The degree-restricted random process is far from uniform

Lutz Warnke
UC San Diego

Joint work with Mike Molloy (Toronto) and Erlang Surya (UCSD)

Context and Overview

Random Graph Model: Random d-process

- Start with an empty graph on n vertices
- In each step: add one random edge so that max-degree stays $\leq d$
- Natural random greedy algorithm to generate d-regular graph (Balińska-Quintas 1985, Ruciński-Wormald 1992)

Basic Question: Wormald (1999)

How similar are d-process and uniform random d-regular graph G_{d} ?

- Wormald conjectured they are similar (contiguous)

This Talk: Variant for degree sequences $\mathbf{d}_{\mathbf{n}}$
Degree-restricted process differs from uniform $G_{\mathbf{d}_{\mathbf{n}}}$ for irregular $\mathbf{d}_{\mathbf{n}}$

Variant for degree sequences $\mathbf{d}_{\mathbf{n}}=\left(d_{1}, \ldots, d_{n}\right)$

Degree-restricted random $\mathbf{d}_{\mathbf{n}}$-process

- Start with an empty graph on n vertices
- In each step: add one random edge to the graph, so that the degree of each vertex v_{i} stays $\leq d_{i}$

Example for $\mathbf{d}_{\mathbf{5}}=(2,2,2,3,3)$:
2

Variant for degree sequences $\mathbf{d}_{\mathbf{n}}=\left(d_{1}, \ldots, d_{n}\right)$

Degree-restricted random $\mathbf{d}_{\mathbf{n}}$-process

- Start with an empty graph on n vertices
- In each step: add one random edge to the graph, so that the degree of each vertex v_{i} stays $\leq d_{i}$

Basic Distributional Question:

How similar is final graph $G_{\mathbf{d}_{\mathbf{n}}}^{P}$ of degree-restricted random $\mathbf{d}_{\mathbf{n}}$-process to a uniform random graph $G_{\mathbf{d}_{\mathbf{n}}}$ with degree sequence $\mathbf{d}_{\mathbf{n}}$?

- Statistics: can we (algorithmically) distinguish them?
- Combinatorial Probability: do both have similar typical properties?
- Algorithms: can $\mathbf{d}_{\mathbf{n}}$-process be used for random sampling?
- Modeling/Physics: does the simplest model work?

Main Result: $\mathbf{d}_{\mathbf{n}}$-process and uniform model differ

$\mathbf{d}_{\mathbf{n}}=\left(d_{1}, \ldots, d_{n}\right)$ not nearly regular: no degree appears $\geq 0.99 n$ times

Molloy, Surya, Warnke (2022+)

If the bounded degree sequence $\mathbf{d}_{\mathbf{n}}$ is not nearly regular, then can whp distinguish $\mathbf{d}_{\mathbf{n}}$-process $G_{\mathbf{d}_{\mathbf{n}}}^{P}$ and uniform random $\mathbf{d}_{\mathbf{n}}$-graph $G_{\mathbf{d}_{\mathbf{n}}}$

Simple case (today): Assume \# degree 1 vertices $\in[0.01 n, 0.99 n]$

- Proof Idea: Show discrepancy in edge statistic
- Number of 1-1 edges differ whp (i.e., evolution of process matters)
- Proof Technique: ‘Switching method’ applied to $\mathbf{d}_{\mathbf{n}}$-process
- Usually only applied to uniform models (not stochastic processes)

Intuition: why $\mathbf{d}_{\mathbf{n}}$-process prefers 1-1 edges

Main Technical Result: Discrepancy in Edge Statistic

$X_{1,1}(G)=\#$ of edges with endpoints of degree 1 in G
Can distinguish both models via $X_{1,1}$
There exists μ and $\epsilon=\epsilon(\Delta)>0$ such that with high probability

$$
X_{1,1}\left(G_{\mathrm{d}_{\mathrm{n}}}\right) \in[(1-\epsilon) \mu,(1+\epsilon) \mu] \quad \text { and } \quad X_{1,1}\left(G_{\mathrm{d}_{\mathrm{n}}}^{P}\right) \notin[(1-\epsilon) \mu,(1+\epsilon) \mu]
$$

