A Large Deviation Principle for Block Models

Julia Gaudio

Department of Industrial Engineering and Management Sciences
Northwestern University

Joint work with Christian Borgs, Jennifer Chayes, Samantha Petti, and Subhabrata Sen

September 26, 2022
Let $G(n, p_n)$ be an Erdős-Rényi random graph.
Large deviations on random graphs

- Let $G(n, p_n)$ be an Erdős-Rényi random graph.
- Let T_n denote the number of triangles in $G(n, p_n)$.

Fix $\delta > 0$.

$P(T_n > (1 + \delta)E[T_n]) = ?$

What is the "structure" of the graph, conditioned on this rare event?

What is responsible for an elevated triangle count?

- More edges spread throughout the graph?
- Some small, dense graphs?
- "localization"
Large deviations on random graphs

Let $G(n, p_n)$ be an Erdős-Rényi random graph.

Let T_n denote the number of triangles in $G(n, p_n)$.

Fix $\delta > 0$.

$$\mathbb{P}(T_n > (1 + \delta)\mathbb{E}[T_n]) = ?$$
Large deviations on random graphs

- Let $G(n, p_n)$ be an Erdős-Rényi random graph.
- Let T_n denote the number of triangles in $G(n, p_n)$.
- Fix $\delta > 0$.

\[P(T_n > (1 + \delta)\mathbb{E}[T_n]) = \]

- What is the “structure” of the graph, conditioned on this rare event?
Let $G(n, p_n)$ be an Erdős-Rényi random graph.

Let T_n denote the number of triangles in $G(n, p_n)$.

Fix $\delta > 0$.

$$\mathbb{P}(T_n > (1 + \delta)\mathbb{E}[T_n]) = ?$$

What is the “structure” of the graph, conditioned on this rare event?

What is responsible for an elevated triangle count?
Let $G(n, p_n)$ be an Erdős-Rényi random graph.

Let T_n denote the number of triangles in $G(n, p_n)$.

Fix $\delta > 0$.

$$\Pr(T_n > (1 + \delta)\mathbb{E}[T_n]) = ?$$

What is the “structure” of the graph, conditioned on this rare event?

What is responsible for an elevated triangle count?

- More edges spread throughout the graph?
Let $G(n, p_n)$ be an Erdős-Rényi random graph.

Let T_n denote the number of triangles in $G(n, p_n)$.

Fix $\delta > 0$.

$$
P(T_n > (1 + \delta)\mathbb{E}[T_n]) = ?$$

What is the “structure” of the graph, conditioned on this rare event?

What is responsible for an elevated triangle count?

- More edges spread throughout the graph?
- Some small, dense graphs?
Large deviations on random graphs

- Let $G(n, p_n)$ be an Erdős-Rényi random graph.
- Let T_n denote the number of triangles in $G(n, p_n)$.
- Fix $\delta > 0$.
 \[
P(T_n > (1 + \delta)\mathbb{E}[T_n]) = ?
 \]

What is the “structure” of the graph, conditioned on this rare event?

What is responsible for an elevated triangle count?
 - More edges spread throughout the graph?
 - Some small, dense graphs? “localization”
Why is this interesting?

- Setting $(A_{i,j})_{i,j=1}^{n}$ to be the adjacency matrix,

\[T_n = \sum_{i<j<k} A_{ij} A_{jk} A_{ki} - \text{nonlinear} \]
Setting \((A_{ij})_{i,j=1}^n\) to be the adjacency matrix,

\[
T_n = \sum_{i<j<k} A_{ij} A_{jk} A_{ki} - \text{nonlinear}
\]

Standard LD theory does not apply
Setting $(A_{ij})_{i,j=1}^{n}$ to be the adjacency matrix,

$$T_n = \sum_{i<j<k} A_{ij} A_{jk} A_{ki} - \text{nonlinear}$$

Standard LD theory does not apply

Expect localization!
Why is this interesting?

- Setting \((A_{i,j})_{i,j=1}^n\) to be the adjacency matrix,

\[T_n = \sum_{i<j<k} A_{i,j}A_{j,k}A_{k,i} \quad - \text{nonlinear} \]

Standard LD theory does not apply

- Expect localization!

- Referred to as the infamous upper tail problem.
Why is this interesting?

- Setting \((A_{ij})_{i,j=1}^n\) to be the adjacency matrix,

\[
T_n = \sum_{i<j<k} A_{ij}A_{jk}A_{ki} - \text{nonlinear}
\]

Standard LD theory does not apply

- Expect localization!

- Referred to as the infamous upper tail problem.

