Common graphs with large chromatic number

Jan Volec
Czech Technical University in Prague

Joint work with D. Král' and F. Wei.

Ramsey multiplicities / Common graphs

$$
R(3)=6 \Rightarrow \text { any RED/BLUE col of } E\left(K_{n}\right) \text { contains } \approx \frac{n^{3}}{20} \text { mono- } \Delta
$$

Ramsey multiplicities / Common graphs

$R(3)=6 \Rightarrow$ any RED/BLUE col of $E\left(K_{n}\right)$ contains $\approx \frac{n^{3}}{20}$ mono- Δ
Goodman's bound: $6\binom{n}{3}-6\left\lfloor\frac{n}{2} \cdot\left\lfloor\left(\frac{n-1}{2}\right)^{2}\right\rfloor\right\rfloor \geq \frac{n(n-1)(n-5)}{4}$ mono- Δ

Ramsey multiplicities / Common graphs

$R(3)=6 \Rightarrow$ any RED/BLUE col of $E\left(K_{n}\right)$ contains $\approx \frac{n^{3}}{20}$ mono- Δ
Goodman's bound: $6\binom{n}{3}-6\left\lfloor\frac{n}{2} \cdot\left\lfloor\left(\frac{n-1}{2}\right)^{2}\right\rfloor\right\rfloor \geq \frac{n(n-1)(n-5)}{4}$ mono- Δ
In general: $\forall R / B$ col of $E\left(K_{n}\right)$ has $\geq \frac{|A u t(H)|}{R(H)|V(H)|} \cdot n^{|V(H)|}$ mono- H

Ramsey multiplicities / Common graphs

$R(3)=6 \Rightarrow$ any RED/BLUE col of $E\left(K_{n}\right)$ contains $\approx \frac{n^{3}}{20}$ mono- Δ Goodman's bound: $6\binom{n}{3}-6\left\lfloor\frac{n}{2} \cdot\left\lfloor\left(\frac{n-1}{2}\right)^{2}\right\rfloor\right\rfloor \geq \frac{n(n-1)(n-5)}{4}$ mono- Δ In general: $\forall R / B$ col of $E\left(K_{n}\right)$ has $\geq \frac{|A u t(H)|}{R(H)|V(H)|} \cdot n^{|V(H)|}$ mono- H $\# H$ in $G:=\mid t: V(H) \rightarrow V(G)$ homomorphism $H \rightarrow G \mid$

Ramsey multiplicities / Common graphs

$R(3)=6 \Rightarrow$ any RED/BLUE col of $E\left(K_{n}\right)$ contains $\approx \frac{n^{3}}{20}$ mono- Δ Goodman's bound: $6\binom{n}{3}-6\left\lfloor\frac{n}{2} \cdot\left\lfloor\left(\frac{n-1}{2}\right)^{2}\right\rfloor\right\rfloor \geq \frac{n(n-1)(n-5)}{4}$ mono- Δ In general: $\forall \mathrm{R} / \mathrm{B}$ col of $E\left(K_{n}\right)$ has $\geq \frac{|A u t(H)|}{R(H)|V(H)|} \cdot n^{|V(H)|}$ mono- H $\# H$ in $G:=\mid t: V(H) \rightarrow V(G)$ homomorphism $H \rightarrow G \mid$ mono\#H in R/B $:=(\# H$ in RED $+\# H$ in BLUE $) / v(G)^{v(H)}$

Ramsey multiplicities / Common graphs

$R(3)=6 \Rightarrow$ any RED/BLUE col of $E\left(K_{n}\right)$ contains $\approx \frac{n^{3}}{20}$ mono- Δ Goodman's bound: $6\binom{n}{3}-6\left\lfloor\frac{n}{2} \cdot\left\lfloor\left(\frac{n-1}{2}\right)^{2}\right\rfloor\right\rfloor \geq \frac{n(n-1)(n-5)}{4}$ mono- Δ In general: $\forall \mathrm{R} / \mathrm{B}$ col of $E\left(K_{n}\right)$ has $\geq \frac{|A u t(H)|}{R(H)|V(H)|} \cdot n^{|V(H)|}$ mono- H $\# H$ in $G:=\mid t: V(H) \rightarrow V(G)$ homomorphism $H \rightarrow G \mid$ mono\#H in R/B $:=(\# H$ in RED $+\# H$ in BLUE $) / v(G)^{v(H)}$
Goodman: $\forall R / B$: mono\# $\Delta \gtrsim \frac{1}{4}$

