Common graphs with large chromatic number

Jan Volec

Czech Technical University in Prague

Joint work with D. Král’ and F. Wei.
Ramsey multiplicities / Common graphs

\[R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-\Delta} \]
Ramsey multiplicities / Common graphs

\[R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-\Delta} \]

Goodman’s bound: \[6\binom{n}{3} - 6 \left[\frac{n}{2} \cdot \left(\frac{n-1}{2} \right)^2 \right] \geq \frac{n(n-1)(n-5)}{4} \text{ mono-\Delta} \]
Ramsey multiplicities / Common graphs

\[R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-\Delta} \]

Goodman's bound: \[6(n^3) - 6 \left\lfloor \frac{n}{2} \cdot \left(\frac{n-1}{2} \right)^2 \right\rfloor \geq \frac{n(n-1)(n-5)}{4} \text{ mono-\Delta} \]

In general: \(\forall \) R/B col of \(E(K_n) \) has \(\geq \frac{|Aut(H)|}{R(H)|V(H)|} \cdot n|V(H)| \) mono-\(H \)
Ramsey multiplicities / Common graphs

\[R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-\Delta} \]

Goodman's bound: \[6\binom{n}{3} - 6 \left(\frac{n}{2} \cdot \left\lfloor \frac{n-1}{2} \right\rfloor \right) \geq \frac{n(n-1)(n-5)}{4} \text{ mono-\Delta} \]

In general: \(\forall\) R/B col of \(E(K_n)\) has \(\geq \frac{|\text{Aut}(H)|}{R(H)|V(H)|} \cdot n|V(H)|\) mono-\(H\)

\(\#H\text{ in } G := \left| t : V(H) \to V(G) \text{ homomorphism } H \to G \right|\)
Ramsey multiplicities / Common graphs

\[
R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-Δ}
\]

Goodman’s bound:

\[
6\binom{n}{3} - 6 \left[\frac{n}{2} \cdot \left(\frac{n-1}{2} \right)^2 \right] \geq \frac{n(n-1)(n-5)}{4} \text{ mono-Δ}
\]

In general:

\[
\forall \text{ R/B col of } E(K_n) \text{ has } \geq \frac{|\text{Aut}(H)|}{R(H)|V(H)|} \cdot n|V(H)| \text{ mono-H}
\]

\[\#H \text{ in } G := |t : V(H) \to V(G) \text{ homomorphism } H \to G|\]

\[\text{mono}\#H \text{ in } \text{R/B} := \left(\#H \text{ in RED } + \#H \text{ in BLUE } \right) / v(G)^{v(H)}\]
Ramsey multiplicities / Common graphs

\[R(3) = 6 \implies \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-\Delta} \]

Goodman’s bound: \[6 \binom{n}{3} - 6 \left[\frac{n}{2} \cdot \left(\frac{n-1}{2} \right)^2 \right] \geq \frac{n(n-1)(n-5)}{4} \text{ mono-\Delta} \]

In general: \(\forall \text{ R/B col of } E(K_n) \text{ has } \geq \frac{|\text{Aut}(H)|}{R(H)|V(H)|} \cdot n|V(H)| \text{ mono-H} \)

\#H in G := \(|t : V(H) \to V(G) \text{ homomorphism } H \to G| \)

\text{mono}\#H in R/B := (\#H in RED + \#H in BLUE) / \nu(G)^{\nu(H)}

Goodman: \(\forall \text{R/B: mono}\#\Delta \gtrsim \frac{1}{4} \)
Ramsey multiplicities / Common graphs

\[R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-} \Delta \]

Goodman’s bound: \[6 \binom{n}{3} - 6 \left\lfloor \frac{n}{2} \cdot \left\lfloor \left(\frac{n-1}{2} \right)^2 \right\rfloor \right\rfloor \geq \frac{n(n-1)(n-5)}{4} \text{ mono-} \Delta \]

In general: \(\forall \ R/B \ \text{col of } E(K_n) \text{ has } \geq \frac{|\text{Aut}(H)|}{R(H)|V(H)|} \cdot n|V(H)| \text{ mono-} H \)

\(\#H \text{ in } G := |t : V(H) \to V(G) \text{ homomorphism } H \to G| \)

\(\text{mono}\#H \text{ in } R/B := \left(\#H \text{ in RED} + \#H \text{ in BLUE} \right) / v(G)^{v(H)} \)