- Inspired many new ideas in probabilistic combinatorics
Why is this interesting?

- Setting \((A_{i,j})_{i,j=1}^n\) to be the adjacency matrix,

 \[T_n = \sum_{i<j<k} A_{ij}A_{jk}A_{ki} \quad \text{--- nonlinear} \]

 Standard LD theory does not apply

 - Expect localization!

 - Referred to as the infamous upper tail problem.

 - Inspired many new ideas in probabilistic combinatorics

 Today’s focus: Large deviations in dense graphs
The Erdős-Rényi case

Key idea: represent an Erdős-Rényi random graph as a graphon [CV’11, LZ’15]

Figure 1: Empirical graphon

Figure 2: A sequence of empirical graphons

Describe large deviations through the language of graphons!

1Images: Forkert 2015
The Erdős-Rényi case

Key idea: represent an Erdős-Rényi random graph as a graphon [CV’11, LZ’15]

Figure 1: Empirical graphon

- The region $[0, 1]^2$ is divided into $n \times n$ cells.
- If $(i, j) \in E$, then the (i, j) cell takes value 1.
- If $(i, j) \notin E$, then the (i, j) cell takes value 0.

Figure 2: A sequence of empirical graphons

Describe large deviations through the language of graphons!

1 Images: Forkert 2015
The Erdős-Rényi case

Key idea: represent an Erdős-Rényi random graph as a graphon [CV’11, LZ’15]

The region $[0, 1]^2$ is divided into $n \times n$ cells.

- If $(i, j) \in E$, then the (i, j) cell takes value 1.
- If $(i, j) \notin E$, then the (i, j) cell takes value 0.

1 Images: Forkert 2015
The Erdős-Rényi case

Key idea: represent an Erdős-Rényi random graph as a *graphon* [CV’11, LZ’15]

![Empirical graphon](image1)

Figure 1: Empirical graphon

- The region \([0, 1]^2\) is divided into \(n \times n\) cells.
- If \((i, j) \in E\), then the \((i, j)\) cell takes value 1.
- If \((i, j) \not\in E\), then the \((i, j)\) cell takes value 0.

![A sequence of empirical graphons](image2)

Figure 2: A sequence of empirical graphons

Describe large deviations through the language of graphons!

1Images: Forkert 2015
Graphon topology

Developed by Borgs, Chayes, Lovász, Sos, Szegedy, Vesztergombi, . . .
Graphon topology

A graphon is a measurable function $f : [0, 1]^2 \rightarrow [0, 1]$, satisfying $f(x, y) = f(y, x)$.
Graphon topology

Developed by Borgs, Chayes, Lovász, Sos, Szegedy, Vesztergombi,

- A graphon is a measurable function $f : [0, 1]^2 \rightarrow [0, 1]$, satisfying $f(x, y) = f(y, x)$.
- $\mathcal{W} = \{f : [0, 1]^2 \rightarrow [0, 1] \text{ measurable}, f(x, y) = f(y, x)\}$
A graphon is a measurable function $f : [0, 1]^2 \rightarrow [0, 1]$, satisfying $f(x, y) = f(y, x)$.

$\mathcal{W} = \{f : [0, 1]^2 \rightarrow [0, 1] \text{ measurable, } f(x, y) = f(y, x)\}$

Cut distance: $d_{\square}(f, g) = \sup_{S, T \subseteq [0, 1]} \left| \int_{S \times T} (f(x, y) - g(x, y)) \, dx \, dy \right|$
Graphon topology

Developed by Borgs, Chayes, Lovász, Sos, Szegedy, Vesztergombi, ...

- A graphon is a measurable function \(f : [0, 1]^2 \to [0, 1] \), satisfying \(f(x, y) = f(y, x) \).
- \(\mathcal{W} = \{ f : [0, 1]^2 \to [0, 1] \text{ measurable, } f(x, y) = f(y, x) \} \)
- Cut distance: \(d_{\square}(f, g) = \sup_{S,T \subseteq [0,1]} \left| \int_{S \times T} (f(x, y) - g(x, y)) \, dx \, dy \right| \)
- Cut metric: \(\delta_{\square}(f, g) = \inf_{\phi \in \mathcal{M}} d_{\square}(f, g^\phi) \)
 - \(\mathcal{M} = \{ \phi : [0, 1] \to [0, 1] \text{ : bijective, measure preserving} \} \)
 - \(g^\phi(x, y) = g(\phi(x), \phi(y)) \)
Graphon topology

Developed by Borgs, Chayes, Lovász, Sos, Szegedy, Vesztergombi, ...

