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Dense random graphs

2/35



Subgraph densities

G1,G2, . . . : dense graph sequence.

F : finite simple graph on k vertices.

Subgraph density of F in Gn :

tF (Gn) :=
# injective homomorphisms of F into Gn

n(n − 1) · · · (n − k + 1)
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Inhomogeneous Erdős-Rényi random graph

Fix graphon κ : [0, 1]2 → [0, 1].

U = (U1, . . . ,Un): i.i.d. uniform on [0, 1].

Connect vertices i and j with probability κ(Ui ,Uj).

Denote this graph by G (n, κ).
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Law of Large Numbers

Lovász and Szegedy (2006)

Theorem. Let Gn ∼ G (n, κ) for all n. Then,
almost surely, Gn is a dense graph sequence and,
almost surely, Gn converges to κ in the metric space
of graphons; that is,

tF (Gn) −→
a.s.

E

∏
i
F∼j

κ(Ui ,Uj)
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Fluctuations of subgraph
densities

or “What is the CLT of dense graph limit theory?”
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A discouraging observation

Let Gn ∼ G (n, p), for p fixed.

Then, for any F ,

lim
n→∞

Cor(tF (Gn), t (Gn)) = 1

The dominant fluctuations of subgraph
densities are determined by t (Gn).
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And for general graphons...

In G (n, κ), the tF (Gn) are in general dominated by
sums of the form

∑n
i=1 gF ,κ(Ui).

Fluctuations of subgraph densities are
dominated by vertex labels (in general),
and all information about randomness of
edges is lost in the limit.
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Finer fluctuations

Janson and Nowicki (1991), Janson (1997).

Generalised U-statistics:∑
1⩽a1<···<ak⩽n

g
(
Ua1, . . . ,Uak ;Ya1a2, . . . ,Yak−1ak

)
where Ui are i.i.d. and Yij are i.i.d.

The key result: such statistic allow a Hoeffding-type
decomposition, but it’s more complicated than for
regular U-statistics.
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Consider G (n, κ) with κ =
α

βδ

δ

γ

t (Gn) = Eκ(U1,U2) +
2ρ1n

1/2V

(n − 1)
+

ρ2
(
V 2 − γ(1− γ)

)
n − 1

+
21/2V

n1/2(n − 1)1/2
+

(β − α)V

n1/2(n − 1)
,

where ρ1 = αγ − β(1− γ) + (1− 2γ)δ and ρ2 = α + β − 2δ.

V = n−1/2
∑
i

(
I[Ui ⩽ γ]−γ

)
, V =

(
n
2

)−1/2
∑
i1<i2

(
Yi1i2−κ(Ui1 ,Ui2)

)
.
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n = 10,000, α = β = 0.8, δ = 0.1, γ = 0.2, ρ1 = −0.42.
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n = 10,000, α = β = 0.8, δ = 0.1, γ = 0.5, ρ1 = 0.

12/35



t (Gn) = R0.0 + R0.5 + R1.0 + R1.5 + R2.0 + R2.5

R0.0 = Et (Gn)

R0.5 =
c2V

n1/2
, R1.0 =

c3(V
2 − γ(1− γ))

n
+ · · · ,

R1.5 = · · ·+
c4V + c5V ,1 + c6V ,1V + c7V ,2V

n3/2
,

R2.0 = · · · , R2.5 = · · · .

V = n−1/2
∑
i

Ẑi , V ,1 =
(
n
2

)−1/2 ∑
i<j

Ŷij ,

V ,1 =
(
n
3

)−1/2 ∑
i<j<k

κ(Ui ,Uk)Ŷij Ŷjk , V =
(
n
3

)−1/2 ∑
i<j<k

Ŷij Ŷjk Ŷik , . . .

Ẑi = I[Ui ⩽ γ]− γ, Ŷij = Yij − κ(Ui ,Uj)
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Centred subgraph counts

We propose to use

TF (Gn) =

(
n

k

)−1/2∑
a1<···<ak

∏
i
F∼j

(
Yaiaj − κ(Uai ,Uaj)

)
,

as fundamental local graph statistics.

Janson & Nowicki/Kaur & R.: For any col-
lection of graphs F1, . . . ,Fd , the statistics
TF1

, . . . ,TFd
are jointly close to a multivariate

Gaussian law.
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Statistical Applications
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Test statistics

Family of uncorrelated test statistics:

ZF (Gn) =

∑
a1<···<ak

∏
i
F∼j

(
Yaiaj − paiaj

)
( ∑
a1<···<ak

∏
i
F∼j

paiaj
(
1− paiaj

))1/2
,

where pij are the hypothesised edge probabilities.

