The degree-restricted random process is far from uniform

Lutz Warnke
UC San Diego

Joint work with Mike Molloy (Toronto) and Erlang Surya (UCSD)

Context and Overview

Random Graph Model: Random d-process

- Start with an empty graph on n vertices
- In each step: add one random edge so that max-degree stays $\leq d$
- Natural random greedy algorithm to generate d-regular graph (Balińska-Quintas 1985, Ruciński-Wormald 1992)

Basic Question: Wormald (1999)

How similar are d-process and uniform random d-regular graph G_d ?

Wormald conjectured they are similar (contiguous)

This Talk: Variant for degree sequences d_n

Degree-restricted process differs from uniform G_{d_n} for irregular d_n

Variant for degree sequences $\mathbf{d_n} = (d_1, \dots, d_n)$

Degree-restricted random d_n -process

- Start with an empty graph on *n* vertices
- In each step: add one random edge to the graph, so that the degree of each vertex v_i stays $\leq d_i$

Example for $d_5 = (2, 2, 2, 3, 3)$:

Variant for degree sequences $\mathbf{d_n} = (d_1, \dots, d_n)$

Degree-restricted random d_n -process

- Start with an empty graph on *n* vertices
- In each step: add one random edge to the graph, so that the degree of each vertex v_i stays $\leq d_i$

Basic Distributional Question:

How similar is final graph $G_{\mathbf{d_n}}^P$ of degree-restricted random $\mathbf{d_n}$ -process to a uniform random graph $G_{\mathbf{d_n}}$ with degree sequence $\mathbf{d_n}$?

- Statistics: can we (algorithmically) distinguish them?
- Combinatorial Probability: do both have similar typical properties?
- Algorithms: can d_n -process be used for random sampling?
- Modeling/Physics: does the simplest model work?

Main Result: d_n -process and uniform model differ

 $\mathbf{d_n} = (d_1, \dots, d_n)$ not nearly regular: no degree appears $\geq 0.99n$ times

Molloy, Surya, Warnke (2022+)

If the bounded degree sequence $\mathbf{d_n}$ is not nearly regular, then can whp distinguish $\mathbf{d_n}$ -process $G_{\mathbf{d_n}}^P$ and uniform random $\mathbf{d_n}$ -graph $G_{\mathbf{d_n}}$

Simple case (today): Assume # degree 1 vertices $\in [0.01n, 0.99n]$

- Proof Idea: Show discrepancy in edge statistic
 - ▶ Number of 1-1 edges differ whp (i.e., evolution of process matters)
- Proof Technique: 'Switching method' applied to d_n-process
 - Usually only applied to uniform models (not stochastic processes)

Intuition: why d_n -process prefers 1-1 edges

Main Technical Result: Discrepancy in Edge Statistic

 $X_{1,1}(G) = \#$ of edges with endpoints of degree 1 in G

Can distinguish both models via $X_{1,1}$

There exists μ and $\epsilon = \epsilon(\Delta) > 0$ such that with high probability

$$X_{1,1}(G_{\mathsf{d_n}}) \in [(1-\epsilon)\mu, (1+\epsilon)\mu] \quad \text{and} \quad X_{1,1}(G_{\mathsf{d_n}}^P) \not\in [(1-\epsilon)\mu, (1+\epsilon)\mu]$$

$$X_{1,1}(G_{\mathbf{d_n}}^P) \quad X_{1,1}(G_{\mathbf{d_n}}) \qquad X_{1,1}(G_{\mathbf{d_n}}^P)$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

- Concentration of $X_{1,1}(G_{d_n})$: standard via configuration model
- Understanding $X_{1,1}(G_{d_n}^P)$: adapt switching method

Switching: Change # of 1-1 edges by exactly one

Definition via Example:

- Goal: compare ratio $\mathbb{P}(G_{\mathbf{d_n}}^P = G^+)/\mathbb{P}(G_{\mathbf{d_n}}^P = G^-)$
 - # of 1-1 edges in G^+ and G^- differ by exactly one
 - switching between G^+ and G^- is 'local perturbation'
- Extra difficulty for stochastic processes:
 - no longer uniform (order of edges matters)
- Solution:
 - ▶ look at all trajectories (= edge orderings) yielding a graph

How Switching Affect d_n-process Probabilities

Switching Lemma (for probabilities)

$$\frac{\mathbb{P}(G_{\mathbf{d_n}}^P = G^+)}{\mathbb{P}(G_{\mathbf{d_n}}^P = G^-)} \ge 1 + \epsilon' \qquad \text{where } \epsilon' > 0 \text{ depends on } \Delta$$

Proof Ideas:

ullet Expand probability based on edge-sequence σ of G

$$\mathbb{P}(G_{d_n}^P = G) = \sum_{\sigma} \mathbb{P}(d_n\text{-process returns } \sigma) =: \sum_{\sigma} \mathbb{P}(\sigma)$$

- Understand how switching affects $\mathbb{P}(\sigma)$
 - Compare similar edge-sequences

Switching edge-sequence

Edge-sequence σ : e_1 e_2 e_3 e_4 ...

