Common graphs with large chromatic number

Jan Volec

Czech Technical University in Prague

Joint work with D. Král' and F. Wei.

 $R(3) = 6 \Rightarrow \text{any } \frac{\text{RED}}{\text{BLUE}}$ col of $E(K_n)$ contains $\approx \frac{n^3}{20}$ mono- Δ

 $R(3) = 6 \Rightarrow \text{any } \operatorname{\mathsf{RED}}/\operatorname{\mathsf{BLUE}} \text{ col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-}\Delta$ Goodman's bound: $6\binom{n}{3} - 6 \left| \frac{n}{2} \cdot \left| \left(\frac{n-1}{2} \right)^2 \right| \right| \ge \frac{n(n-1)(n-5)}{4} \text{ mono-}\Delta$

 $R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-}\Delta$ Goodman's bound: $6\binom{n}{3} - 6\left\lfloor \frac{n}{2} \cdot \left\lfloor \left(\frac{n-1}{2}\right)^2 \right\rfloor \right\rfloor \ge \frac{n(n-1)(n-5)}{4} \text{ mono-}\Delta$ In general: $\forall \mathsf{R}/\mathsf{B} \text{ col of } E(K_n) \text{ has } \ge \frac{|Aut(H)|}{R(H)^{|V(H)|}} \cdot n^{|V(H)|} \text{ mono-}H$

 $R(3) = 6 \Rightarrow \text{any } \operatorname{\mathsf{RED}}/\operatorname{\mathsf{BLUE}} \text{ col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-}\Delta$ Goodman's bound: $6\binom{n}{3} - 6\left\lfloor \frac{n}{2} \cdot \left\lfloor \left(\frac{n-1}{2}\right)^2 \right\rfloor \right\rfloor \geq \frac{n(n-1)(n-5)}{4} \text{ mono-}\Delta$ In general: $\forall \operatorname{\mathsf{R}}/\operatorname{\mathsf{B}} \text{ col of } E(K_n) \text{ has } \geq \frac{|\operatorname{Aut}(H)|}{R(H)^{|V(H)|}} \cdot n^{|V(H)|} \text{ mono-}H$ $\#H \text{ in } G := \lfloor t : V(H) \rightarrow V(G) \text{ homomorphism } H \rightarrow G \rfloor$

 $R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-}\Delta$ Goodman's bound: $6\binom{n}{3} - 6\left\lfloor \frac{n}{2} \cdot \left\lfloor \left(\frac{n-1}{2}\right)^2 \right\rfloor \right\rfloor \ge \frac{n(n-1)(n-5)}{4} \text{ mono-}\Delta$ In general: $\forall \mathsf{R}/\mathsf{B} \text{ col of } E(K_n) \text{ has } \ge \frac{|Aut(H)|}{R(H)^{|V(H)|}} \cdot n^{|V(H)|} \text{ mono-}H$ $\#H \text{ in } G := \left\lfloor t : V(H) \rightarrow V(G) \text{ homomorphism } H \rightarrow G \right\rfloor$ mono $\#H \text{ in } \mathsf{R}/\mathsf{B} := \left(\#H \text{ in } \mathsf{RED} + \#H \text{ in } \mathsf{BLUE} \right) / v(G)^{v(H)}$

 $R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-}\Delta$ Goodman's bound: $6\binom{n}{3} - 6\left\lfloor \frac{n}{2} \cdot \left\lfloor \left(\frac{n-1}{2}\right)^2 \right\rfloor \right\rfloor \ge \frac{n(n-1)(n-5)}{4} \text{ mono-}\Delta$ In general: $\forall \mathsf{R}/\mathsf{B} \text{ col of } E(K_n) \text{ has } \ge \frac{|Aut(H)|}{R(H)^{|V(H)|}} \cdot n^{|V(H)|} \text{ mono-}H$ $\#H \text{ in } G := \left\lfloor t : V(H) \to V(G) \text{ homomorphism } H \to G \right\rfloor$ mono $\#H \text{ in } \mathsf{R}/\mathsf{B} := \left(\#H \text{ in } \mathsf{RED} + \#H \text{ in } \mathsf{BLUE} \right) / v(G)^{v(H)}$ Goodman: $\forall \mathsf{R}/\mathsf{B} : \text{ mono} \#\Delta \gtrsim \frac{1}{4}$