- A graphon is a measurable function $f : [0, 1]^2 \rightarrow [0, 1]$, satisfying $f(x, y) = f(y, x)$.
- $\mathcal{W} = \{ f : [0, 1]^2 \rightarrow [0, 1] \text{ measurable, } f(x, y) = f(y, x) \}$
- Cut distance: $d_{\Box}(f, g) = \sup_{S,T \subset [0,1]} \left| \int_{S \times T} (f(x, y) - g(x, y)) \, dx \, dy \right|$
- Cut metric: $\delta_{\Box}(f, g) = \inf_{\phi \in \mathcal{M}} d_{\Box}(f, g^\phi)$
 - $\mathcal{M} = \{ \phi : [0, 1] \rightarrow [0, 1] : \text{bijective, measure preserving} \}$
 - $g^\phi(x, y) = g(\phi(x), \phi(y))$
- Equivalence relation: $f \sim g$ if $\delta_{\Box}(f, g) = 0$.

\[\tilde{\mathcal{W}} = \{ \tilde{f} : f \in \mathcal{W} \}, \delta_{\Box}(\tilde{f}, \tilde{g}) = \delta_{\Box}(f, g) \]

Theorem (Lovász & Szegedy (2007)) $(\tilde{\mathcal{W}}, \delta_{\Box})$ is a compact metric space.
Graphon topology

Developed by Borgs, Chayes, Lovász, Sos, Szegedy, Vesztergombi, . . .

- A graphon is a measurable function $f : [0, 1]^2 \to [0, 1]$, satisfying $f(x, y) = f(y, x)$.

- $\mathcal{W} = \{f : [0, 1]^2 \to [0, 1] \text{ measurable, } f(x, y) = f(y, x)\}$

- Cut distance: $d_{\square}(f, g) = \sup_{S, T \subset [0, 1]} \left| \int_{S \times T} (f(x, y) - g(x, y)) \, dx \, dy \right|$

- Cut metric: $\delta_{\square}(f, g) = \inf_{\phi \in \mathcal{M}} d_{\square}(f, g^\phi)$
 - $\mathcal{M} = \{\phi : [0, 1] \to [0, 1] : \text{bijective, measure preserving}\}$
 - $g^\phi(x, y) = g(\phi(x), \phi(y))$

- Equivalence relation: $f \sim g$ if $\delta_{\square}(f, g) = 0$.

- $\tilde{\mathcal{W}} = \{\tilde{f} : f \in \mathcal{W}\}$, $\delta_{\square}(\tilde{f}, \tilde{g}) = \delta_{\square}(f, g)$
Graphon topology

Developed by Borgs, Chayes, Lovász, Sos, Szegedy, Vesztergombi, ...

- A graphon is a measurable function $f : [0, 1]^2 \rightarrow [0, 1]$, satisfying $f(x, y) = f(y, x)$.

- $\mathcal{W} = \{ f : [0, 1]^2 \rightarrow [0, 1] \text{ measurable, } f(x, y) = f(y, x) \}$

- Cut distance: $d_{\square}(f, g) = \sup_{S,T \subset [0,1]} \left| \int_{S \times T} (f(x, y) - g(x, y)) \, dx \, dy \right|$

- Cut metric: $\delta_{\square}(f, g) = \inf_{\phi \in \mathcal{M}} d_{\square}(f, g^\phi)$
 - $\mathcal{M} = \{ \phi : [0, 1] \rightarrow [0, 1] : \text{bijective, measure preserving} \}$
 - $g^\phi(x, y) = g(\phi(x), \phi(y))$

- Equivalence relation: $f \sim g$ if $\delta_{\square}(f, g) = 0$.

- $\tilde{\mathcal{W}} = \{ \tilde{f} : f \in \mathcal{W} \}$, $\delta_{\square}(\tilde{f}, \tilde{g}) = \delta_{\square}(f, g)$

Theorem (Lovász & Szegedy (2007))

$(\tilde{\mathcal{W}}, \delta_{\square})$ is a compact metric space.
Homomorphism densities

Definition (Homomorphism density)

Fix a subgraph H. For $f \in \mathcal{W}$, define

$$t(H, f) = \int_{[0,1]|V(H)|} \prod_{(i,j) \in E(H)} f(x_i, x_j)^{|V(H)|} \prod_{i=1}^{\left|V(H)\right|} dx_i.$$
Homomorphism densities