Ramsey multiplicities / Common graphs

$R(3)=6 \Rightarrow$ any RED/BLUE col of $E\left(K_{n}\right)$ contains $\approx \frac{n^{3}}{20}$ mono- Δ Goodman's bound: $6\binom{n}{3}-6\left\lfloor\frac{n}{2} \cdot\left\lfloor\left(\frac{n-1}{2}\right)^{2}\right\rfloor\right\rfloor \geq \frac{n(n-1)(n-5)}{4}$ mono- Δ In general: $\forall \mathrm{R} / \mathrm{B}$ col of $E\left(K_{n}\right)$ has $\geq \frac{|A u t(H)|}{R(H)|V(H)|} \cdot n^{|V(H)|}$ mono- H \#H in $G:=\mid t: V(H) \rightarrow V(G)$ homomorphism $H \rightarrow G \mid$ mono\#H in R/B $:=(\# H$ in RED $+\# H$ in BLUE $) / v(G)^{v(H)}$
Goodman: $\forall R / B$: mono\# $\Delta \gtrsim \frac{1}{4} \approx \mathbb{E}[$ mono $\# \Delta$ in random $R / B]$

Ramsey multiplicities / Common graphs

$R(3)=6 \Rightarrow$ any RED/BLUE col of $E\left(K_{n}\right)$ contains $\approx \frac{n^{3}}{20}$ mono- Δ Goodman's bound: $6\binom{n}{3}-6\left\lfloor\frac{n}{2} \cdot\left\lfloor\left(\frac{n-1}{2}\right)^{2}\right\rfloor\right\rfloor \geq \frac{n(n-1)(n-5)}{4}$ mono- Δ In general: $\forall \mathrm{R} / \mathrm{B}$ col of $E\left(K_{n}\right)$ has $\geq \frac{|A u t(H)|}{R(H) V(H) \mid} \cdot n^{|V(H)|}$ mono- H $\# H$ in $G:=\mid t: V(H) \rightarrow V(G)$ homomorphism $H \rightarrow G \mid$ mono\#H in R/B $:=(\# H$ in RED $+\# H$ in BLUE $) / v(G)^{v(H)}$
Goodman: $\forall R / B$: mono\# $\Delta \gtrsim \frac{1}{4} \approx \mathbb{E}[$ mono\# Δ in random $R / B]$ $\Longleftrightarrow \forall$ graphon $W: t(\Delta, W)+t(\Delta, 1-W) \geq 2 \cdot t\left(\Delta, \frac{1}{2}\right)=\frac{1}{4}$

Ramsey multiplicities / Common graphs

$R(3)=6 \Rightarrow$ any RED/BLUE col of $E\left(K_{n}\right)$ contains $\approx \frac{n^{3}}{20}$ mono- Δ Goodman's bound: $6\binom{n}{3}-6\left\lfloor\frac{n}{2} \cdot\left\lfloor\left(\frac{n-1}{2}\right)^{2}\right\rfloor\right\rfloor \geq \frac{n(n-1)(n-5)}{4}$ mono- Δ In general: $\forall \mathrm{R} / \mathrm{B}$ col of $E\left(K_{n}\right)$ has $\geq \frac{|A u t(H)|}{R(H) V(H) \mid} \cdot n^{|V(H)|}$ mono- H $\# H$ in $G:=\mid t: V(H) \rightarrow V(G)$ homomorphism $H \rightarrow G \mid$ mono\#H in R/B $:=(\# H$ in RED $+\# H$ in BLUE $) / v(G)^{v(H)}$ Goodman: $\forall R / B$: mono\# $\Delta \gtrsim \frac{1}{4} \approx \mathbb{E}[$ mono $\# \Delta$ in random $R / B]$ $\Longleftrightarrow \forall$ graphon $W: t(\Delta, W)+t(\Delta, 1-W) \geq 2 \cdot t\left(\Delta, \frac{1}{2}\right)=\frac{1}{4}$
H is common $\equiv \forall W: t(H, W)+t(H, 1-W) \geq 2 t\left(H, \frac{1}{2}\right)=2^{1-e(H)}$

