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Ramsey multiplicities / Common graphs

R(3) = 6 ⇒ any RED/BLUE col of E (Kn) contains ≈ n3

20 mono-∆

Goodman’s bound: 6
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)2⌋⌋ ≥ n(n−1)(n−5)
4 mono-∆

In general: ∀ R/B col of E (Kn) has ≥ |Aut(H)|
R(H)|V (H)| · n|V (H)| mono-H

#H in G :=
∣∣t : V (H) → V (G ) homomorphism H → G

∣∣
mono#H in R/B :=

(
#H in RED + #H in BLUE

) /
v(G )v(H)

Goodman: ∀R/B: mono#∆ ≳ 1
4 ≈ E [mono#∆ in random R/B]

⇐⇒ ∀ graphon W : t(∆,W ) + t(∆, 1−W ) ≥ 2 · t(∆, 12) =
1
4

H is common ≡ ∀ W : t(H,W ) + t(H, 1−W ) ≥ 2t(H, 12) = 21−e(H)

Conjecture (Erdős ’62): Kk is common for every k

Conjecture (Burr-Rosta ’80): every graph H is common
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Conjectures of Erdős and Burr-Rosta

Conjecture (Erdős ’62): Kk is common for every k
Conjecture (Burr-Rosta ’80): every graph H is common

NO, there are uncommon H

Sidorenko (’89): ∆ + pendant-edge
Thomason (’89): K≥4

There are some common H

Cycles, even-wheels, 5-wheel
Sidorenko graphs . . .

Jagger-Šťov́ıček-Thomason (’96): H contains K4 =⇒ H uncommon
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Sidorenko graphs and commonness of bipartite graphs

H Sidorenko ≡ t(H,W ) ≥ t(H, p)e(H) = pe(H) where p =
∫
W

H is Sidorenko =⇒ H is common

H is Sidorenko =⇒ H is biparite
(all known common bipartite H are also known to be Sidorenko)

Conjecture (Sidorenko ’91): H is bipartite =⇒ H is Sidorenko?

Known for trees, cycles, complete bipartite graphs, hypercubes & more. . .

Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy. . .

in general widely open conjecture, the smallest open H is K5,5 − C10

H is locally Sidorenko instead of pe(H) = min t(H,W ) ∀W s.t.
∫
W = p,

compare pe(H) to min t(H,W ) only over W that are close to constant p

(close in subgraph counts ≡ cut-distance) & bounded ℓ∞-distance

Fox-Wei (’17): H locally Sidorenko ⇐⇒ the girth of H is even
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Conjecture (Sidorenko ’91): H is bipartite =⇒ H is Sidorenko?

Known for trees, cycles, complete bipartite graphs, hypercubes & more. . .

Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy. . .

in general widely open conjecture, the smallest open H is K5,5 − C10

H is locally Sidorenko instead of pe(H) = min t(H,W ) ∀W s.t.
∫
W = p,

compare pe(H) to min t(H,W ) only over W that are close to constant p

(close in subgraph counts ≡ cut-distance) & bounded ℓ∞-distance

Fox-Wei (’17): H locally Sidorenko ⇐⇒ the girth of H is even



Common graphs H with χ(H) > 3

Jagger-Šťov́ıček-Thomason (’96): Is there any?

What about the 5-wheel?

Hatami, Hladký, Král’, Norin, Razborov (’12): YES, 5-wheel is common

Hatami, Hladký, Král’, Norin, Razborov (’12), Conlon, Fox, Sudakov (’15):
Do there exist common graphs of all chromatic numbers?

Our main result: ∀k : ∃ common graph Hk with χ(Hk) = k

Km,n
C4

F

girth ≥ 42

12-edge path(`− 1)-edge path

∀F : girth(F) ≥ 42 ∃N0 s.t. ∀m ≥ n ≥ N0 and ℓ ≈ 2n → common

Proof idea: if (W , 1−W ) is FAR from the constant 1/2, then

either find sparse spot S in (say) red −→ induct on S in blue

or ∀v ∈ [0, 1] is in δ0 > 0 of H’s & use boost of #Km,n by non-random

When W (and also 1−W ) is CLOSE to the constant 1/2, then

• Girth of H is four so Fox-Wei local-Sidorenko does apply. . .

• . . . however, we need control on m, n, ℓ → restrict only to Hk
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Hatami, Hladký, Král’, Norin, Razborov (’12): YES, 5-wheel is common
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Conclusion (1/2)

Our main result: ∀k : ∃ common graph Hk with χ(Hk) = k

Km,n
C4

F

girth ≥ 42

12-edge path(`− 1)-edge path

H is ℓ-common: ∀ (W1, . . . ,Wℓ) s.t.
∑

Wi = 1:
∑

t(H,Wi ) ≥ ℓ1−e(H)

H not ℓ-common =⇒ H not (ℓ+ 1)-common
if χ(H) ≥ 3, then ∃ℓ0 s.t. H is not ℓ0-common
H is Sidorenko =⇒ H is ℓ-common for every ℓ

Král’, Noel, Norin, V., Wei (’22) (independently on Sidorenko conj.)

Theorem (KNNVW ’22): ∀ℓ : ∃ ℓ-common Hℓ with χ(Hℓ) = 3

Our main result+: ∀k , ℓ : ∃ ℓ-common Hk,ℓ with χ(Hk,ℓ) = k

Is the graph K5,5 − C10 common?
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Conclusion (2/2)

Thank you for your attention!

Our main result+: ∀k , ℓ : ∃ ℓ-common Hk,ℓ with χ(Hk,ℓ) = k

Km,n
C4

F

girth ≥ 42

12-edge path(`− 1)-edge path

Theorem (Ko-Lee): ∃ ℓ-common Hk,ℓ,m with χ = k , connectivity m

Open problem: ∃ high-χ & high-girth & high-connectivity common H?
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