 $R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-}\Delta$ Goodman's bound: $6\binom{n}{3} - 6\left\lfloor \frac{n}{2} \cdot \left\lfloor \left(\frac{n-1}{2}\right)^2 \right\rfloor \right\rfloor \ge \frac{n(n-1)(n-5)}{4} \text{ mono-}\Delta$ In general: $\forall \mathsf{R}/\mathsf{B} \text{ col of } E(K_n) \text{ has } \ge \frac{|Aut(H)|}{R(H)^{|V(H)|}} \cdot n^{|V(H)|} \text{ mono-}H$ $\#H \text{ in } G := \left\lfloor t : V(H) \to V(G) \text{ homomorphism } H \to G \right\rfloor$ mono $\#H \text{ in } \mathsf{R}/\mathsf{B} := \left(\#H \text{ in } \mathsf{RED} + \#H \text{ in } \mathsf{BLUE} \right) / v(G)^{v(H)}$ Goodman: $\forall \mathsf{R}/\mathsf{B} : \text{ mono} \#\Delta \gtrsim \frac{1}{4} \approx \mathbb{E} [\text{mono} \#\Delta \text{ in random } \mathsf{R}/\mathsf{B}]$

 $R(3) = 6 \Rightarrow \text{any RED}/\text{BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-}\Delta$ Goodman's bound: $6\binom{n}{3} - 6\left\lfloor \frac{n}{2} \cdot \left\lfloor \left(\frac{n-1}{2}\right)^2 \right\rfloor \right\rfloor \ge \frac{n(n-1)(n-5)}{4} \text{ mono-}\Delta$ In general: $\forall R/B \text{ col of } E(K_n) \text{ has } \ge \frac{|Aut(H)|}{R(H)^{|V(H)|}} \cdot n^{|V(H)|} \text{ mono-}H$ $\#H \text{ in } G := \left\lfloor t : V(H) \rightarrow V(G) \text{ homomorphism } H \rightarrow G \right\rfloor$ mono $\#H \text{ in } R/B := \left(\#H \text{ in } \text{RED} + \#H \text{ in } \text{BLUE} \right) / v(G)^{v(H)}$ Goodman: $\forall R/B : \text{ mono} \#\Delta \gtrsim \frac{1}{4} \approx \mathbb{E} [\text{mono} \#\Delta \text{ in random } R/B]$ $\iff \forall \text{ graphon } W : t(\Delta, W) + t(\Delta, 1 - W) \ge 2 \cdot t(\Delta, \frac{1}{2}) = \frac{1}{4}$

 $R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-}\Delta$ Goodman's bound: $6\binom{n}{3} - 6\left\lfloor \frac{n}{2} \cdot \left\lfloor \left(\frac{n-1}{2}\right)^2 \right\rfloor \right\rfloor \ge \frac{n(n-1)(n-5)}{4} \text{ mono-}\Delta$ In general: $\forall \mathsf{R}/\mathsf{B} \text{ col of } E(K_n) \text{ has } \ge \frac{|Aut(H)|}{R(H)^{|V(H)|}} \cdot n^{|V(H)|} \text{ mono-}H$ $\#H \text{ in } G := \left\lfloor t : V(H) \rightarrow V(G) \text{ homomorphism } H \rightarrow G \right\rfloor$ $\text{mono}\#H \text{ in } \mathsf{R}/\mathsf{B} := \left(\#H \text{ in } \mathsf{RED} + \#H \text{ in } \mathsf{BLUE} \right) / v(G)^{v(H)}$ Goodman: $\forall \mathsf{R}/\mathsf{B} : \text{mono}\#\Delta \gtrsim \frac{1}{4} \approx \mathbb{E} \left[\text{mono}\#\Delta \text{ in random } \mathsf{R}/\mathsf{B} \right]$ $\iff \forall \text{ graphon } W : t(\Delta, W) + t(\Delta, 1 - W) \ge 2 \cdot t(\Delta, \frac{1}{2}) = \frac{1}{4}$

H is common $\equiv \forall W: t(H, W) + t(H, 1 - W) \geq 2t(H, \frac{1}{2}) = 2^{1-e(H)}$