Ramsey multiplicities / Common graphs

$R(3)=6 \Rightarrow$ any RED/BLUE col of $E\left(K_{n}\right)$ contains $\approx \frac{n^{3}}{20}$ mono- Δ Goodman's bound: $6\binom{n}{3}-6\left\lfloor\frac{n}{2} \cdot\left\lfloor\left(\frac{n-1}{2}\right)^{2}\right\rfloor\right\rfloor \geq \frac{n(n-1)(n-5)}{4}$ mono- Δ In general: $\forall \mathrm{R} / \mathrm{B}$ col of $E\left(K_{n}\right)$ has $\geq \frac{|A u t(H)|}{R(H) V(H) \mid} \cdot n^{|V(H)|}$ mono- H $\# H$ in $G:=\mid t: V(H) \rightarrow V(G)$ homomorphism $H \rightarrow G \mid$ mono\#H in R/B $:=(\# H$ in RED $+\# H$ in BLUE $) / v(G)^{v(H)}$
Goodman: $\forall R / B$: mono\# $\Delta \gtrsim \frac{1}{4} \approx \mathbb{E}[$ mono\# Δ in random $R / B]$ $\Longleftrightarrow \forall$ graphon $W: t(\Delta, W)+t(\Delta, 1-W) \geq 2 \cdot t\left(\Delta, \frac{1}{2}\right)=\frac{1}{4}$
H is common $\equiv \forall W: t(H, W)+t(H, 1-W) \geq 2 t\left(H, \frac{1}{2}\right)=2^{1-e(H)}$
Conjecture (Erdos '62): K_{k} is common for every k

Ramsey multiplicities / Common graphs

$R(3)=6 \Rightarrow$ any RED/BLUE col of $E\left(K_{n}\right)$ contains $\approx \frac{n^{3}}{20}$ mono- Δ Goodman's bound: $6\binom{n}{3}-6\left\lfloor\frac{n}{2} \cdot\left\lfloor\left(\frac{n-1}{2}\right)^{2}\right\rfloor\right\rfloor \geq \frac{n(n-1)(n-5)}{4}$ mono- Δ In general: $\forall \mathrm{R} / \mathrm{B}$ col of $E\left(K_{n}\right)$ has $\geq \frac{|A u t(H)|}{R(H)|V(H)|} \cdot n^{|V(H)|}$ mono- H $\# H$ in $G:=\mid t: V(H) \rightarrow V(G)$ homomorphism $H \rightarrow G \mid$ mono\#H in R/B $:=(\# H$ in RED $+\# H$ in BLUE $) / v(G)^{v(H)}$
Goodman: $\forall R / B$: mono\# $\Delta \gtrsim \frac{1}{4} \approx \mathbb{E}[$ mono\# Δ in random $R / B]$ $\Longleftrightarrow \forall$ graphon $W: t(\Delta, W)+t(\Delta, 1-W) \geq 2 \cdot t\left(\Delta, \frac{1}{2}\right)=\frac{1}{4}$
H is common $\equiv \forall W: t(H, W)+t(H, 1-W) \geq 2 t\left(H, \frac{1}{2}\right)=2^{1-e(H)}$
Conjecture (Erdős '62): K_{k} is common for every k
Conjecture (Burr-Rosta '80): every graph H is common

Conjectures of Erdős and Burr-Rosta

Conjecture (Erdős '62): K_{k} is common for every k
Conjecture (Burr-Rosta '80): every graph H is common