Goodman: \(\forall R/B: \text{mono}\#\Delta \gtrsim \frac{1}{4} \approx \mathbb{E}[\text{mono}\#\Delta \text{ in random } R/B] \)
Ramsey multiplicities / Common graphs

\[R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-} \Delta \]

Goodman’s bound:
\[6\binom{n}{3} - 6\left\lfloor \frac{n}{2} \cdot \left(\frac{n-1}{2}\right)^2 \right\rfloor \geq \frac{n(n-1)(n-5)}{4} \text{ mono-} \Delta \]

In general:
\[\forall \text{ R/B col of } E(K_n) \text{ has } \geq \frac{|\text{Aut}(H)|}{R(H)|V(H)|} \cdot n|V(H)| \text{ mono-} H \]

\[\#H \text{ in } G := \left| t : V(H) \rightarrow V(G) \text{ homomorphism } H \rightarrow G \right| \]

\[\text{mono}\#H \text{ in R/B} := \left(\#H \text{ in RED } + \#H \text{ in BLUE } \right) / \nu(G)^\nu(H) \]

Goodman:
\[\forall \text{R/B: mono}\#\Delta \gtrsim \frac{1}{4} \approx \mathbb{E}[\text{mono}\#\Delta \text{ in random R/B}] \]

\[\iff \forall \text{graphon } W: \ t(\Delta, W) + t(\Delta, 1 - W) \geq 2 \cdot t(\Delta, \frac{1}{2}) = \frac{1}{4} \]
Ramsey multiplicities / Common graphs

\[R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-} \Delta \]

Goodman’s bound:
\[6\binom{n}{3} - 6 \left[\frac{n}{2} \cdot \left(\frac{n-1}{2} \right)^2 \right] \geq \frac{n(n-1)(n-5)}{4} \text{ mono-} \Delta \]

In general:
\[\forall \text{ R/B col of } E(K_n) \text{ has } \geq \frac{|\text{Aut}(H)|}{R(H)|V(H)|} \cdot n|V(H)| \text{ mono-} H \]

\[
\#H \text{ in } G := \left| t : V(H) \rightarrow V(G) \text{ homomorphism } H \rightarrow G \right|
\]

\[
\text{mono}\#H \text{ in } \text{R/B} := \left(\#H \text{ in RED} + \#H \text{ in BLUE} \right) / \nu(G)^{\nu(H)}
\]

Goodman: \[\forall \text{R/B: mono}\#\Delta \gtrsim \frac{1}{4} \approx \mathbb{E}[\text{mono}\#\Delta \text{ in random R/B}] \]

\[\iff \forall \text{ graphon } W: t(\Delta, W) + t(\Delta, 1 - W) \geq 2 \cdot t(\Delta, \frac{1}{2}) = \frac{1}{4} \]

\[H \text{ is common } \equiv \forall W: t(H, W) + t(H, 1 - W) \geq 2t(H, \frac{1}{2}) = 2^{1-e(H)} \]
Ramsey multiplicities / Common graphs

\[R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{20} \text{ mono-\Delta} \]

Goodman’s bound: \[6\binom{n}{3} - 6 \left[\frac{n}{2} \cdot \left(\frac{n-1}{2} \right)^2 \right] \geq \frac{n(n-1)(n-5)}{4} \text{ mono-\Delta} \]

In general: \(\forall \text{ R/B col of } E(K_n) \) has \(\geq \frac{|\text{Aut}(H)|}{R(H)|V(H)|} \cdot n|V(H)| \text{ mono-H} \)

\(\#H \text{ in } G := |t : V(H) \rightarrow V(G) \text{ homomorphism } H \rightarrow G| \)

\(\text{mono}\#H \text{ in R/B} := \left(\#H \text{ in RED } + \#H \text{ in BLUE } \right) / V(G)^V(H) \)

Goodman: \(\forall \text{R/B: mono}\#\Delta \gtrsim \frac{1}{4} \approx \mathbb{E} [\text{mono}\#\Delta \text{ in random R/B}] \)

\[\iff \forall \text{ graphon } W: t(\Delta, W) + t(\Delta, 1 - W) \geq 2 \cdot t(\Delta, \frac{1}{2}) = \frac{1}{4} \]

\[H \text{ is common } \equiv \forall \text{ W: } t(H, W) + t(H, 1 - W) \geq 2t(H, \frac{1}{2}) = 2^{1-e(H)} \]