Definition (Homomorphism density)
Fix a subgraph H. For $f \in \mathcal{W}$, define

$$t(H, f) = \int_{[0,1]^{|V(H)|}} \prod_{(i,j) \in E(H)} f(x_i, x_j)^{|V(H)|} \prod_{i=1}^{V(H)} dx_i.$$

Let f^G be the empirical graphon associated with G.

$$\frac{6}{n^3} \sum_{i<j<k} A_{ij}A_{jk}A_{ki} = t(\Delta, f^G)$$

Can talk about $t(H, \tilde{f})$ as well!
Definition (Homomorphism density)

Fix a subgraph H. For $f \in \mathcal{W}$, define

$$t(H, f) = \int_{[0,1]^{|V(H)|}} \prod_{(i,j) \in E(H)} f(x_i, x_j) \prod_{i=1}^{|V(H)|} dx_i.$$

Let f^G be the empirical graphon associated with G.

$$\frac{6}{n^3} \sum_{i<j<k} A_{ij} A_{jk} A_{ki} = t(\Delta, f^G)$$

Can talk about $t(H, \tilde{f})$ as well!

Theorem (LS’07,BCLSV’08)

For any fixed graph H, $\tilde{f} \mapsto t(H, \tilde{f})$ is continuous under the cut topology.
Consider now the random graph $G(n, p)$ for $p \in (0, 1)$.

Definition (Relative entropy)

Define $I_W: W \to \mathbb{R} \cup \{\infty\}$ as

$$I_W(f) = \frac{1}{2} \int_{[0,1]^2} h_p(f(x,y)) \, dx \, dy,$$

where $h_p(u) =$ \begin{align*}
&u \log u + (1-u) \log (1-u), \quad u \in (0,1), \\
&\infty, \quad \text{otherwise}.
\end{align*}
Consider now the random graph $G(n, p)$ for $p \in (0, 1)$.

The empirical graphon induces a distribution on $(\widetilde{\mathcal{W}}, \delta)$.
Random Graphons

- Consider now the random graph $G(n, p)$ for $p \in (0, 1)$.
- The empirical graphon induces a distribution on $(\widetilde{\mathcal{W}}, \delta_{\square})$.
- Naturally induces a sequence of probability measures $\widetilde{\mathbb{P}}_{n,p}$ on $(\widetilde{\mathcal{W}}, \delta_{\square})$.

Definition (Relative entropy)

Define $I_{\mathcal{W}0}: \mathcal{W} \to \mathbb{R} \cup \{\infty\}$ as

$$I_{W0}(f) = \frac{1}{2} \int_{[0,1]^2} \frac{h_p(f(x,y))}{h_p(u)} du dy,$$

where $h_p(u) = u \log u + (1-u) \log (1-u)$.

LDP for Block Models
Random Graphons

- Consider now the random graph $G(n, p)$ for $p \in (0, 1)$.
- The empirical graphon induces a distribution on $(\hat{W}, \delta_\square)$.
- Naturally induces a sequence of probability measures $\tilde{P}_{n,p}$ on $(\hat{W}, \delta_\square)$!

Derive LDP for graphs in terms of $\tilde{P}_{n,p}$!
Random Graphons

- Consider now the random graph $G(n, p)$ for $p \in (0, 1)$.
- The empirical graphon induces a distribution on $(\widetilde{\mathcal{W}}, \delta_{\square})$.
- Naturally induces a sequence of probability measures $\tilde{P}_{n,p}$ on $(\widetilde{\mathcal{W}}, \delta_{\square})$.

Derive LDP for graphs in terms of $\tilde{P}_{n,p}$!

Definition (Relative entropy)

Define $I_{W_0} : \mathcal{W} \rightarrow \mathbb{R} \cup \{\infty\}$ as

$$I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_p(f(x, y)) \, dx \, dy,$$

where $h_p(u)$ is the usual relative entropy,

$$h_p(u) = u \log \frac{u}{p} + (1 - u) \log \frac{1 - u}{1 - p}.$$
An LDP under cut topology

Theorem (Chatterjee-Varadhan(2011))

For any fixed $p \in (0, 1)$, $\{\tilde{P}_{n,p} : n \geq 1\}$ satisfies an LDP with speed n^2 and rate function $I_p(\cdot)$. Formally,
An LDP under cut topology

Theorem (Chatterjee-Varadhan(2011))

For any fixed $p \in (0, 1)$, $\{\tilde{P}_{n,p} : n \geq 1\}$ satisfies an LDP with speed n^2 and rate function $I_p(\cdot)$. Formally,