Conjectures of Erdős and Burr-Rosta

Conjecture (Erdős '62): K_{k} is common for every k
Conjecture (Burr-Rosta '80): every graph H is common
NO, there are uncommon H

Conjectures of Erdős and Burr-Rosta

Conjecture (Erdős '62): K_{k} is common for every k
Conjecture (Burr-Rosta '80): every graph H is common
NO, there are uncommon H
Sidorenko ('89): $\Delta+$ pendant-edge Thomason ('89): $K_{\geq 4}$

Conjectures of Erdős and Burr-Rosta

Conjecture (Erdős '62): K_{k} is common for every k Conjecture (Burr-Rosta '80): every graph H is common

NO, there are uncommon H
Sidorenko ('89): $\Delta+$ pendant-edge
Thomason ('89): $K_{\geq 4}$
Jagger-Š̌̌ovíček-Thomason ('96): H contains $K_{4} \Longrightarrow H$ uncommon

Conjectures of Erdős and Burr-Rosta

Conjecture (Erdős '62): K_{k} is common for every k Conjecture (Burr-Rosta '80): every graph H is common

NO, there are uncommon H
Sidorenko ('89): $\Delta+$ pendant-edge Thomason ('89): $K_{\geq 4}$

There are some common H
Cycles, even-wheels, 5-wheel Sidorenko graphs

Jagger-Š̌̌ovíček-Thomason ('96): H contains $K_{4} \Longrightarrow H$ uncommon

Conjectures of Erdős and Burr-Rosta

Conjecture (Erdős '62): K_{k} is common for every k Conjecture (Burr-Rosta '80): every graph H is common

NO, there are uncommon H
Sidorenko ('89): $\Delta+$ pendant-edge Thomason ('89): $K_{\geq 4}$

There are some common H
Cycles, even-wheels, 5-wheel Sidorenko graphs ...

Jagger-Š̌̌ovíček-Thomason ('96): H contains $K_{4} \Longrightarrow H$ uncommon

Sidorenko graphs and commonness of bipartite graphs
H Sidorenko $\equiv t(H, W) \geq t(H, p)^{e(H)}=p^{e(H)} \quad$ where $p=\int W$

Sidorenko graphs and commonness of bipartite graphs
H Sidorenko $\equiv t(H, W) \geq t(H, p)^{e(H)}=p^{e(H)} \quad$ where $p=\int W$
(H is Sidorenko $\Longrightarrow H$ is common

Sidorenko graphs and commonness of bipartite graphs
H Sidorenko $\equiv t(H, W) \geq t(H, p)^{e(H)}=p^{e(H)} \quad$ where $p=\int W$
(C) H is Sidorenko $\Longrightarrow H$ is common
(H is Sidorenko $\Longrightarrow H$ is biparite

Sidorenko graphs and commonness of bipartite graphs

H Sidorenko $\equiv t(H, W) \geq t(H, p)^{e(H)}=p^{e(H)} \quad$ where $p=\int W$
(H is Sidorenko $\Longrightarrow H$ is common
(H is Sidorenko $\Longrightarrow H$ is biparite
(all known common bipartite H are also known to be Sidorenko)

Sidorenko graphs and commonness of bipartite graphs

H Sidorenko $\equiv t(H, W) \geq t(H, p)^{e(H)}=p^{e(H)} \quad$ where $p=\int W$
(0) H is Sidorenko $\Longrightarrow H$ is common
(H is Sidorenko $\Longrightarrow H$ is biparite
(all known common bipartite H are also known to be Sidorenko)
Conjecture (Sidorenko '91): H is bipartite $\Longrightarrow H$ is Sidorenko?

