ∈ [0,T]. (25)
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Critical Nodes in Graphon Mean Field Games

Two examples of graphons for which one can readily identify
critical mean field nodes for the specified LQG-GMFG problem.

1 Case 1: Consider the first graphon to be the limit of a
sequence of finite Erdös-Rényi graphs. :

For some p ∈ (0, 1), g(α, β) := p ∀(α, β) ∈ [0, 1]2.

Then the solution of the LQG-GMFG equations gives:

zα,gt = p
∫ 1

0
E
[
xβ,ot

]
dβ, ∀(α, t) ∈ [0, 1]× [0,T].

From which it follows that, for all α ∈ [0, 1]:

∂

∂λ
zλ,gt

∣∣∣∣
λ=α

= 0, ∀t ∈ [0,T].

Hence for Erdös-Renyi graphons the associated
LQG-GMFG problem is such that all nodes λ ∈ [0, 1] are
critical mean field nodes.

34 / 37



Critical Nodes in LQG Graphon Mean Field Games

1 Case 2: The uniform attachment graphon (UAG) :

g(α, β) = 1 −max{α, β}, ∀(α, β) ∈ [0, 1]2.

zα,gt =

∫ 1

0
(1 −max{α, β})E

[
xβ,ot

]
dβ ∀(α, t) ∈ [0, 1]× [0,T]

= (1 − α)

∫ α

0
E
[
xβ,ot

]
dβ +

∫ 1

α
(1 − β)E

[
xβ,ot

]
dβ. (26)

Differentiation with respect to α yields:
∂

∂α
zα,gt = −

∫ α

0
E
[
xβ,ot

]
dβ, ∀t ∈ [0, 1]. (27)

Hence at α = 0 ∈ [0, 1]:

∂

∂α
zα,gt

∣∣∣∣
α=0

= 0, ∀t ∈ [0,T].

Consequently for the UAG the root node is a critical mean
field node.
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Critical Nodes in LQG Graphon Mean Field Games

Denote the LQG-GMFG equilibrium controls by
{uα,ot , ∀(α, t) ∈ [0, 1]× [0,T]}

Proposition

Assume that the LQG-GMFG problem (18),(19) admits critical
mean field nodes denoted λ ∈ [0, 1]. Then the LQG-GMFG
equilibrium controls are stationary at λ ∈ [0, 1], that is, ∀t ∈ [0,T]

∂uα,ot

∂α
|α=λ = −b

r

[
Πt

∂xα,ot

∂α
+

∂sαt
∂α

]
|α=λ = 0, (28)

and, further, they are critical nodes for the LQG-GMFG system
(18),(19) since the value function is stationary there:

∂V(α, t, x)
∂α

|α=λ = 0, ∀(t, x) ∈ [0,T]× R. (29)
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Conclusion
The extension of the analysis above to
parameterizations and thence differentiation in
Rm,m > 1, is enabled by the theory of vertexons and
embedded graphons.
The initial development of that work together with
examples is to be presented at the IEEE Control
Systems Society Conference on Decision and Control,
Cancun, Mexico, 2022.
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