- For any closed set $\tilde{F} \subset \tilde{\mathcal{W}}$,
 $$\limsup_{n \to \infty} \frac{1}{n^2} \log \tilde{P}_{n,p}(\tilde{F}) \leq - \inf_{\tilde{h} \in \tilde{F}} I_p(\tilde{h}),$$

- For any open set $\tilde{O} \subset \tilde{\mathcal{W}}$,
 $$\liminf_{n \to \infty} \frac{1}{n^2} \log \tilde{P}_{n,p}(\tilde{O}) \geq - \inf_{\tilde{h} \in \tilde{O}} I_p(\tilde{h}).$$

$I_p(\tilde{h}) = \frac{1}{2} \int_{[0,1]^2} I_p(h(x, y)) dxdy.$
An LDP under cut topology

Theorem (Chatterjee-Varadhan(2011))

For any fixed \(p \in (0, 1) \), \(\{\tilde{P}_{n,p} : n \geq 1\} \) satisfies an LDP with speed \(n^2 \) and rate function \(I_p(\cdot) \). Formally,

- For any closed set \(\tilde{F} \subset \tilde{\mathcal{W}} \),
 \[
 \limsup_{n \to \infty} \frac{1}{n^2} \log \tilde{P}_{n,p}(\tilde{F}') \leq - \inf_{\tilde{h} \in \tilde{F}} I_p(\tilde{h}),
 \]

- For any open set \(\tilde{O} \subset \tilde{\mathcal{W}} \),
 \[
 \liminf_{n \to \infty} \frac{1}{n^2} \log \tilde{P}_{n,p}(\tilde{O}) \geq - \inf_{\tilde{h} \in \tilde{O}} I_p(\tilde{h}).
 \]
An LDP under cut topology

Theorem (Chatterjee-Varadhan(2011))

For any fixed $p \in (0, 1)$, $\{\tilde{P}_{n,p} : n \geq 1\}$ satisfies an LDP with speed n^2 and rate function $I_p(\cdot)$. Formally,

- For any closed set $\tilde{F} \subset \tilde{\mathcal{W}}$,
 \[
 \limsup_{n \to \infty} \frac{1}{n^2} \log \tilde{P}_{n,p}(\tilde{F}) \leq - \inf_{\tilde{h} \in \tilde{F}} I_p(\tilde{h}),
 \]

- For any open set $\tilde{O} \subset \tilde{\mathcal{W}}$,
 \[
 \liminf_{n \to \infty} \frac{1}{n^2} \log \tilde{P}_{n,p}(\tilde{O}) \geq - \inf_{\tilde{h} \in \tilde{O}} I_p(\tilde{h}).
 \]

$I_p(\tilde{h}) = \frac{1}{2} \int_{[0,1]^2} I_p(h(x, y)) \, dx \, dy$.
Typical structure under rare event

Theorem (Chatterjee-Varadhan (2011))

- Let \(\tilde{F} \subset \tilde{W} \) be closed.
Typical structure under rare event

Theorem (Chatterjee-Varadhan (2011))

- Let $\tilde{F} \subset \tilde{\mathcal{W}}$ be closed.
- Let \tilde{F}^\ast be the subset of \tilde{F} where I_p is minimized.
Typical structure under rare event

Theorem (Chatterjee-Varadhan (2011))

- Let $\tilde{F} \subset \tilde{\mathcal{W}}$ be closed.
- Let \tilde{F}^* be the subset of \tilde{F} where I_p is minimized.

Then
- \tilde{F}^* is non-empty and compact.
Typical structure under rare event

Theorem (Chatterjee-Varadhan (2011))

- Let $\tilde{F} \subset \tilde{\mathcal{W}}$ be closed.
- Let \tilde{F}^* be the subset of \tilde{F} where I_p is minimized.

Then

- \tilde{F}^* is non-empty and compact.
- $\mathbb{P}_{n,p}(\delta_\square(G(n,p), \tilde{F}^*) < \varepsilon | G(n,p) \in \tilde{F}) \geq 1 - \exp(-Cn^2)$ for some $C > 0$.
Typical structure under rare event

Theorem (Chatterjee-Varadhan (2011))

- Let $\widetilde{F} \subset \widetilde{\mathcal{W}}$ be closed.
- Let \widetilde{F}^* be the subset of \widetilde{F} where I_p is minimized.

Then

- \widetilde{F}^* is non-empty and compact.
- $\mathbb{P}_{n,p}(\delta_{\square}(G(n, p), \widetilde{F}^*) < \varepsilon | G(n, p) \in \widetilde{F}) \geq 1 - \exp(-Cn^2)$ for some $C > 0$.