 $R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-}\Delta$ Goodman's bound: $6\binom{n}{3} - 6\left\lfloor \frac{n}{2} \cdot \left\lfloor \left(\frac{n-1}{2}\right)^2 \right\rfloor \right\rfloor \geq \frac{n(n-1)(n-5)}{4} \text{ mono-}\Delta$ In general: $\forall R/B \text{ col of } E(K_n) \text{ has } \geq \frac{|Aut(H)|}{R(H)^{|V(H)|}} \cdot n^{|V(H)|} \text{ mono-}H$ $\#H \text{ in } G := \left\lfloor t : V(H) \rightarrow V(G) \text{ homomorphism } H \rightarrow G \right\rfloor$ $\text{mono}\#H \text{ in } R/B := \left(\#H \text{ in } \text{RED} + \#H \text{ in } \text{BLUE} \right) / v(G)^{v(H)}$ Goodman: $\forall R/B : \text{mono}\#\Delta \gtrsim \frac{1}{4} \approx \mathbb{E} [\text{mono}\#\Delta \text{ in random } R/B]$ $\iff \forall \text{ graphon } W : t(\Delta, W) + t(\Delta, 1 - W) \geq 2 \cdot t(\Delta, \frac{1}{2}) = \frac{1}{4}$

H is common $\equiv \forall W: t(H, W) + t(H, 1 - W) \geq 2t(H, \frac{1}{2}) = 2^{1-e(H)}$

Conjecture (Erdős '62): K_k is common for every k

 $R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-}\Delta$ Goodman's bound: $6\binom{n}{3} - 6\left\lfloor \frac{n}{2} \cdot \left\lfloor \left(\frac{n-1}{2}\right)^2 \right\rfloor \right\rfloor \geq \frac{n(n-1)(n-5)}{4} \text{ mono-}\Delta$ In general: $\forall R/B \text{ col of } E(K_n) \text{ has } \geq \frac{|Aut(H)|}{R(H)^{|V(H)|}} \cdot n^{|V(H)|} \text{ mono-}H$ $\#H \text{ in } G := \left\lfloor t : V(H) \rightarrow V(G) \text{ homomorphism } H \rightarrow G \right\rfloor$ $\text{mono}\#H \text{ in } R/B := \left(\#H \text{ in } \text{RED} + \#H \text{ in } \text{BLUE} \right) / v(G)^{v(H)}$ Goodman: $\forall R/B : \text{mono}\#\Delta \gtrsim \frac{1}{4} \approx \mathbb{E} [\text{mono}\#\Delta \text{ in random } R/B]$ $\iff \forall \text{ graphon } W : t(\Delta, W) + t(\Delta, 1 - W) \geq 2 \cdot t(\Delta, \frac{1}{2}) = \frac{1}{4}$

H is common $\equiv \forall W: t(H, W) + t(H, 1 - W) \geq 2t(H, \frac{1}{2}) = 2^{1-e(H)}$

Conjecture (Erdős '62): K_k is common for every kConjecture (Burr-Rosta '80): every graph H is common

Conjecture (Erdős '62): K_k is common for every kConjecture (Burr-Rosta '80): every graph H is common

Conjecture (Erdős '62): K_k is common for every kConjecture (Burr-Rosta '80): every graph H is common

NO, there are uncommon H

Conjecture (Erdős '62): K_k is common for every kConjecture (Burr-Rosta '80): every graph H is common

NO, there are uncommon HSidorenko ('89): Δ + pendant-edge Thomason ('89): $K_{\geq 4}$

Conjecture (Erdős '62): K_k is common for every kConjecture (Burr-Rosta '80): every graph H is common

NO, there are uncommon HSidorenko ('89): Δ + pendant-edge Thomason ('89): $K_{\geq 4}$

Jagger-Šťovíček-Thomason ('96): H contains $K_4 \Longrightarrow H$ uncommon

Conjecture (Erdős '62): K_k is common for every kConjecture (Burr-Rosta '80): every graph H is common

NO, there are uncommon H The Sidorenko ('89): Δ + pendant-edge Cyce Thomason ('89): $K_{\geq 4}$

There are some common H

Cycles, even-wheels, 5-wheel Sidorenko graphs ...

Jagger-Šťovíček-Thomason ('96): H contains $K_4 \Longrightarrow H$ uncommon

Conjecture (Erdős '62): K_k is common for every kConjecture (Burr-Rosta '80): every graph H is common

NO, there are uncommon HThere are some common HSidorenko ('89): Δ + pendant-edgeCycles, even-wheels, 5-wheelThomason ('89): $K_{\geq 4}$ Sidorenko graphs ...