Sidorenko graphs and commonness of bipartite graphs

H Sidorenko $\equiv t(H, W) \geq t(H, p)^{e(H)}=p^{e(H)} \quad$ where $p=\int W$
(0) H is Sidorenko $\Longrightarrow H$ is common
(H is Sidorenko $\Longrightarrow H$ is biparite
(all known common bipartite H are also known to be Sidorenko)
Conjecture (Sidorenko '91): H is bipartite $\Longrightarrow H$ is Sidorenko?
Known for trees, cycles, complete bipartite graphs, hypercubes \& more. . .
Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

Sidorenko graphs and commonness of bipartite graphs

H Sidorenko $\equiv t(H, W) \geq t(H, p)^{e(H)}=p^{e(H)} \quad$ where $p=\int W$
(0) H is Sidorenko $\Longrightarrow H$ is common
(H is Sidorenko $\Longrightarrow H$ is biparite
(all known common bipartite H are also known to be Sidorenko)
Conjecture (Sidorenko '91): H is bipartite $\Longrightarrow H$ is Sidorenko?
Known for trees, cycles, complete bipartite graphs, hypercubes \& more. . .
Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...
in general widely open conjecture, the smallest open H is $K_{5,5}-C_{10}$

Sidorenko graphs and commonness of bipartite graphs

H Sidorenko $\equiv t(H, W) \geq t(H, p)^{e(H)}=p^{e(H)} \quad$ where $p=\int W$
(0) H is Sidorenko $\Longrightarrow H$ is common
(H is Sidorenko $\Longrightarrow H$ is biparite
(all known common bipartite H are also known to be Sidorenko)
Conjecture (Sidorenko '91): H is bipartite $\Longrightarrow H$ is Sidorenko?
Known for trees, cycles, complete bipartite graphs, hypercubes \& more. . .
Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...
in general widely open conjecture, the smallest open H is $K_{5,5}-C_{10}$
H is locally Sidorenko instead of $p^{e(H)}=\min t(H, W) \forall W$ s.t. $\int W=p$, compare $p^{e(H)}$ to $\min t(H, W)$ only over W that are close to constant p (close in subgraph counts \equiv cut-distance)

Sidorenko graphs and commonness of bipartite graphs

H Sidorenko $\equiv t(H, W) \geq t(H, p)^{e(H)}=p^{e(H)} \quad$ where $p=\int W$
(0) H is Sidorenko $\Longrightarrow H$ is common
(H is Sidorenko $\Longrightarrow H$ is biparite
(all known common bipartite H are also known to be Sidorenko)
Conjecture (Sidorenko '91): H is bipartite $\Longrightarrow H$ is Sidorenko?
Known for trees, cycles, complete bipartite graphs, hypercubes \& more. . .
Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...
in general widely open conjecture, the smallest open H is $K_{5,5}-C_{10}$
H is locally Sidorenko instead of $p^{e(H)}=\min t(H, W) \forall W$ s.t. $\int W=p$, compare $p^{e(H)}$ to $\min t(H, W)$ only over W that are close to constant p (close in subgraph counts \equiv cut-distance) $\&$ bounded ℓ_{∞}-distance

Sidorenko graphs and commonness of bipartite graphs

H Sidorenko $\equiv t(H, W) \geq t(H, p)^{e(H)}=p^{e(H)} \quad$ where $p=\int W$
(0) H is Sidorenko $\Longrightarrow H$ is common
(H is Sidorenko $\Longrightarrow H$ is biparite
(all known common bipartite H are also known to be Sidorenko)
Conjecture (Sidorenko '91): H is bipartite $\Longrightarrow H$ is Sidorenko? Known for trees, cycles, complete bipartite graphs, hypercubes \& more. . . Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy... in general widely open conjecture, the smallest open H is $K_{5,5}-C_{10}$
H is locally Sidorenko instead of $p^{e(H)}=\min t(H, W) \forall W$ s.t. $\int W=p$, compare $p^{e(H)}$ to $\min t(H, W)$ only over W that are close to constant p (close in subgraph counts \equiv cut-distance) $\&$ bounded ℓ_{∞}-distance

Fox-Wei ('17): H locally Sidorenko \Longleftrightarrow the girth of H is even

Common graphs H with $\chi(H)>3$

Jagger-Šťovíček-Thomason ('96): Is there any?

Common graphs H with $\chi(H)>3$

Jagger-Šťovičcek-Thomason ('96): Is there any? What about the 5 -wheel?