Conjecture (Erdős ’62): \(K_k \) is common for every \(k \)
Ramsey multiplicities / Common graphs

$R(3) = 6 \Rightarrow$ any RED/BLUE col of $E(K_n)$ contains $\approx \frac{n^3}{20}$ mono-Δ

Goodman’s bound: $6 \binom{n}{3} - 6 \left[\frac{n}{2} \cdot \left(\frac{n-1}{2} \right)^2 \right] \geq \frac{n(n-1)(n-5)}{4}$ mono-Δ

In general: \forall R/B col of $E(K_n)$ has $\geq \frac{|Aut(H)|}{R(H)|V(H)|} \cdot n|V(H)|$ mono-H

$\#H$ in $G := |t : V(H) \rightarrow V(G)$ homomorphism $H \rightarrow G|

\text{mono}\#H$ in R/B := ($\#H$ in RED + $\#H$ in BLUE) / $v(G)^{\nu(H)}$

Goodman: \forall R/B: $\text{mono}\#\Delta \gtrsim \frac{1}{4} \approx \mathbb{E}[\text{mono}\#\Delta \text{ in random R/B}]

\iff \forall$ graphon W: $t(\Delta, W) + t(\Delta, 1 - W) \geq 2 \cdot t(\Delta, \frac{1}{2}) = \frac{1}{4}$

H is common $\equiv \forall$ W: $t(H, W) + t(H, 1 - W) \geq 2t(H, \frac{1}{2}) = 2^{1-e(H)}$

Conjecture (Erdős ’62): K_k is common for every k

Conjecture (Burr-Rosta ’80): every graph H is common
Conjectures of Erdős and Burr-Rosta

Conjecture (Erdős ’62): K_k is common for every k
Conjecture (Burr-Rosta ’80): every graph H is common
Conjectures of Erdős and Burr-Rosta

Conjecture (Erdős ’62): K_k is common for every k
Conjecture (Burr-Rosta ’80): every graph H is common

NO, there are uncommon H
Conjectures of Erdős and Burr-Rosta

Conjecture (Erdős ’62): K_k is common for every k

Conjecture (Burr-Rosta ’80): every graph H is common

NO, there are uncommon H

Sidorenko (’89): $\Delta +$ pendant-edge
Thomason (’89): $K_{\geq 4}$
Conjectures of Erdős and Burr-Rosta

Conjecture (Erdős ’62): K_k is common for every k
Conjecture (Burr-Rosta ’80): every graph H is common

NO, there are uncommon H

Sidorenko (’89): $\Delta +$ pendant-edge
Thomason (’89): $K_{\geq 4}$

Jagger-Štovíček-Thomason (’96): H contains $K_4 \implies H$ uncommon
Conjectures of Erdős and Burr-Rosta

Conjecture (Erdős ’62): K_k is common for every k

Conjecture (Burr-Rosta ’80): every graph H is common

NO, there are uncommon H

Sidorenko (’89): $\Delta +$ pendant-edge

Thomason (’89): $K_{\geq 4}$

There are some common H

Cycles, even-wheels, 5-wheel

Sidorenko graphs . . .

Jagger-Šťovíček-Thomason (’96): H contains $K_4 \implies H$ uncommon
Conjectures of Erdős and Burr-Rosta

Conjecture (Erdős ’62): K_k is common for every k
Conjecture (Burr-Rosta ’80): every graph H is common

NO, there are uncommon H

Sidorenko (’89): $\Delta +$ pendant-edge
Thomason (’89): $K_{\geq 4}$

There are some common H

Cycles, even-wheels, 5-wheel
Sidorenko graphs . . .

Jagger-Šťovíček-Thomason (’96): H contains $K_4 \implies H$ uncommon
Sidorenko graphs and commonness of bipartite graphs

\[H \text{ Sidorenko} \equiv t(H, W) \geq t(H, p)^{e(H)} = p^{e(H)} \quad \text{where } p = \int W \]
Sidorenko graphs and commonness of bipartite graphs

\[H \text{ Sidorenko} \equiv t(H, W) \geq t(H, p)^{e(H)} = p^{e(H)} \quad \text{where } p = \int W \]

\[\heartsuit \quad H \text{ is Sidorenko} \implies H \text{ is common} \]
Sidorenko graphs and commonness of bipartite graphs

\[H \text{ Sidorenko} \equiv t(H, W) \geq t(H, p)^{e(H)} = p^{e(H)} \text{ where } p = \int W \]