Jagger-Šťovíček-Thomason ('96): H contains $K_4 \Longrightarrow H$ uncommon

Sidorenko graphs and commonness of bipartite graphs H Sidorenko $\equiv t(H, W) \ge t(H, p)^{e(H)} = p^{e(H)}$ where $p = \int W$ Sidorenko graphs and commonness of bipartite graphs H Sidorenko $\equiv t(H, W) \ge t(H, p)^{e(H)} = p^{e(H)}$ where $p = \int W$

• *H* is Sidorenko \implies *H* is common

H Sidorenko $\equiv t(H, W) \ge t(H, p)^{e(H)} = p^{e(H)}$ where $p = \int W$

- O *H* is Sidorenko \Longrightarrow *H* is common
- *H* is Sidorenko \implies *H* is biparite

H Sidorenko $\equiv t(H, W) \ge t(H, p)^{e(H)} = p^{e(H)}$ where $p = \int W$

• *H* is Sidorenko \implies *H* is common

• *H* is Sidorenko \implies *H* is biparite

(all known common bipartite H are also known to be Sidorenko)

H Sidorenko $\equiv t(H, W) \ge t(H, p)^{e(H)} = p^{e(H)}$ where $p = \int W$

• *H* is Sidorenko \implies *H* is common

• *H* is Sidorenko \implies *H* is biparite

(all known common bipartite H are also known to be Sidorenko)

Conjecture (Sidorenko '91): *H* is bipartite \implies *H* is Sidorenko?

H Sidorenko $\equiv t(H, W) \ge t(H, p)^{e(H)} = p^{e(H)}$ where $p = \int W$

O *H* is Sidorenko \Longrightarrow *H* is common

• *H* is Sidorenko \implies *H* is biparite (all known common bipartite *H* are also known to be Sidorenko)

Conjecture (Sidorenko '91): H is bipartite \implies H is Sidorenko? Known for trees, cycles, complete bipartite graphs, hypercubes & more... Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

H Sidorenko $\equiv t(H, W) \ge t(H, p)^{e(H)} = p^{e(H)}$ where $p = \int W$

O *H* is Sidorenko \Longrightarrow *H* is common

• *H* is Sidorenko \implies *H* is biparite (all known common bipartite *H* are also known to be Sidorenko)

Conjecture (Sidorenko '91): H is bipartite \implies H is Sidorenko? Known for trees, cycles, complete bipartite graphs, hypercubes & more... Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy... in general widely open conjecture, the smallest open H is $K_{5.5} - C_{10}$

H Sidorenko $\equiv t(H, W) \ge t(H, p)^{e(H)} = p^{e(H)}$ where $p = \int W$

O *H* is Sidorenko \Longrightarrow *H* is common

• *H* is Sidorenko \implies *H* is biparite (all known common bipartite *H* are also known to be Sidorenko)

Conjecture (Sidorenko '91): H is bipartite $\implies H$ is Sidorenko? Known for trees, cycles, complete bipartite graphs, hypercubes & more... Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

in general widely open conjecture, the smallest open H is $K_{5,5} - C_{10}$

H is locally Sidorenko instead of $p^{e(H)} = \min t(H, W) \forall W \text{ s.t.} \int W = p$, compare $p^{e(H)}$ to $\min t(H, W)$ only over *W* that are close to constant *p* (close in subgraph counts \equiv cut-distance)

H Sidorenko $\equiv t(H, W) \ge t(H, p)^{e(H)} = p^{e(H)}$ where $p = \int W$

O *H* is Sidorenko \Longrightarrow *H* is common

• *H* is Sidorenko \implies *H* is biparite (all known common bipartite *H* are also known to be Sidorenko)

Conjecture (Sidorenko '91): H is bipartite $\implies H$ is Sidorenko? Known for trees, cycles, complete bipartite graphs, hypercubes & more... Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

in general widely open conjecture, the smallest open H is $K_{5,5} - C_{10}$

H is locally Sidorenko instead of $p^{e(H)} = \min t(H, W) \forall W \text{ s.t.} \int W = p$, compare $p^{e(H)}$ to min t(H, W) only over *W* that are close to constant *p* (close in subgraph counts \equiv cut-distance) & bounded ℓ_{∞} -distance