Common graphs H with $\chi(H)>3$

Jagger-Š̌̌oviček-Thomason ('96): Is there any? What about the 5 -wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5-wheel is common

Common graphs H with $\chi(H)>3$

Jagger-Š̌̌oviček-Thomason ('96): Is there any? What about the 5 -wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5-wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15):
Do there exist common graphs of all chromatic numbers?

Common graphs H with $\chi(H)>3$

Jagger-Šťoviček-Thomason ('96): Is there any? What about the 5 -wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5 -wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15):
Do there exist common graphs of all chromatic numbers?
Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

Common graphs H with $\chi(H)>3$

Jagger-Šťovičck-Thomason ('96): Is there any? What about the 5 -wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5 -wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?
Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

$\forall F: \operatorname{girth}(\mathrm{F}) \geq 42 \exists N_{0}$ s.t. $\forall m \geq n \geq N_{0}$ and $\ell \approx 2 n \rightarrow$ common

Common graphs H with $\chi(H)>3$

Jagger-Š̌̌ovíček-Thomason ('96): Is there any? What about the 5 -wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5 -wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?
Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

$\forall F: \operatorname{girth}(\mathrm{F}) \geq 42 \exists N_{0}$ s.t. $\forall m \geq n \geq N_{0}$ and $\ell \approx 2 n \rightarrow$ common
Proof idea: if $(W, 1-W)$ is FAR from the constant $1 / 2$, then

Common graphs H with $\chi(H)>3$

Jagger-Š̌̌ovíček-Thomason ('96): Is there any? What about the 5 -wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5 -wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?
Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

$\forall F: \operatorname{girth}(\mathrm{F}) \geq 42 \exists N_{0}$ s.t. $\forall m \geq n \geq N_{0}$ and $\ell \approx 2 n \rightarrow$ common
Proof idea: if $(W, 1-W)$ is FAR from the constant $1 / 2$, then either find sparse spot S in (say) red \longrightarrow induct on S in blue

Common graphs H with $\chi(H)>3$

Jagger-Šťovičce-Thomason ('96): Is there any? What about the 5 -wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5 -wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?
Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

$\forall F: \operatorname{girth}(F) \geq 42 \exists N_{0}$ s.t. $\forall m \geq n \geq N_{0}$ and $\ell \approx 2 n \rightarrow$ common
Proof idea: if $(W, 1-W)$ is FAR from the constant $1 / 2$, then either find sparse spot S in (say) red \longrightarrow induct on S in blue
or $\forall v \in[0,1]$ is in $\delta_{0}>0$ of H 's \& use boost of $\# K_{m, n}$ by non-random

Common graphs H with $\chi(H)>3$

Jagger-Šťovičce-Thomason ('96): Is there any? What about the 5 -wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5 -wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?
Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

$\forall F: \operatorname{girth}(F) \geq 42 \exists N_{0}$ s.t. $\forall m \geq n \geq N_{0}$ and $\ell \approx 2 n \rightarrow$ common
Proof idea: if $(W, 1-W)$ is FAR from the constant $1 / 2$, then either find sparse spot S in (say) red \longrightarrow induct on S in blue
or $\forall v \in[0,1]$ is in $\delta_{0}>0$ of H 's \& use boost of $\# K_{m, n}$ by non-random
When W (and also $1-W$) is CLOSE to the constant $1 / 2$, then

Common graphs H with $\chi(H)>3$

Jagger-Šťovičce-Thomason ('96): Is there any? What about the 5 -wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5 -wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?
Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

$\forall F: \operatorname{girth}(\mathrm{F}) \geq 42 \exists N_{0}$ s.t. $\forall m \geq n \geq N_{0}$ and $\ell \approx 2 n \rightarrow$ common
Proof idea: if $(W, 1-W)$ is FAR from the constant $1 / 2$, then either find sparse spot S in (say) red \longrightarrow induct on S in blue
or $\forall v \in[0,1]$ is in $\delta_{0}>0$ of H 's \& use boost of $\# K_{m, n}$ by non-random
When W (and also $1-W$) is CLOSE to the constant $1 / 2$, then

- Girth of H is four so Fox-Wei local-Sidorenko does apply...