- H is Sidorenko $\implies H$ is common
- H is Sidorenko $\implies H$ is bipartite
Sidorenko graphs and commonness of bipartite graphs

\[H \text{ Sidorenko } \equiv t(H, W) \geq t(H, p)^{e(H)} = p^{e(H)} \quad \text{where } p = \int W \]

- H is Sidorenko \implies H is common
- H is Sidorenko \implies H is biparite

(all known common bipartite H are also known to be Sidorenko)
Sidorenko graphs and commonness of bipartite graphs

\[H \text{ is Sidorenko } \equiv t(H, W) \geq t(H, p)^{e(H)} = p^{e(H)} \quad \text{where } p = \int W \]

\[\begin{align*}
\bigcirc & \quad H \text{ is Sidorenko } \implies H \text{ is common} \\
\bigcirc & \quad H \text{ is Sidorenko } \implies H \text{ is biparite} \\
& \quad (\text{all known common bipartite } H \text{ are also known to be Sidorenko}) \\
\end{align*} \]

Conjecture (Sidorenko '91): \(H \text{ is bipartite } \implies H \text{ is Sidorenko?} \)
Sidorenko graphs and commonness of bipartite graphs

\[H \text{ Sidorenko} \equiv t(H, W) \geq t(H, p)^{e(H)} = p^{e(H)} \quad \text{where } p = \int W \]

* H is Sidorenko \implies H is common
* H is Sidorenko \implies H is biparite

(all known common bipartite H are also known to be Sidorenko)

Conjecture (Sidorenko '91): H is bipartite \implies H is Sidorenko?

Known for trees, cycles, complete bipartite graphs, hypercubes & more...

Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...
Sidorenko graphs and commonness of bipartite graphs

\[
H \text{ Sidorenko } \equiv t(H, W) \geq t(H, p)^e(H) = p^e(H) \quad \text{where } p = \int W
\]

- \(H \) is Sidorenko \(\implies H \) is common
- \(H \) is Sidorenko \(\implies H \) is bipartite

(all known common bipartite \(H \) are also known to be Sidorenko)

Conjecture (Sidorenko '91): \(H \) is bipartite \(\implies H \) is Sidorenko?

Known for trees, cycles, complete bipartite graphs, hypercubes & more...

Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

in general widely open conjecture, the smallest open \(H \) is \(K_{5,5} - C_{10} \)
Sidorenko graphs and commonness of bipartite graphs

\[H \text{ Sidorenko} \equiv t(H, W) \geq t(H, p)^{e(H)} = p^{e(H)} \quad \text{where } p = \int W \]

- \(H \text{ is Sidorenko} \implies H \text{ is common} \)
- \(H \text{ is Sidorenko} \implies H \text{ is bipartite} \)

(all known common bipartite \(H \) are also known to be Sidorenko)

Conjecture (Sidorenko '91): \(H \text{ is bipartite} \implies H \text{ is Sidorenko?} \)

Known for trees, cycles, complete bipartite graphs, hypercubes & more...

Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

in general widely open conjecture, the smallest open \(H \) is \(K_{5,5} - C_{10} \)

\[H \text{ is locally Sidorenko instead of } p^{e(H)} = \min t(H, W) \ \forall W \text{ s.t.} \int W = p, \]

compare \(p^{e(H)} \) to \(\min t(H, W) \) only over \(W \) that are close to constant \(p \)

(close in subgraph counts \equiv \text{cut-distance})
Sidorenko graphs and commonness of bipartite graphs

\[H \text{ Sidorenko} \equiv t(H, W) \geq t(H, p)^{e(H)} = p^{e(H)} \quad \text{where} \quad p = \int W \]

- If \(H \) is Sidorenko, then \(H \) is common.
- If \(H \) is Sidorenko, then \(H \) is bipartite.

(all known common bipartite \(H \) are also known to be Sidorenko)

Conjecture (Sidorenko '91): \(H \) is bipartite \(\implies \) \(H \) is Sidorenko?

Known for trees, cycles, complete bipartite graphs, hypercubes & more...

Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

in general widely open conjecture, the smallest open \(H \) is \(K_{5,5} - C_{10} \)

\(H \) is locally Sidorenko instead of \(p^{e(H)} = \min t(H, W) \forall W \text{ s.t.} \int W = p \),
compare \(p^{e(H)} \) to \(\min t(H, W) \) only over \(W \) that are close to constant \(p \)
(close in subgraph counts \(\equiv \) cut-distance) & bounded \(l_{\infty} \)-distance
Sidorenko graphs and commonness of bipartite graphs

H Sidorenko $\equiv t(H, W) \geq t(H, p)^{e(H)} = p^{e(H)}$ where $p = \int W$

$\bigcirc H$ is Sidorenko $\implies H$ is common

$\bigcirc H$ is Sidorenko $\implies H$ is biparite

(all known common bipartite H are also known to be Sidorenko)

Conjecture (Sidorenko '91): H is bipartite $\implies H$ is Sidorenko?

Known for trees, cycles, complete bipartite graphs, hypercubes & more...

Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

in general widely open conjecture, the smallest open H is $K_{5,5} - C_{10}$

H is locally Sidorenko instead of $p^{e(H)} = \min t(H, W) \forall W$ s.t.$\int W = p$, compare $p^{e(H)}$ to $\min t(H, W)$ only over W that are close to constant p (close in subgraph counts \equiv cut-distance) & bounded ℓ_∞-distance

Fox-Wei ('17): H locally Sidorenko \iff the girth of H is even
Common graphs H with $\chi(H) > 3$

Jagger-Štovíček-Thomason ('96): Is there any?
Common graphs H with $\chi(H) > 3$

Jagger-Šťovíček-Thomason (’96): Is there any? What about the 5-wheel?
Common graphs H with $\chi(H) > 3$

Jagger-Štovíček-Thomason (’96): Is there any? What about the 5-wheel?
Hatami, Hladký, Král’, Norin, Razborov (’12): YES, 5-wheel is common
Common graphs H with $\chi(H) > 3$

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel?
Hatami, Hladký, Král’, Norin, Razborov ('12): YES, 5-wheel is common
Hatami, Hladký, Král’, Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?
Common graphs H with $\chi(H) > 3$

Jagger-Štovíček-Thomason ('96): Is there any? What about the 5-wheel?
Hatami, Hladký, Král’, Norin, Razborov ('12): YES, 5-wheel is common
Hatami, Hladký, Král’, Norin, Razborov ('12), Conlon, Fox, Sudakov ('15):
Do there exist common graphs of all chromatic numbers?

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$
Common graphs H with $\chi(H) > 3$

Jagger-Štovíček-Thomason ('96): Is there any? What about the 5-wheel?
Hatami, Hladký, Král’, Norin, Razborov ('12): YES, 5-wheel is common
Hatami, Hladký, Král’, Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

$\forall F : \text{girth}(F) \geq 42 \ \exists N_0 \ s.t. \ \forall m \geq n \geq N_0 \ \text{and} \ \ell \approx 2n \rightarrow \text{common}$
Common graphs H with $\chi(H) > 3$

Jagger-Štovíček-Thomason ('96): Is there any? What about the 5-wheel?
Hatami, Hladký, Král’, Norin, Razborov ('12): YES, 5-wheel is common
Hatami, Hladký, Král’, Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

$\forall F : \text{girth}(F) \geq 42 \ \exists N_0 \text{ s.t. } \forall m \geq n \geq N_0$ and $\ell \approx 2n \rightarrow$ common

Proof idea: if $(W, 1 - W)$ is FAR from the constant $1/2$, then
Common graphs H with $\chi(H) > 3$

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel?
Hatami, Hladký, Král’, Norin, Razborov ('12): YES, 5-wheel is common
Hatami, Hladký, Král’, Norin, Razborov ('12), Conlon, Fox, Sudakov ('15):
Do there exist common graphs of all chromatic numbers?

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

$\forall F : \text{girth}(F) \geq 42 \exists N_0$ s.t. $\forall m \geq n \geq N_0$ and $\ell \approx 2n \rightarrow \text{common}$

Proof idea: if $(W, 1 - W)$ is FAR from the constant $1/2$, then

either find sparse spot S in (say) red \rightarrow induct on S in blue
Common graphs H with $\chi(H) > 3$

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel?
Hatami, Hladký, Král’, Norin, Razborov ('12): YES, 5-wheel is common
Hatami, Hladký, Král’, Norin, Razborov ('12), Conlon, Fox, Sudakov ('15):
Do there exist common graphs of all chromatic numbers?