H Sidorenko $\equiv t(H, W) \ge t(H, p)^{e(H)} = p^{e(H)}$ where $p = \int W$

O *H* is Sidorenko \Longrightarrow *H* is common

• *H* is Sidorenko \implies *H* is biparite (all known common bipartite *H* are also known to be Sidorenko)

Conjecture (Sidorenko '91): H is bipartite \implies H is Sidorenko? Known for trees, cycles, complete bipartite graphs, hypercubes & more... Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

in general widely open conjecture, the smallest open H is $K_{5,5} - C_{10}$

H is locally Sidorenko instead of $p^{e(H)} = \min t(H, W) \forall W \text{ s.t.} \int W = p$, compare $p^{e(H)}$ to $\min t(H, W)$ only over *W* that are close to constant *p* (close in subgraph counts \equiv cut-distance) & bounded ℓ_{∞} -distance

Fox-Wei ('17): H locally Sidorenko \iff the girth of H is even

Common graphs H with $\chi(H) > 3$ Jagger-Šťovíček-Thomason ('96): Is there any?

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel?

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5-wheel is common

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5-wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5-wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5-wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?

 $\forall F : girth(F) \ge 42 \exists N_0 \text{ s.t. } \forall m \ge n \ge N_0 \text{ and } \ell \approx 2n \rightarrow \text{common}$

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5-wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?

 $\frac{\forall F : girth(F) \ge 42 \exists N_0 \text{ s.t. } \forall m \ge n \ge N_0 \text{ and } \ell \approx 2n \rightarrow \text{ common}}{\text{Proof idea: if } (W, 1 - W) \text{ is FAR from the constant } 1/2, \text{ then}}$

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5-wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?

 $\frac{\forall F : girth(F) \ge 42 \exists N_0 \text{ s.t. } \forall m \ge n \ge N_0 \text{ and } \ell \approx 2n \rightarrow \text{common}}{\text{Proof idea: if } (W, 1 - W) \text{ is FAR from the constant } 1/2, \text{ then}}$ either find sparse spot S in (say) red \longrightarrow induct on S in blue

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5-wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?

 $\begin{array}{l} \displaystyle \frac{\forall F: \operatorname{girth}(\mathrm{F}) \geq 42 \ \exists N_0 \ \mathrm{s.t.} \ \forall m \geq n \geq N_0 \ \mathrm{and} \ \ell \approx 2n \rightarrow \operatorname{common} \\ \\ \displaystyle \overline{\mathsf{Proof} \ \mathrm{idea:} \ \mathrm{if} \ (W, \ 1 - W) \ \mathrm{is} \ \mathsf{FAR} \ \mathrm{from} \ \mathrm{the} \ \mathrm{constant} \ 1/2, \ \mathrm{then} \\ \\ \displaystyle \operatorname{either} \ \mathrm{find} \ \mathrm{sparse} \ \mathrm{spot} \ S \ \mathrm{in} \ (\mathrm{say}) \ \mathrm{red} \longrightarrow \ \mathrm{induct} \ \mathrm{on} \ S \ \mathrm{in} \ \mathrm{blue} \\ \\ \displaystyle \operatorname{or} \ \ \forall v \in [0, 1] \ \mathrm{is} \ \mathrm{in} \ \delta_0 > 0 \ \mathrm{of} \ H' \mathrm{s} \ \& \ \mathrm{use} \ \mathrm{boost} \ \mathrm{of} \ \# K_{m,n} \ \mathrm{by} \ \mathrm{non-random} \end{array}$

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5-wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?

 $\frac{\forall F : girth(F) \ge 42 \exists N_0 \text{ s.t. } \forall m \ge n \ge N_0 \text{ and } \ell \approx 2n \rightarrow \text{ common}}{\text{Proof idea: if } (W, 1 - W) \text{ is FAR from the constant } 1/2, \text{ then}}$ either find sparse spot S in (say) red \longrightarrow induct on S in blue or $\forall v \in [0, 1] \text{ is in } \delta_0 > 0 \text{ of } H$'s & use boost of $\# K_{m,n}$ by non-random When W (and also 1 - W) is CLOSE to the constant 1/2, then

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5-wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?