- Concentration of $X_{1,1}\left(G_{\mathrm{d}_{\mathrm{n}}}\right)$: standard via configuration model
- Understanding $X_{1,1}\left(G_{\mathrm{d}_{\mathrm{n}}}^{P}\right)$: adapt switching method

Switching: Change \# of 1-1 edges by exactly one

Definition via Example:

\mathbf{G}^{-}

- Goal: compare ratio $\mathbb{P}\left(G_{d_{n}}^{P}=G^{+}\right) / \mathbb{P}\left(G_{d_{n}}^{P}=G^{-}\right)$
- \# of 1-1 edges in G^{+}and G^{-}differ by exactly one
- switching between G^{+}and G^{-}is 'local perturbation'
- Extra difficulty for stochastic processes:
- no longer uniform (order of edges matters)
- Solution:
- look at all trajectories (= edge orderings) yielding a graph

How Switching Affect $\mathbf{d}_{\mathbf{n}}$-process Probabilities

Switching Lemma (for probabilities)

$$
\frac{\mathbb{P}\left(G_{\mathbf{d}_{n}}^{P}=G^{+}\right)}{\mathbb{P}\left(G_{\mathbf{d}_{\mathbf{n}}}^{P}=G^{-}\right)} \geq 1+\epsilon^{\prime} \quad \text { where } \epsilon^{\prime}>0 \text { depends on } \Delta
$$

Proof Ideas:

- Expand probability based on edge-sequence σ of G

$$
\mathbb{P}\left(G_{\mathbf{d}_{\mathbf{n}}}^{P}=G\right)=\sum_{\sigma} \mathbb{P}\left(\mathbf{d}_{\mathbf{n}} \text {-process returns } \sigma\right)=: \sum_{\sigma} \mathbb{P}(\sigma)
$$

- Understand how switching affects $\mathbb{P}(\sigma)$
- Compare similar edge-sequences

Switching edge-sequence

Edge-sequence $\sigma: \underline{e_{1}} \underline{e_{2}} \underline{e_{3}} \underline{e_{4}} \ldots$

- Key Inequality:

$$
\mathbb{P}\left(\sigma_{a b, x y}\right)+\mathbb{P}\left(\sigma_{x y, a b}\right) \geq \mathbb{P}\left(\sigma_{a x, b y}\right)+\mathbb{P}\left(\sigma_{b y, a x}\right)
$$

- LHS has one more 1-1 edge than RHS:
- Indicates $\mathbf{d}_{\mathbf{n}}$-process prefers more 1-1 edges

How Switching Affect $\mathbf{d}_{\mathbf{n}}$-process Probabilities

Switching Lemma (for probabilities)

$$
\frac{\mathbb{P}\left(G_{\mathbf{d}_{\mathbf{n}}}^{P}=G^{+}\right)}{\mathbb{P}\left(G_{\mathbf{d}_{\mathrm{n}}}^{P}=G^{-}\right)} \geq 1+\epsilon^{\prime} \quad \text { where } \epsilon^{\prime}>0 \text { depends on } \Delta
$$

Proof Idea: Use key inequality for all edge-sequences $\sigma=\sigma_{a b, x y}$ of \mathcal{G}^{+}:

$$
\begin{aligned}
\mathbb{P}\left(G_{\mathbf{d}_{\mathbf{n}}}^{P}=G^{+}\right) & =\sum_{\sigma_{a b, x y}}\left[\mathbb{P}\left(\sigma_{a b, x y}\right)+\mathbb{P}\left(\sigma_{x y, a b}\right)\right] \\
& \geq \sum_{\sigma_{a x, b y}}\left[\mathbb{P}\left(\sigma_{a x, b y}\right)+\mathbb{P}\left(\sigma_{b y, a x}\right)\right]=\mathbb{P}\left(G_{\mathbf{d}_{\mathbf{n}}}^{P}=G^{-}\right)
\end{aligned}
$$

- Often win a factor of $1+\epsilon$ in key inequality: get $1+\epsilon^{\prime}$