Common graphs H with $\chi(H)>3$

Jagger-Š̌̌oviček-Thomason ('96): Is there any? What about the 5 -wheel? Hatami, Hladký, Král', Norin, Razborov ('12): YES, 5 -wheel is common Hatami, Hladký, Král', Norin, Razborov ('12), Conlon, Fox, Sudakov ('15): Do there exist common graphs of all chromatic numbers?
Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

$\forall F: \operatorname{girth}(\mathrm{F}) \geq 42 \exists N_{0}$ s.t. $\forall m \geq n \geq N_{0}$ and $\ell \approx 2 n \rightarrow$ common
Proof idea: if $(W, 1-W)$ is FAR from the constant $1 / 2$, then either find sparse spot S in (say) red \longrightarrow induct on S in blue
or $\forall v \in[0,1]$ is in $\delta_{0}>0$ of H 's \& use boost of $\# K_{m, n}$ by non-random
When W (and also $1-W$) is CLOSE to the constant $1 / 2$, then

- Girth of H is four so Fox-Wei local-Sidorenko does apply...
- ... however, we need control on $m, n, \ell \rightarrow$ restrict only to H_{k}

Conclusion (1/2)

Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

Conclusion (1/2)

Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

H is ℓ-common: $\forall\left(W_{1}, \ldots, W_{\ell}\right)$ s.t. $\sum W_{i}=1: \sum t\left(H, W_{i}\right) \geq \ell^{1-e(H)}$

Conclusion (1/2)

Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

H is ℓ-common: $\forall\left(W_{1}, \ldots, W_{\ell}\right)$ s.t. $\sum W_{i}=1: \sum t\left(H, W_{i}\right) \geq \ell^{1-e(H)}$
(0) H not ℓ-common $\Longrightarrow H$ not $(\ell+1)$-common
(if $\chi(H) \geq 3$, then $\exists \ell_{0}$ s.t. H is not ℓ_{0}-common

Conclusion (1/2)

Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

H is ℓ-common: $\forall\left(W_{1}, \ldots, W_{\ell}\right)$ s.t. $\sum W_{i}=1: \sum t\left(H, W_{i}\right) \geq \ell^{1-e(H)}$
(c) H not ℓ-common $\Longrightarrow H$ not $(\ell+1)$-common
(if $\chi(H) \geq 3$, then $\exists \ell_{0}$ s.t. H is not ℓ_{0}-common
(H is Sidorenko $\Longrightarrow H$ is ℓ-common for every ℓ

Conclusion (1/2)

Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

H is ℓ-common: $\forall\left(W_{1}, \ldots, W_{\ell}\right)$ s.t. $\sum W_{i}=1: \sum t\left(H, W_{i}\right) \geq \ell^{1-e(H)}$
(C) H not ℓ-common $\Longrightarrow H$ not $(\ell+1)$-common
(if $\chi(H) \geq 3$, then $\exists \ell_{0}$ s.t. H is not ℓ_{0}-common
Thm: H is Sidorenko $\Longleftrightarrow H$ is ℓ-common for every ℓ
Král', Noel, Norin, V., Wei ('22) (independently on Sidorenko conj.)

Conclusion (1/2)

Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

H is ℓ-common: $\forall\left(W_{1}, \ldots, W_{\ell}\right)$ s.t. $\sum W_{i}=1: \sum t\left(H, W_{i}\right) \geq \ell^{1-e(H)}$
(0) H not ℓ-common $\Longrightarrow H$ not $(\ell+1)$-common
(if $\chi(H) \geq 3$, then $\exists \ell_{0}$ s.t. H is not ℓ_{0}-common
Thm: H is Sidorenko $\Longleftrightarrow H$ is ℓ-common for every ℓ
Král', Noel, Norin, V., Wei ('22) (independently on Sidorenko conj.)
Theorem (KNNVW '22): $\forall \ell: \exists \ell$-common H_{ℓ} with $\chi\left(H_{\ell}\right)=3$