 $\begin{array}{l} \forall F: \operatorname{girth}(\mathrm{F}) \geq 42 \ \exists N_0 \ \mathrm{s.t.} \ \forall m \geq n \geq N_0 \ \mathrm{and} \ \ell \approx 2n \rightarrow \operatorname{common} \\ \hline \mathsf{Proof} \ \mathsf{idea:} \ \mathsf{if} \ (W, \ 1 - W) \ \mathsf{is} \ \mathsf{FAR} \ \mathsf{from} \ \mathsf{the} \ \mathsf{constant} \ 1/2, \ \mathsf{then} \\ \hline \mathsf{either} \ \mathsf{find} \ \mathsf{sparse} \ \mathsf{spot} \ S \ \mathsf{in} \ (\mathsf{say}) \ \mathsf{red} \longrightarrow \mathsf{induct} \ \mathsf{on} \ S \ \mathsf{in} \ \mathsf{blue} \\ \hline \mathsf{or} \ \ \forall v \in [0, 1] \ \mathsf{is} \ \mathsf{in} \ \delta_0 > 0 \ \mathsf{of} \ H's \ \& \ \mathsf{use} \ \mathsf{boost} \ \mathsf{of} \ \# K_{m,n} \ \mathsf{by} \ \mathsf{non-random} \end{array}$

When W (and also 1 - W) is CLOSE to the constant 1/2, then

• Girth of H is four so Fox-Wei local-Sidorenko does apply...

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5-wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?

 $\begin{array}{l} \displaystyle \frac{\forall F: \operatorname{girth}(\mathrm{F}) \geq 42 \; \exists N_0 \; \mathrm{s.t.} \; \forall m \geq n \geq N_0 \; \mathrm{and} \; \ell \approx 2n \rightarrow \operatorname{common} \\ \\ \displaystyle \overline{\mathsf{Proof} \; \mathsf{idea:} \; \mathsf{if} \; (\mathcal{W}, \; 1 - \mathcal{W}) \; \mathsf{is} \; \mathsf{FAR} \; \mathsf{from} \; \mathsf{the} \; \mathsf{constant} \; 1/2, \; \mathsf{then} \\ \\ \displaystyle \mathsf{either} \; \; \mathsf{find} \; \mathsf{sparse} \; \mathsf{spot} \; S \; \mathsf{in} \; (\mathsf{say}) \; \mathsf{red} \; \longrightarrow \; \mathsf{induct} \; \mathsf{on} \; S \; \mathsf{in} \; \mathsf{blue} \\ \\ \quad \mathsf{or} \; \; \forall v \in [0, 1] \; \mathsf{is} \; \mathsf{in} \; \delta_0 > 0 \; \mathsf{of} \; H' \mathsf{s} \; \& \; \mathsf{use} \; \mathsf{boost} \; \mathsf{of} \; \# K_{m,n} \; \mathsf{by} \; \mathsf{non-random} \end{array}$

When W (and also 1 - W) is CLOSE to the constant 1/2, then

- Girth of H is four so Fox-Wei local-Sidorenko does apply...
- ... however, we need control on $m, n, \ell \rightarrow$ restrict only to H_k

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

H is ℓ -common: \forall (W_1, \ldots, W_ℓ) s.t. $\sum W_i = 1$: $\sum t(H, W_i) \ge \ell^{1-e(H)}$

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

H is ℓ -common: \forall (W_1, \ldots, W_ℓ) s.t. $\sum W_i = 1$: $\sum t(H, W_i) \ge \ell^{1-e(H)}$

- O *H* not ℓ -common \Longrightarrow *H* not $(\ell + 1)$ -common
- if $\chi(H) \geq 3$, then $\exists \ell_0$ s.t. *H* is not ℓ_0 -common

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

H is ℓ -common: \forall (W_1, \ldots, W_ℓ) s.t. $\sum W_i = 1$: $\sum t(H, W_i) \ge \ell^{1-e(H)}$

- O *H* not ℓ -common \Longrightarrow *H* not $(\ell + 1)$ -common
- if $\chi(H) \geq 3$, then $\exists \ell_0$ s.t. *H* is not ℓ_0 -common
- H is Sidorenko \Longrightarrow H is ℓ -common for every ℓ

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

H is ℓ -common: \forall (W_1, \ldots, W_ℓ) s.t. $\sum W_i = 1$: $\sum t(H, W_i) \ge \ell^{1-e(H)}$

(•) *H* not ℓ -common \Longrightarrow *H* not $(\ell + 1)$ -common (•) if $\chi(H) \ge 3$, then $\exists \ell_0$ s.t. *H* is not ℓ_0 -common Thm: *H* is Sidorenko \iff *H* is ℓ -common for every ℓ Král', Noel, Norin, V., Wei ('22) (independently on Sidorenko conj.)