If \widetilde{F}^* is a singleton, the conditional distribution is concentrated at a single point!
The upper tail variational problem

\[\phi(p, t) = \inf \{ I_p(\tilde{f}) : \tilde{f} \in \widetilde{\mathcal{W}}, t(\Delta, \tilde{f}) \geq t \}. \]
The upper tail variational problem

\[\phi(p, t) = \inf \{ I_p(\tilde{f}) : \tilde{f} \in \tilde{W}, t(\Delta, \tilde{f}) \geq t \} . \]

- If minimizer is constant - Erdős-Rényi with higher edge density. (symmetry)
The upper tail variational problem

\[\phi(p, t) = \inf \{ I_p(\tilde{f}) : \tilde{f} \in \tilde{W}, t(\Delta, \tilde{f}) \geq t \}. \]

- If minimizer is constant - Erdős-Rényi with higher edge density. (symmetry)

- If minimizer non-constant - what happens? (symmetry-breaking)
The Symmetry/Symmetry-breaking transition

- $G \sim G(n, p)$, conditioned on an elevated triangle count
The Symmetry/Symmetry-breaking transition

- $G \sim G(n, p)$, conditioned on an elevated triangle count
- r: the edge probability for which the elevated triangle count is typical
The Symmetry/Symmetry-breaking transition

- $G \sim G(n, p)$, conditioned on an elevated triangle count
- r: the edge probability for which the elevated triangle count is typical

Figure 3: The upper tail phase diagram for triangles. [Lubetzky-Zhao (2015)]
The Symmetry/Symmetry-breaking transition

- $G \sim G(n, p)$, conditioned on an elevated triangle count
- r: the edge probability for which the elevated triangle count is typical

Figure 3: The upper tail phase diagram for triangles. [Lubetzky-Zhao (2015)]

- Blue region: symmetric regime \rightarrow mimic $G(n, r)$
The Symmetry/Symmetry-breaking transition

- $G \sim G(n, p)$, conditioned on an elevated triangle count
- r: the edge probability for which the elevated triangle count is typical

![Figure 3: The upper tail phase diagram for triangles. [Lubetzky-Zhao (2015)]](image)

- Blue region: *symmetric regime* \rightarrow mimic $G(n, r)$
- White region: *non-symmetric regime* \rightarrow distribution does not match $G(n, r)$
What is left to know?

- Phase diagram for non-regular graphs H?
What is left to know?

- Phase diagram for non-regular graphs H?
- What happens in the symmetry-breaking regime?
What is left to know?

- Phase diagram for non-regular graphs H?
- What happens in the symmetry-breaking regime?
- Other functionals?
What is left to know?

- Phase diagram for non-regular graphs H?
- What happens in the symmetry-breaking regime?
- Other functionals?

A lot remains unknown!
What is left to know?

- Phase diagram for non-regular graphs H?
- What happens in the symmetry-breaking regime?
- Other functionals?

A lot remains unknown!

Our focus: Large deviations beyond the Erdős-Rényi case
Random graphs with inhomogeneities or constraints are common.

(a) The $G(n,m)$ model. [Dembo-Lubetzky (2018)]
(b) Random regular graphs.
(c) Block models.
Random graphs with inhomogeneities or constraints are common.

(a) The $G(n, m)$ model. [Dembo-Lubetzky (2018)]
(b) Random regular graphs.
(c) Block models.

Large deviations in this context is of natural interest!

Expect new phenomena . . .
Construct a graphon with k blocks of equal length.
Construct a graphon with \(k \) blocks of equal length.

Edge probabilities are specified by \((p_{ab})_{1 \leq a,b \leq k} \), where \(p_{ab} = p_{ba} \).
Construct a graphon with k blocks of equal length.

Edge probabilities are specified by $(p_{ab})_{1 \leq a, b \leq k}$, where $p_{ab} = p_{ba}$.

Base graphon W_0 takes value p_{ab} on the (a, b) block.
Block Models

- Construct a graphon with k blocks of equal length.
- Edge probabilities are specified by $(p_{ab})_{1 \leq a, b \leq k}$, where $p_{ab} = p_{ba}$.
- **Base graphon** W_0 takes value p_{ab} on the (a, b) block.
- Our random graph has kn vertices, with n vertices associated to each block.

Add edges independently with probability $p \left\lceil \frac{i}{n} \right\rceil \left\lceil \frac{j}{n} \right\rceil$.

In other words, if Vertex i is in block a and Vertex j is in block b, then connect i and j with probability p_{ab}.

Note: repeated p_{ab} are allowed; we can accommodate rational-length blocks.