Conclusion (1/2)

Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

H is ℓ-common: $\forall\left(W_{1}, \ldots, W_{\ell}\right)$ s.t. $\sum W_{i}=1: \sum t\left(H, W_{i}\right) \geq \ell^{1-e(H)}$
(0) H not ℓ-common $\Longrightarrow H$ not $(\ell+1)$-common
(if $\chi(H) \geq 3$, then $\exists \ell_{0}$ s.t. H is not ℓ_{0}-common
Thm: H is Sidorenko $\Longleftrightarrow H$ is ℓ-common for every ℓ
Král', Noel, Norin, V., Wei ('22) (independently on Sidorenko conj.)
Theorem (KNNVW '22): $\forall \ell: \exists \ell$-common H_{ℓ} with $\chi\left(H_{\ell}\right)=3$
Our main result ${ }^{+}: \forall k, \ell: \exists \ell$-common $H_{k, \ell}$ with $\chi\left(H_{k, \ell}\right)=k$

Conclusion (1/2)

Our main result: $\forall k: \exists$ common graph H_{k} with $\chi\left(H_{k}\right)=k$

H is ℓ-common: $\forall\left(W_{1}, \ldots, W_{\ell}\right)$ s.t. $\sum W_{i}=1: \sum t\left(H, W_{i}\right) \geq \ell^{1-e(H)}$
(C) H not ℓ-common $\Longrightarrow H$ not $(\ell+1)$-common
(if $\chi(H) \geq 3$, then $\exists \ell_{0}$ s.t. H is not ℓ_{0}-common
Thm: H is Sidorenko $\Longleftrightarrow H$ is ℓ-common for every ℓ
Král', Noel, Norin, V., Wei ('22) (independently on Sidorenko conj.)
Theorem (KNNVW '22): $\forall \ell: \exists \ell$-common H_{ℓ} with $\chi\left(H_{\ell}\right)=3$
Our main result ${ }^{+}: \forall k, \ell: \exists \ell$-common $H_{k, \ell}$ with $\chi\left(H_{k, \ell}\right)=k$
Is the graph $K_{5,5}-C_{10}$ common?

Conclusion (2/2)

Our main result ${ }^{+}: \forall k, \ell: \exists \ell$-common $H_{k, \ell}$ with $\chi\left(H_{k, \ell}\right)=k$

Conclusion (2/2)

Our main result ${ }^{+}: \forall k, \ell: \exists \ell$-common $H_{k, \ell}$ with $\chi\left(H_{k, \ell}\right)=k$

Theorem (Ko-Lee): $\exists \ell$-common $H_{k, \ell, m}$ with $\chi=k$, connectivity m

Conclusion (2/2)

Our main result ${ }^{+}: \forall k, \ell: \exists \ell$-common $H_{k, \ell}$ with $\chi\left(H_{k, \ell}\right)=k$

Theorem (Ko-Lee): $\exists \ell$-common $H_{k, \ell, m}$ with $\chi=k$, connectivity m
Open problem: \exists high- χ \& high-girth \& high-connectivity common H ?

Conclusion (2/2)

Our main result ${ }^{+}: \forall k, \ell: \exists \ell$-common $H_{k, \ell}$ with $\chi\left(H_{k, \ell}\right)=k$

Theorem (Ko-Lee): $\exists \ell$-common $H_{k, \ell, m}$ with $\chi=k$, connectivity m
Open problem: \exists high- χ \& high-girth \& high-connectivity common H ?

Conclusion (2/2) Thank you for your attention!

Our main result ${ }^{+}: \forall k, \ell: \exists \ell$-common $H_{k, \ell}$ with $\chi\left(H_{k, \ell}\right)=k$

Theorem (Ko-Lee): $\exists \ell$-common $H_{k, \ell, m}$ with $\chi=k$, connectivity m
Open problem: \exists high- χ \& high-girth \& high-connectivity common H ?