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

$\forall F : \text{girth}(F) \geq 42 \ \exists N_0 \text{ s.t. } \forall m \geq n \geq N_0 \text{ and } \ell \approx 2n \rightarrow \text{common}$

Proof idea: if $(\mathcal{W}, 1 - \mathcal{W})$ is FAR from the constant $1/2$, then

either find sparse spot S in (say) red \rightarrow induct on S in blue

or $\forall v \in [0,1]$ is in $\delta_0 > 0$ of H's & use boost of $\#K_{m,n}$ by non-random
Common graphs H with $\chi(H) > 3$

Jagger-Štovíček-Thomason ('96): Is there any? What about the 5-wheel?
Hatami, Hladký, Král’, Norin, Razborov ('12): YES, 5-wheel is common
Hatami, Hladký, Král’, Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

$\forall F : \text{girth}(F) \geq 42 \ \exists N_0 \text{ s.t. } \forall m \geq n \geq N_0 \text{ and } \ell \approx 2n \rightarrow \text{common}$

Proof idea: if $(W, 1 - W)$ is FAR from the constant $1/2$, then

either find sparse spot S in (say) red \rightarrow induct on S in blue

or $\forall v \in [0, 1]$ is in $\delta_0 > 0$ of H’s & use boost of $\#K_{m,n}$ by non-random

When W (and also $1 - W$) is CLOSE to the constant $1/2$, then
Common graphs H with $\chi(H) > 3$

Jagger-Štovíček-Thomason ('96): Is there any? What about the 5-wheel?
Hatami, Hladký, Král’, Norin, Razborov ('12): YES, 5-wheel is common
Hatami, Hladký, Král’, Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

$\forall F : \text{girth}(F) \geq 42 \exists N_0 \text{ s.t. } \forall m \geq n \geq N_0 \text{ and } \ell \approx 2n \rightarrow \text{common}$

Proof idea: if $(W, 1 - W)$ is FAR from the constant $1/2$, then

either find sparse spot S in (say) red \longrightarrow induct on S in blue

or $\forall \nu \in [0, 1]$ is in $\delta_0 > 0$ of H’s & use boost of $\#K_{m,n}$ by non-random

When W (and also $1 - W$) is CLOSE to the constant $1/2$, then

- Girth of H is four so Fox-Wei local-Sidorenko does apply…
Common graphs H with $\chi(H) > 3$

Jagger-Šťovíček-Thomason ('96): Is there any? What about the 5-wheel?
Hatami, Hladký, Král’, Norin, Razborov ('12): YES, 5-wheel is common
Hatami, Hladký, Král’, Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

$\forall F : \text{girth}(F) \geq 42 \ \exists N_0 \text{ s.t. } \forall m \geq n \geq N_0 \text{ and } \ell \approx 2n \rightarrow \text{common}

Proof idea: if $(W, 1 - W)$ is FAR from the constant $1/2$, then
- either find sparse spot S in (say) red \rightarrow induct on S in blue
- or $\forall v \in [0,1]$ is in $\delta_0 > 0$ of H’s & use boost of $\#K_{m,n}$ by non-random

When W (and also $1 - W$) is CLOSE to the constant $1/2$, then
- Girth of H is four so Fox-Wei local-Sidorenko does apply. . .
- . . .however, we need control on $m, n, \ell \rightarrow$ restrict only to H_k
Conclusion (1/2)

Our main result: \(\forall k : \exists \) common graph \(H_k \) with \(\chi(H_k) = k \)
Conclusion (1/2)

Our main result: \(\forall k : \exists \) common graph \(H_k \) with \(\chi(H_k) = k \)

\[
\begin{array}{c}
K_{m,n} \hspace{2cm} (\ell - 1)\text{-edge path} \hspace{2cm} girth \geq 42 \\
\hline
F \hspace{2cm} 12\text{-edge path} \hspace{2cm} C_4
\end{array}
\]

\(H \) is \(\ell \)-common: \(\forall (W_1, \ldots, W_\ell) \text{ s.t. } \sum W_i = 1: \sum t(H, W_i) \geq \ell^{1-e(H)} \)
Conclusion (1/2)

Our main result: $\forall k : \exists$ common graph H_k with $\chi(H_k) = k$

H is ℓ-common: $\forall (W_1, \ldots, W_\ell)$ s.t. $\sum W_i = 1$: $\sum t(H, W_i) \geq \ell^{1-e(H)}$