Sampled graph \leftrightarrow Empirical graphon

Distribution over graphs $\leftrightarrow \tilde{P}_{n,W_0}$, the induced law on (\tilde{W},δ).

Derive LDP for graphs in terms of \tilde{P}_{n,W_0}!
Construct a graphon with \(k \) blocks of equal length.

Edge probabilities are specified by \((p_{ab})_{1 \leq a,b \leq k}\), where \(p_{ab} = p_{ba} \).

Base graphon \(W_0 \) takes value \(p_{ab} \) on the \((a, b)\) block.

Our random graph has \(kn \) vertices, with \(n \) vertices associated to each block.

Add edges independently with probability \(p_{[i/n][j/n]} \).

In other words, if \(\text{Vertex } i \) is in block \(a \) and \(\text{Vertex } j \) is in block \(b \), then connect \(i \) and \(j \) with probability \(p_{ab} \).

Note: repeated \(p_{ab} \) are allowed; we can accommodate rational-length blocks.

Sampled graph \(\leftrightarrow \) Empirical graphon

Distribution over graphs \(\leftrightarrow \tilde{P}_{n,W_0} \), the induced law on \((\tilde{W},\delta_{\square}) \).

Derive LDP for graphs in terms of \(\tilde{P}_{n,W_0} \).
Block Models

- Construct a graphon with k blocks of equal length.
- Edge probabilities are specified by $(p_{ab})_{1 \leq a,b \leq k}$, where $p_{ab} = p_{ba}$.
- **Base graphon** W_0 takes value p_{ab} on the (a, b) block.
- Our random graph has kn vertices, with n vertices associated to each block.
- Add edges independently with probability $p_{[i/n][j/n]}$.
- In other words, if
 - Vertex i is in block a
 - Vertex j is in block b,
 then connect i and j with probability p_{ab}.
Construct a graphon with k blocks of equal length. Edge probabilities are specified by $(p_{ab})_{1 \leq a,b \leq k}$, where $p_{ab} = p_{ba}$.

Base graphon W_0 takes value p_{ab} on the (a, b) block.

Our random graph has kn vertices, with n vertices associated to each block.

Add edges independently with probability $p_{[i/n][j/n]}$.

In other words, if

- Vertex i is in block a
- Vertex j is in block b,

then connect i and j with probability p_{ab}.

Note: repeated p_{ab} are allowed; we can accommodate rational-length blocks.
Construct a graphon with k blocks of equal length.

Edge probabilities are specified by $(p_{ab})_{1 \leq a,b \leq k}$, where $p_{ab} = p_{ba}$.

Base graphon W_0 takes value p_{ab} on the (a, b) block.

Our random graph has kn vertices, with n vertices associated to each block.

Add edges independently with probability $p[\lceil i/n \rceil \lceil j/n \rceil]$.

In other words, if

- Vertex i is in block a
- Vertex j is in block b,

then connect i and j with probability p_{ab}

Note: repeated p_{ab} are allowed; we can accommodate rational-length blocks.

Sampled graph ↔ Empirical graphon

Distribution over graphs ↔ \tilde{P}_{n,W_0}, the induced law on $(\tilde{W}, \delta_{\square})$

Derive LDP for graphs in terms of \tilde{P}_{n,W_0}!
A subtlety when working with block models

- Some blocks can be equal to 0 or 1
A subtlety when working with block models

- Some blocks can be equal to 0 or 1
- Example: bipartite Erdős-Rényi graph
A subtlety when working with block models

- Some blocks can be equal to 0 or 1
- Example: bipartite Erdős-Rényi graph
- Leads to issues when calculating relative entropy of a graphon f compared to W_0.

\[p_{ab} \in \{0, 1\} \quad \text{and} \quad f(x, y) \neq p_{a,b} \Rightarrow h_{p_{a,b}}(f(x, y)) = \infty \]

Issue does not arise in Erdős-Rényi context

Solution: Restrict support appropriately for LDP.

$\Omega = \{(x, y) : W_0(x, y) \in (0, 1)\}$

$W_\Omega = \{f \in W : f = W_0 \lambda - a.s. \text{ on } \Omega \}$

Graphons that "agree" with W_0

$\tilde{W}_\Omega = \{\tilde{f} \in \tilde{W} : \delta_\square(f, g) = 0 \text{ for some } g \in W_\Omega\}$

Equivalence classes that "agree" with W_0

\tilde{W}_Ω closed, \tilde{P}_{n,W_0} supported on \tilde{W}_Ω.