Choices of F determines what is being tested.
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Test statistics

In practice, pij will be replaced by some estimates
p̂ij = p̂ij(Gn), which come from fitting a particular
random graph model.

Hence, we consider instead

ẐF (Gn) =

∑
a1<···<ak

∏
i
F∼j

(
Yaiaj − p̂aiaj

)
( ∑
a1<···<ak

∏
i
F∼j

p̂aiaj
(
1− p̂aiaj

))1/2
,
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Interpretation

Ẑ (Gn): Test total number of edges against expected number
of edges.

Ẑ (Gn): Test pairwise dependence; large pos. value →
increased simultaneous presence or absence of adjacent edges.

Ẑ (Gn): Large pos. values → increased simultaneous presence
triangles or “one on, two off” configurations; this means,
presence of one edge suppresses or encourages presence of
other two edges simultaneously.
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Simulation study
κ = stochastic block model with 4 groups.

Connection probabilities given by

K =


0.45 0.34 0.82 0.60
0.34 0.70 0.98 0.57
0.82 0.98 0.03 0.82
0.60 0.57 0.82 0.25


n = 200 vertices.

Reconstruction of community labels and estimation
of connection probabilities done via off the shelf
Variational EM algorithm, R package blockmodels.
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Simulation study

Result based on one realisation of the network.

Number of groups

1 2 3 4 5 6 7 8

Data simulated from 4× 4 stochastic block model

ẑ 0.00 0.01 0.00 0.17 0.08 −0.07 0.01 −0.02
ẑ 4.65 2.47 2.27 −0.57 −0.51 −0.73 0.16 −1.30
ẑ −18.57 −0.38 1.04 0.03 0.22 0.15 −0.23 −0.11
ẑ 57.36 2.43 0.77 −0.24 −0.07 −0.04 −0.33 −0.33
ẑ −5.39 2.31 2.62 −0.93 −0.56 −0.39 −0.65 −0.36
ẑ 1.90 2.42 1.55 1.29 0.27 0.83 1.61 0.14
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Hospital encounter network ‘rfid’
Contacts among patients and health care workers in a hospital unit in
Lyon over the course of four days in 2010.

75 participants consented to wear RFID sensors, which recorded when
any two of them were in face-to-face contact with each other during a
20-second interval of time.

Number of groups

1 2 3 4 5 6 7 8

Data simulated from 4× 4 stochastic block model

ẑ 0.00 −0.31 0.01 −0.33 0.05 −0.01 0.13 −0.07
ẑ 71.48 19.49 8.72 9.32 9.87 6.25 1.02 −0.15
ẑ 11.32 1.49 1.53 4.40 7.96 8.24 8.20 8.25
ẑ 136.27 30.38 22.25 17.06 13.43 13.15 12.31 12.44
ẑ 44.32 1.11 −1.74 −1.85 −0.41 0.50 −1.24 −1.32
ẑ 44.23 −3.36 4.55 5.87 7.85 2.97 −0.52 0.28
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Some Theoretical Properties
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MLE of connection probabilities

Consider k × k stochastic block model and assume
community labels are known.

Let p̂ij be the MLE estimator of the edge densities
between communities:

p̂ij =
#edges from i ’s community to j ’s community

size of i ’s community× size of j ’s community

For MLE, we always have ẑ = 0
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Behaviour of centred subgraph statistics

For fixed F with v(F ) vertices and e(F ) edges,

EẐF = O
(
nv(F )/2−2·⌈e(F )/2⌉) as n → ∞.

Worst case is 2-star: EẐ = O(n−1/2).

Li & R.: In the dense regime, the ẐF are close
to a multivariate Gaussian law.
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ẑ ẑ ẑ ẑ ẑ ẑ ẑ

Mean 0.00 -0.25 0.03 -0.02 0.06 -0.03 -0.03
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Spectral clustering + MLE
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Model

Core-periphery structure, four groups of vertices,
(two cores, two peripheries):

K =


0.8 0.5 0.1 0.1
0.5 0.1 0.1 0.1
0.1 0.1 0.8 0.5
0.1 0.1 0.5 0.1



We consider 3 regimes:
dense interm. sparse

K K/n0.3 K/n0.6
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Test statistic

Test statistic: χ2 = ẑ2 + ẑ2 + ẑ2 + ẑ2 + ẑ2

Under correct number of groups, perfect
classification and MLE estimates, χ2 is
approximately χ2

5 distributed.