Switching: Graph Count Based on $X_{1,1}$

Notation: $G \in \mathbf{d}_{\mathbf{n}}$ if G has degree sequence $\mathbf{d}_{\mathbf{n}}$
Auxiliary Graph: by adding edge between G^{+}, G^{-}:

Key Point: Auxiliary graph is roughly regular when $\ell \approx \mu$
Switching lemma then implies:

$$
\frac{\mathbb{P}\left(G_{\mathbf{d}_{\mathbf{n}}}^{P} \in G_{\ell+1}\right)}{\mathbb{P}\left(G_{\mathbf{d}_{\mathbf{n}}}^{P} \in G_{\ell}\right)} \geq 1+\epsilon^{\prime}
$$

Proof of Main Theorem (Sketch)

Definition: $\mathcal{N}_{z}=\left\{G \in \mathbf{d}_{\mathbf{n}}:\left|X_{1,1}(G)-\mu\right| \leq z\right\}$

Key Point implies (for $z \leq 2 \epsilon \mu$)

$$
\frac{\mathbb{P}\left[G_{\mathrm{d}_{\mathrm{n}}}^{P} \in \mathcal{N}_{z}\right]}{\mathbb{P}\left[G_{\mathrm{d}_{\mathrm{n}}} \in \mathcal{N}_{z+1}\right]} \leq \frac{\sum_{\mu-z \leq \ell \leq \mu+z} \mathbb{P}\left(G_{\mathrm{d}_{\mathrm{n}}}^{P} \in G_{\ell}\right)}{\sum_{\mu-z \leq \ell \leq \mu+z} \mathbb{P}\left(G_{\mathrm{d}_{\mathrm{n}}} \in G_{\ell+1}\right)} \leq \frac{1}{1+\epsilon^{\prime}}
$$

Get exponential decay by telescoping product argument:
$\mathbb{P}\left(G_{\mathrm{d}_{\mathrm{n}}}^{P} \in \mathcal{N}_{\epsilon \mu}\right) \leq \frac{\mathbb{P}\left(G_{\mathrm{d}_{\mathrm{n}}}^{P} \in \mathcal{N}_{\epsilon \mu}\right)}{\mathbb{P}\left(G_{\mathrm{d}_{\mathrm{n}}}^{P} \in \mathcal{N}_{2 \epsilon \mu}\right)}=\prod_{z=\epsilon \mu}^{2 \epsilon \mu-1} \frac{\mathbb{P}\left(G_{\mathrm{d}_{\mathrm{n}}}^{P} \in \mathcal{N}_{z}\right)}{\mathbb{P}\left(G_{\mathrm{d}_{\mathrm{n}}} \in \mathcal{N}_{z+1}\right)} \leq \frac{1}{\left(1+\epsilon^{\prime}\right)^{\epsilon \mu}} \rightarrow 0$
Conclusion: whp number of 1-1 edges satisfies

$$
\stackrel{(1-\epsilon) \mu}{\stackrel{X_{1,1}\left(G_{d_{n}}^{P}\right)}{\longrightarrow}} \underset{(1+\epsilon) \mu}{\stackrel{X_{1,1}\left(G_{d_{n}}^{P}\right)}{\longrightarrow}}
$$

General case: more complicated

- Small vertex: $|\{v: \operatorname{deg}(v) \leq s\}| \in[0.01 n, 0.99 n] \quad$ (previously $s=1$)
- Small edge: edge whose endpoints are small
- $X_{\text {small }}(G)=$ number of small edges in G

Goal: Distinguish both models via $X_{\text {small }}$

There exists μ and $\epsilon=\epsilon(\Delta)>0$ such that with high probability
$X_{\text {small }}\left(G_{d_{\mathrm{d}}}\right) \in[(1-\epsilon) \mu,(1+\epsilon) \mu] \quad$ and $\quad X_{\text {small }}\left(G_{\mathbf{d}_{\mathrm{n}}}^{P}\right) \notin[(1-\epsilon) \mu,(1+\epsilon) \mu]$

- Major Difficulty: Several key inequalities can fail

The point where old argument breaks down
Issue: the following key inequality is no longer true

$$
\frac{\mathbb{P}\left(G_{\mathrm{d}_{n}}^{P}=G^{+}\right)}{\mathbb{P}\left(G_{\mathrm{d}_{\mathrm{n}}}^{P}=G^{-}\right)} \geq 1+\epsilon^{\prime}
$$