- H not ℓ-common \implies H not $(\ell + 1)$-common
- if $\chi(H) \geq 3$, then $\exists \ell_0$ s.t. H is not ℓ_0-common
Conclusion (1/2)

Our main result: \(\forall k : \exists \text{ common graph } H_k \text{ with } \chi(H_k) = k \)

\[K_{m,n} \rightarrow (\ell - 1)\text{-edge path} \rightarrow F \rightarrow 12\text{-edge path} \rightarrow C_4 \]

girth \(\geq 42 \)

\(H \) is \(\ell \)-common: \(\forall (W_1, \ldots, W_\ell) \text{ s.t. } \sum W_i = 1: \sum t(H, W_i) \geq \ell^{1 - e(H)} \)

- \(H \) not \(\ell \)-common \(\implies H \) not \((\ell + 1)\)-common
- \(H \) not \(\ell \)-common \(\implies H \) not \(\ell_0 \)-common
- \(H \) is Sidorenko \(\implies H \) is \(\ell \)-common for every \(\ell \)
Conclusion (1/2)

Our main result: \(\forall k : \exists \) common graph \(H_k \) with \(\chi(H_k) = k \)

\[K_{m,n} \quad \text{(\(\ell - 1 \)-edge path)} \quad F \quad \text{(girth } \geq 42) \quad C_4 \quad \text{(12-edge path)} \]

\(H \) is \(\ell \)-common: \(\forall (W_1, \ldots, W_\ell) \text{ s.t. } \sum W_i = 1: \sum t(H, W_i) \geq \ell^{1-e(H)} \)

\(\includegraphics[width=0.5\textwidth]{graphic.png} \)

- \(H \) not \(\ell \)-common \(\implies H \) not \((\ell + 1) \)-common
- if \(\chi(H) \geq 3 \), then \(\exists \ell_0 \) s.t. \(H \) is not \(\ell_0 \)-common

Thm: \(H \) is Sidorenko \(\iff H \) is \(\ell \)-common for every \(\ell \)

Král’, Noel, Norin, V., Wei (’22) (independently on Sidorenko conj.)
Conclusion (1/2)

Our main result: \(\forall k : \exists \) common graph \(H_k \) with \(\chi(H_k) = k \)

\[K_{m,n} \quad \text{--} \quad \text{girth } \geq 42 \quad \text{--} \quad F \quad \text{--} \quad C_4 \]

\((\ell - 1) \)-edge path

12-edge path

\(H \) is \(\ell \)-common: \(\forall (W_1, \ldots, W_\ell) \) s.t. \(\sum W_i = 1: \sum t(H, W_i) \geq \ell^{1-e(H)} \)

\(H \) not \(\ell \)-common \(\implies \) \(H \) not \((\ell + 1) \)-common

\(\) if \(\chi(H) \geq 3 \), then \(\exists \ell_0 \) s.t. \(H \) is not \(\ell_0 \)-common

Thm: \(H \) is Sidorenko \(\iff \) \(H \) is \(\ell \)-common for every \(\ell \)

Král’, Noel, Norin, V., Wei (’22) (independently on Sidorenko conj.)

Theorem (KNNVW ’22): \(\forall \ell : \exists \) \(\ell \)-common \(H_\ell \) with \(\chi(H_\ell) = 3 \)
Conclusion (1/2)

Our main result: \(\forall k : \exists \text{ common graph } H_k \text{ with } \chi(H_k) = k \)

\[K_{m,n} \quad \cdots \quad (\ell - 1)\text{-edge path} \quad F \quad \text{girth } \geq 42 \quad C_4 \quad \text{12-edge path} \]

\(H \) is \(\ell \)-common: \(\forall (W_1, \ldots, W_\ell) \text{ s.t. } \sum W_i = 1: \sum t(H, W_i) \geq \ell^{1 - e(H)} \)

\(\blacklozenge \) \(H \) not \(\ell \)-common \(\implies \ H \) not \((\ell + 1) \)-common

\(\blacklozenge \) if \(\chi(H) \geq 3, \text{ then } \exists \ell_0 \text{ s.t. } H \) is not \(\ell_0 \)-common

Thm: \(H \) is Sidorenko \(\iff \) \(H \) is \(\ell \)-common for every \(\ell \)

Král’, Noel, Norin, V., Wei (’22) (independently on Sidorenko conj.)