Use this to calculate p-values and compare
distribution of the p-values against uniform
distribution on [0, 1].
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Correct classifications

Fraction of correctly classified labels by spectral
clustering.

n=200 n=400 n=800

dense interm. sparse dense interm. sparse dense interm. sparse

avg. cor.
classified

0.84 0.51 0.33 0.96 0.52 0.33 0.99 0.52 0.37
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Distribution of p-values

L1 distance between uniform distribution on [0, 1]
and empirical CDF of p-values

n=200 n=400 n=800

dense interm. sparse dense interm. sparse dense interm. sparse

labels and
K known

0.04 0.04 0.10 0.02 0.02 0.03 0.02 0.02 0.04

labels known
+ MLE

0.06 0.08 0.14 0.01 0.02 0.03 0.02 0.01 0.06

spect. clust.
+ MLE

1.00 0.98 0.53 1.00 1.00 0.77 0.88 1.00 0.90
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dense, n = 800, two group core-periphery structure

p
corr.

classified
ẑ ẑ ẑ ẑ ẑ ẑ ẑ

0.871 1.0000 0.46 -0.42 -0.77 0.37 0.97 1.01 0.24
0.000 0.9988 11.97 1.22 0.59 1.25 145.22 -0.97 1538.29
0.484 1.0000 0.66 0.47 -1.08 1.12 0.19 -0.05 1.84
0.000 0.9975 23.91 -0.61 -1.33 -1.96 277.36 -0.61 2932.38
0.852 1.0000 -0.38 -0.61 -0.28 -0.34 0.02 0.75 1.44
0.192 1.0000 -1.75 -1.70 0.97 1.26 1.02 -0.62 0.08
0.000 0.9988 11.39 -0.18 -0.66 0.71 133.22 0.58 1396.47
0.197 1.0000 -0.31 -1.52 -0.85 -1.78 -1.70 -0.40 -0.72
0.807 1.0000 1.28 0.28 -0.71 -0.26 -1.15 -0.24 -0.30
0.860 1.0000 0.07 -1.21 0.63 -0.74 -0.61 0.65 -0.24
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dense, n = 200, two group core-periphery structure

corr.
classified

ẑ ẑ ẑ ẑ ẑ ẑ ẑ

0.970 35.83 -0.00 6.03 -1.04 46.15 12.67 1203.28
0.900 95.38 -0.16 61.52 -6.92 125.62 108.41 2069.49
0.960 40.37 0.40 10.40 -4.73 70.59 15.50 1138.57
0.915 86.63 -1.49 50.49 -17.70 187.85 94.30 2021.23
0.890 100.44 -0.80 68.64 -12.83 205.23 131.99 2016.90
0.935 61.07 0.75 25.43 2.10 116.07 44.88 1508.06
0.960 35.28 0.72 7.40 -1.40 171.52 15.94 783.13
0.945 50.42 -2.16 15.09 -14.07 179.38 25.50 1168.27
0.920 77.78 -2.03 39.29 -16.84 57.96 87.04 1871.28
0.955 52.54 1.34 16.47 9.72 -104.89 30.93 1657.35
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Using ẑF for clustering

k χ2 spect. clust. χ2 subg. dens.

1 1,079,327 1,079,327
2 61,715 59,757
3 29,734 6,614
4 8,028 16.7
5 25,761 11.2
6 5,645 10.9
7 28,468 2.84
8 52,768 0.82
9 104,240 1.31
10 16,738 0.74

Correctly classified by spect. clustering: 83�

Correctly classified by centr. subg. densities: 96�
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Pros and cons
Pros:

• Summands of ZF are uncorrelated.

• If F ̸= F ′, then ZF and ZF ′ are uncorrelated.

• Covariance structure is very simple and can be easily
estimated.

• Can be use for actual statistical testing, e.g. goodness-of-fit.

• Can be used for clustering.

Cons:

• Not parameter-free; in practice, need to substitute κ(Ui ,Uj)
by p̂ij .

• Calculating ZF can be computationally more expensive than
calculating tF .

• Interpretation is not as straightforward as for tF .
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Thank You!
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