The ratio is ≈ 0.82 in the following example:

$$
G^{-} \quad G^{+}
$$

General case: refined switching idea
Definition: $\mathcal{N}_{\mathbf{z}}=\left\{G \in \mathbf{d}_{\mathbf{n}}:\left|X_{\text {small }}(G)-\mu\right| \leq z\right\}$
Key Idea: Switching on clusters (=suitable sets of graphs)

$$
\frac{\mathbb{P}\left(G_{\mathrm{d}_{n}}^{P} \in \mathcal{N}_{z}\right)}{\mathbb{P}\left(G_{\mathrm{d}_{\mathrm{n}}} \in \mathcal{N}_{z+5 \Delta}\right)} \leq \frac{1}{1+\epsilon^{\prime}}
$$

General case: refined switching idea

Definition: $\mathcal{N}_{\mathbf{z}}=\left\{G \in \mathbf{d}_{\mathbf{n}}:\left|X_{\text {small }}(G)-\mu\right| \leq z\right\}$
Key Idea: Switching on clusters (=suitable sets of graphs)

$$
\frac{\mathbb{P}\left(G_{d_{n}}^{P} \in \mathcal{N}_{z}\right)}{\mathbb{P}\left(G_{\mathrm{d}_{\mathrm{n}}} \in \mathcal{N}_{z+5 \Delta}\right)} \leq \frac{1}{1+\epsilon^{\prime}}
$$

Get exponential decay by telescoping product argument:

$$
\begin{aligned}
\mathbb{P}\left(G_{\mathbf{d}_{\mathbf{n}}}^{P} \in \mathcal{N}_{\epsilon \mu}\right) \leq \frac{\mathbb{P}\left(G_{\mathbf{d}_{\mathbf{n}}}^{P} \in \mathcal{N}_{\epsilon \mu}\right)}{\mathbb{P}\left(G_{\mathbf{d}_{\mathbf{n}}}^{P} \in \mathcal{N}_{2 \epsilon \mu}\right)}=\prod_{i=0}^{\epsilon /(5 \Delta)} \frac{\mathbb{P}\left(G_{\mathbf{d}_{\mathbf{n}}}^{P} \in \mathcal{N}_{\epsilon \mu+i 5 \Delta}\right)}{\mathbb{P}\left(G_{\mathbf{d}_{\mathbf{n}}}^{P} \in \mathcal{N}_{\epsilon \mu+(i+1) 5 \Delta}\right)} \leq \frac{1}{\left(1+\epsilon^{\prime}\right)^{\epsilon \mu}} \\
\longrightarrow 0
\end{aligned}
$$

Conclusion: whp number of small edges satisfies

$$
\underset{0}{\stackrel{X_{\text {small }}\left(G_{\mathrm{d}_{\mathrm{n}}}^{P}\right)}{(1-\epsilon) \mu} \xrightarrow[(1+\epsilon) \mu]{\left(X_{\text {small }}\left(G_{\mathrm{d}_{\mathrm{n}}}^{P}\right)\right.}}
$$

Summary

Degree-restricted random \mathbf{d}_{n}-process $G_{d_{n}}^{P}$

- Start with an empty graph on n vertices
- In each step: add one random edge to the graph, so that the degree of each vertex v_{i} stays $\leq d_{i}$

Main result: $\mathbf{d}_{\mathbf{n}}$-process $G_{\mathbf{d}_{\mathbf{n}}}^{P}$ and uniform model $G_{\mathbf{d}_{\mathrm{n}}}$ differ If the bounded degree sequence $\mathbf{d}_{\mathbf{n}}$ is not nearly regular, then can whp distinguish $\mathbf{d}_{\mathbf{n}}$-process $G_{\mathbf{d}_{\mathbf{n}}}^{P}$ and random $\mathbf{d}_{\mathbf{n}}$-graph $G_{\mathbf{d}_{\mathbf{n}}}$

- Proof technique: adapt switching method to stochastic process

Open Question

Wormald's conjecture for 2-regular degree-restricted random process?