Theorem (KNNVW ’22): \(\forall \ell : \exists \ell \text{-common } H_\ell \text{ with } \chi(H_\ell) = 3 \)

Our main result\(^+\): \(\forall k, \ell : \exists \ell \text{-common } H_{k,\ell} \text{ with } \chi(H_{k,\ell}) = k \)
Conclusion (1/2)

Our main result: \(\forall k : \exists \) common graph \(H_k \) with \(\chi(H_k) = k \)

\[\begin{array}{c}
\begin{array}{c}
K_{m,n} \\
\vdots \\
C_4
\end{array}
\end{array} \]

\(girth \geq 42 \)

\((\ell - 1)\)-edge path

\(F \)

\(12\)-edge path

\[\begin{array}{c}
\begin{array}{c}
H \text{ is } \ell\text{-common: } \forall (W_1, \ldots, W_\ell) \text{ s.t. } \sum W_i = 1: \sum t(H, W_i) \geq \ell^{1 - e(H)} \\
\text{Ø } H \text{ not } \ell\text{-common } \implies H \text{ not } (\ell + 1)\text{-common}
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
\text{Ø } \text{if } \chi(H) \geq 3, \text{ then } \exists \ell_0 \text{ s.t. } H \text{ is not } \ell_0\text{-common}
\end{array}
\end{array} \]

Thm: \(H \) is Sidorenko \(\iff \) \(H \) is \(\ell\)-common for every \(\ell \)

Král’, Noel, Norin, V., Wei (’22) (independently on Sidorenko conj.)

Theorem (KNNVW ’22): \(\forall \ell : \exists \) \(\ell\)-common \(H_\ell \) with \(\chi(H_\ell) = 3 \)

Our main result\(^+\): \(\forall k, \ell : \exists \) \(\ell\)-common \(H_{k,\ell} \) with \(\chi(H_{k,\ell}) = k \)

Is the graph \(K_{5,5} - C_{10} \) common?
Conclusion (2/2)

Our main result\(^+\): \(\forall k, \ell : \exists \ell\)-common \(H_{k,\ell}\) with \(\chi(H_{k,\ell}) = k\)

Theorem (Ko-Lee): \(\exists \ell\)-common \(H_{k,\ell, m}\) with \(\chi = k\), connectivity \(m\)

Open problem: \(\exists\) high-\(\chi\) & high-girth & high-connectivity common \(H\)?
Conclusion (2/2)

Our main result$: \forall k, \ell : \exists \ell\text{-common } H_{k,\ell} \text{ with } \chi(H_{k,\ell}) = k$

\[K_{m,n} \xrightarrow{\text{(}$\ell - 1\text{)}\text{-edge path}} F \xrightarrow{\text{girth } \geq 42} \xrightarrow{\text{12-edge path}} C_4\]

Theorem (Ko-Lee): $\exists \ell\text{-common } H_{k,\ell,m} \text{ with } \chi = k, \text{ connectivity } m$
Conclusion (2/2)

Our main result: \(\forall k, \ell : \exists \ell\text{-common } H_{k,\ell} \text{ with } \chi(H_{k,\ell}) = k \)

Theorem (Ko-Lee): \(\exists \ell\text{-common } H_{k,\ell,m} \text{ with } \chi = k, \text{ connectivity } m \)

Open problem: \(\exists \text{ high-}\chi \text{ & high-girth & high-connectivity common } H? \)
Conclusion (2/2)

Our main result: \(\forall k, \ell : \exists \ell\text{-common } H_{k,\ell} \text{ with } \chi(H_{k,\ell}) = k \)

\[K_{m,n} \longrightarrow (\ell - 1)\text{-edge path} \longrightarrow F \longrightarrow 12\text{-edge path} \longrightarrow C_4 \]

Theorem (Ko-Lee): \(\exists \ell\text{-common } H_{k,\ell,m} \text{ with } \chi = k, \text{ connectivity } m \)

Open problem: \(\exists \text{ high-} \chi \text{ & high-girth & high-connectivity common } H? \)
Our main result$^+$: $\forall k, \ell : \exists \ell$-common $H_{k,\ell}$ with $\chi(H_{k,\ell}) = k$

Theorem (Ko-Lee): $\exists \ell$-common $H_{k,\ell,m}$ with $\chi = k$, connectivity m

Open problem: \exists high-χ & high-girth & high-connectivity common H?