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

H is ℓ -common: \forall (W_1, \ldots, W_ℓ) s.t. $\sum W_i = 1$: $\sum t(H, W_i) \ge \ell^{1-e(H)}$

(H not ℓ -common \Longrightarrow H not $(\ell + 1)$ -common ($\chi(H) \ge 3$, then $\exists \ell_0$ s.t. H is not ℓ_0 -common Thm: H is Sidorenko \iff H is ℓ -common for every ℓ Král', Noel, Norin, V., Wei ('22) (independently on Sidorenko conj.) Theorem (KNNVW '22): $\forall \ell : \exists \ell$ -common H_ℓ with $\chi(H_\ell) = 3$

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

H is ℓ -common: \forall (W_1, \ldots, W_ℓ) s.t. $\sum W_i = 1$: $\sum t(H, W_i) \ge \ell^{1-e(H)}$

 ⊕ H not l-common ⇒ H not (l + 1)-common
⊕ if $\chi(H) \ge 3$, then $\exists l_0$ s.t. H is not l_0 -common
Thm: H is Sidorenko ⇔ H is l-common for every l
Král', Noel, Norin, V., Wei ('22) (independently on Sidorenko conj.)
Theorem (KNNVW '22): $\forall l : \exists l$ -common H_l with $\chi(H_l) = 3$ Our main result⁺: $\forall k, l : \exists l$ -common $H_{k,l}$ with $\chi(H_{k,l}) = k$

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

H is ℓ -common: \forall (W_1, \ldots, W_ℓ) s.t. $\sum W_i = 1$: $\sum t(H, W_i) \ge \ell^{1-e(H)}$

 ⊕ H not l-common ⇒ H not (l + 1)-common
⊕ if $\chi(H) \ge 3$, then $\exists l_0$ s.t. H is not l_0 -common
Thm: H is Sidorenko ⇔ H is l-common for every l
Král', Noel, Norin, V., Wei ('22) (independently on Sidorenko conj.)
Theorem (KNNVW '22): $\forall l : \exists l$ -common H_l with $\chi(H_l) = 3$ Our main result⁺: $\forall k, l : \exists l$ -common $H_{k,l}$ with $\chi(H_{k,l}) = k$

Is the graph $K_{5,5} - C_{10}$ common?

Our main result⁺: $\forall k, \ell$: $\exists \ell$ -common $H_{k,\ell}$ with $\chi(H_{k,\ell}) = k$

Our main result⁺: $\forall k, \ell : \exists \ell$ -common $H_{k,\ell}$ with $\chi(H_{k,\ell}) = k$

Theorem (Ko-Lee): $\exists \ell$ -common $H_{k,\ell,m}$ with $\chi = k$, connectivity m

Our main result⁺: $\forall k, \ell : \exists \ell$ -common $H_{k,\ell}$ with $\chi(H_{k,\ell}) = k$

Theorem (Ko-Lee): $\exists \ell$ -common $H_{k,\ell,m}$ with $\chi = k$, connectivity m

Open problem: \exists high- χ & high-girth & high-connectivity common *H*?

Our main result⁺: $\forall k, \ell : \exists \ell$ -common $H_{k,\ell}$ with $\chi(H_{k,\ell}) = k$

Theorem (Ko-Lee): $\exists \ell$ -common $H_{k,\ell,m}$ with $\chi = k$, connectivity m

Open problem: \exists high- χ & high-girth & high-connectivity common *H*?

Conclusion (2/2) Thank you for your attention!

Our main result⁺: $\forall k, \ell : \exists \ell$ -common $H_{k,\ell}$ with $\chi(H_{k,\ell}) = k$

Theorem (Ko-Lee): $\exists \ell$ -common $H_{k,\ell,m}$ with $\chi = k$, connectivity m

Open problem: \exists high- χ & high-girth & high-connectivity common *H*?