• Key Inequality:

$$\mathbb{P}(\sigma_{\mathsf{ab},\mathsf{xy}}) + \mathbb{P}(\sigma_{\mathsf{xy},\mathsf{ab}}) \geq \mathbb{P}(\sigma_{\mathsf{ax},\mathsf{by}}) + \mathbb{P}(\sigma_{\mathsf{by},\mathsf{ax}})$$

- LHS has one more 1-1 edge than RHS:
 - ▶ Indicates **d**_n-process prefers more 1-1 edges

How Switching Affect d_n-process Probabilities

Switching Lemma (for probabilities)

$$\frac{\mathbb{P}(G_{\mathsf{dn}}^P = G^+)}{\mathbb{P}(G_{\mathsf{dn}}^P = G^-)} \ge 1 + \epsilon' \qquad \text{where } \epsilon' > 0 \text{ depends on } \Delta$$

Proof Idea: Use key inequality for all edge-sequences $\sigma = \sigma_{ab,xy}$ of G^+ :

$$\mathbb{P}(G_{\mathbf{d_n}}^P = G^+) = \sum_{\sigma_{ab,xy}} \left[\mathbb{P}(\sigma_{ab,xy}) + \mathbb{P}(\sigma_{xy,ab}) \right]$$

$$\geq \sum_{\sigma_{ax,by}} \left[\mathbb{P}(\sigma_{ax,by}) + \mathbb{P}(\sigma_{by,ax}) \right] = \mathbb{P}(G_{\mathbf{d_n}}^P = G^-)$$

• Often win a factor of $1+\epsilon$ in key inequality: get $1+\epsilon'$

Switching: Graph Count Based on $X_{1,1}$

Notation: $G \in d_n$ if G has degree sequence d_n

Auxiliary Graph: by adding edge between G^+, G^- :

$$\longrightarrow \textit{G}_{\ell+1} = \{\textit{G} \in \textbf{d}_{\textbf{n}} : \textit{X}_{1,1}(\textit{G}) = \ell+1\}$$

$$\longrightarrow G_{\ell} = \{G \in \mathbf{d_n} : X_{1,1}(G) = \ell\}$$

Key Point: Auxiliary graph is roughly regular when $\ell \approx \mu$

Switching lemma then implies:

$$\frac{\mathbb{P}(\textit{G}^{\textit{P}}_{\mathsf{d_n}} \in \textit{G}_{\ell+1})}{\mathbb{P}(\textit{G}^{\textit{P}}_{\mathsf{d_n}} \in \textit{G}_{\ell})} \geq 1 + \epsilon'$$

Proof of Main Theorem (Sketch)

Definition: $\mathcal{N}_z = \{G \in \mathbf{d_n} : |X_{1,1}(G) - \mu| \le z\}$

Key Point implies (for $z \leq 2\epsilon\mu$)

$$\frac{\mathbb{P}[\textit{G}_{d_{n}}^{\textit{P}} \in \mathcal{N}_{\textit{z}}]}{\mathbb{P}[\textit{G}_{d_{n}}^{\textit{P}} \in \mathcal{N}_{\textit{z}+1}]} \leq \frac{\sum_{\mu-z \leq \ell \leq \mu+z} \mathbb{P}(\textit{G}_{d_{n}}^{\textit{P}} \in \textit{G}_{\ell})}{\sum_{\mu-z \leq \ell \leq \mu+z} \mathbb{P}(\textit{G}_{d_{n}}^{\textit{P}} \in \textit{G}_{\ell+1})} \leq \frac{1}{1+\epsilon'}$$

Get exponential decay by telescoping product argument:

$$\mathbb{P}(G_{\mathbf{d_n}}^P \in \mathcal{N}_{\epsilon\mu}) \leq \frac{\mathbb{P}(G_{\mathbf{d_n}}^P \in \mathcal{N}_{\epsilon\mu})}{\mathbb{P}(G_{\mathbf{d_n}}^P \in \mathcal{N}_{2\epsilon\mu})} = \prod_{z=\epsilon\mu}^{2\epsilon\mu-1} \frac{\mathbb{P}(G_{\mathbf{d_n}}^P \in \mathcal{N}_z)}{\mathbb{P}(G_{\mathbf{d_n}}^P \in \mathcal{N}_{z+1})} \leq \frac{1}{(1+\epsilon')^{\epsilon\mu}} \to 0$$

Conclusion: whp number of 1-1 edges satisfies

General case: more complicated

- Small vertex: $|\{v : \deg(v) \le s\}| \in [0.01n, 0.99n]$ (previously s = 1)
- Small edge: edge whose endpoints are small
- $X_{\text{small}}(G) = \text{number of small edges in } G$

Goal: Distinguish both models via $X_{\rm small}$

There exists μ and $\epsilon = \epsilon(\Delta) > 0$ such that with high probability

$$X_{\mathrm{small}}(G_{\mathsf{d_n}}) \in [(1-\epsilon)\mu, (1+\epsilon)\mu] \quad \mathrm{and} \quad X_{\mathrm{small}}(G_{\mathsf{d_n}}^P) \not\in [(1-\epsilon)\mu, (1+\epsilon)\mu]$$

$$X_{\text{small}}(G_{\mathbf{d_n}}^P) \ X_{\text{small}}(G_{\mathbf{d_n}}) \qquad X_{\text{small}}(G_{\mathbf{d_n}}^P)$$

$$\vdash \qquad \qquad X \qquad \qquad X \qquad \qquad \downarrow$$

$$0 \qquad (1 - \epsilon)\mu \qquad (1 + \epsilon)\mu$$

Major Difficulty: Several key inequalities can fail

The point where old argument breaks down

Issue: the following key inequality is no longer true

$$\frac{\mathbb{P}(G_{\mathsf{d_n}}^P = G^+)}{\mathbb{P}(G_{\mathsf{d_n}}^P = G^-)} \geq 1 + \epsilon'$$

The ratio is ≈ 0.82 in the following example:

General case: refined switching idea

Definition: $\mathcal{N}_z = \{G \in \mathbf{d_n} : |X_{\text{small}}(G) - \mu| \le z\}$

Key Idea: Switching on clusters (=suitable sets of graphs)

$$\frac{\mathbb{P}(G_{\mathbf{d_n}}^P \in \mathcal{N}_z)}{\mathbb{P}(G_{\mathbf{d_n}}^P \in \mathcal{N}_{z+5\Delta})} \leq \frac{1}{1+\epsilon'}$$

General case: refined switching idea

Definition: $\mathcal{N}_z = \{G \in \mathbf{d_n} : |X_{\text{small}}(G) - \mu| \le z\}$

Key Idea: Switching on clusters (=suitable sets of graphs)

$$\frac{\mathbb{P}(\textit{\textit{G}}_{\textsf{d}_{\textbf{n}}}^{\textit{\textit{P}}} \in \mathcal{N}_{\textit{\textit{z}}})}{\mathbb{P}(\textit{\textit{G}}_{\textsf{d}_{\textbf{n}}}^{\textit{\textit{P}}} \in \mathcal{N}_{\textit{\textit{z}}+5\Delta})} \leq \frac{1}{1+\epsilon'}$$

Get exponential decay by telescoping product argument:

$$\mathbb{P}(G_{\mathbf{d_n}}^P \in \mathcal{N}_{\epsilon\mu}) \leq \frac{\mathbb{P}(G_{\mathbf{d_n}}^P \in \mathcal{N}_{\epsilon\mu})}{\mathbb{P}(G_{\mathbf{d_n}}^P \in \mathcal{N}_{2\epsilon\mu})} = \prod_{i=0}^{\epsilon/(5\Delta)} \frac{\mathbb{P}(G_{\mathbf{d_n}}^P \in \mathcal{N}_{\epsilon\mu+i5\Delta})}{\mathbb{P}(G_{\mathbf{d_n}}^P \in \mathcal{N}_{\epsilon\mu+(i+1)5\Delta})} \leq \frac{1}{(1+\epsilon')^{\epsilon\mu}} \longrightarrow 0$$

Conclusion: whp number of small edges satisfies

$$X_{\text{small}}(G_{\mathbf{d_n}}^P)$$
 $X_{\text{small}}(G_{\mathbf{d_n}}^P)$

$$0 \qquad (1 - \epsilon)\mu \qquad (1 + \epsilon)\mu$$

Summary

Degree-restricted random $\mathbf{d_n}$ -process $G_{\mathbf{d_n}}^P$

- Start with an empty graph on *n* vertices
- In each step: add one random edge to the graph, so that the degree of each vertex v_i stays $\leq d_i$

Main result: d_n -process $G_{d_n}^P$ and uniform model G_{d_n} differ

If the bounded degree sequence $\mathbf{d_n}$ is not nearly regular, then can whp distinguish $\mathbf{d_n}$ -process $G_{\mathbf{d_n}}^P$ and random $\mathbf{d_n}$ -graph $G_{\mathbf{d_n}}$

Proof technique: adapt switching method to stochastic process

Open Question

Wormald's conjecture for 2-regular degree-restricted random process?