LDP for Block Models
Some blocks can be equal to 0 or 1
Example: bipartite Erdős-Rényi graph
Leads to issues when calculating relative entropy of a graphon f compared to W_0.
If $p_{ab} \in \{0, 1\}$ and $f(x, y) \neq p_{a,b}$, then $h_{p_{a,b}}(f(x, y)) = \infty$
A subtlety when working with block models

- Some blocks can be equal to 0 or 1
- Example: bipartite Erdős-Rényi graph
- Leads to issues when calculating relative entropy of a graphon f compared to W_0.

 If $p_{ab} \in \{0, 1\}$ and $f(x, y) \neq p_{a,b}$, then $h_{p_{a,b}}(f(x, y)) = \infty$

- Issue does not arise in Erdős-Rényi context
A subtlety when working with block models

- Some blocks can be equal to 0 or 1
- Example: bipartite Erdős-Rényi graph
- Leads to issues when calculating relative entropy of a graphon \(f \) compared to \(W_0 \).
- If \(p_{ab} \in \{0, 1\} \) and \(f(x, y) \neq p_{a,b} \), then \(h_{p_{a,b}}(f(x, y)) = \infty \)
- Issue does not arise in Erdős-Rényi context

Solution: Restrict support appropriately for LDP.

\[
\Omega = \{(x, y) : W_0(x, y) \in (0, 1)\}
\]
A subtlety when working with block models

- Some blocks can be equal to 0 or 1
- Example: bipartite Erdős-Rényi graph
- Leads to issues when calculating relative entropy of a graphon \(f \) compared to \(W_0 \).
- If \(p_{ab} \in \{0, 1\} \) and \(f(x, y) \neq p_{a,b} \), then \(h_{p_{a,b}}(f(x, y)) = \infty \)
- Issue does not arise in Erdős-Rényi context

Solution: Restrict support appropriately for LDP.

\[
\Omega = \{(x, y) : W_0(x, y) \in (0, 1)\}
\]

\[
\mathcal{W}_\Omega = \{f \in \mathcal{W} : f = W_0 \ \lambda - a.s. \ on \ \Omega^c\}
\]

Graphons that “agree” with \(W_0 \)
A subtlety when working with block models

- Some blocks can be equal to 0 or 1
- Example: bipartite Erdős-Rényi graph
- Leads to issues when calculating relative entropy of a graphon f compared to W_0.
- If $p_{ab} \in \{0, 1\}$ and $f(x, y) \neq p_{a,b}$, then $h_{p_{a,b}}(f(x, y)) = \infty$
- Issue does not arise in Erdős-Rényi context

Solution: Restrict support appropriately for LDP.

\[
\Omega = \{(x, y) : W_0(x, y) \in (0, 1)\}
\]

\[
\mathcal{W}_\Omega = \{f \in \mathcal{W} : f = W_0 \quad \lambda - a.s. \text{ on } \Omega^c\}
\]

Graphons that “agree” with W_0

\[
\widetilde{\mathcal{W}}_\Omega = \{\tilde{f} \in \widetilde{\mathcal{W}} : \delta_\square(f, g) = 0 \text{ for some } g \in \mathcal{W}_\Omega\}
\]

Equivalence classes that “agree” with W_0
A subtlety when working with block models

- Some blocks can be equal to 0 or 1
- Example: bipartite Erdős-Rényi graph
- Leads to issues when calculating relative entropy of a graphon \(f \) compared to \(W_0 \).
- If \(p_{ab} \in \{0, 1\} \) and \(f(x, y) \neq p_{a,b} \), then \(h_{p_{a,b}}(f(x, y)) = \infty \)
- Issue does not arise in Erdős-Rényi context

Solution: Restrict support appropriately for LDP.

\[
\Omega = \{(x, y) : W_0(x, y) \in (0, 1)\}
\]

\[
\mathcal{W}_\Omega = \{f \in \mathcal{W} : f = W_0 \text{ } \lambda \text{-a.s. on } \Omega^c\}
\]

Graphons that “agree” with \(W_0 \)

\[
\widetilde{\mathcal{W}}_\Omega = \{\tilde{f} \in \widetilde{\mathcal{W}} : \delta_{\square}(f, g) = 0 \text{ for some } g \in \mathcal{W}_\Omega\}
\]

Equivalence classes that “agree” with \(W_0 \)

\[
\widetilde{\mathcal{W}}_\Omega \text{ closed, } \tilde{P}_{n,W_0} \text{ supported on } \widetilde{\mathcal{W}}_\Omega.
\]
Recall the rate function from the Erdős-Rényi setting:

\[I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_p(f(x,y)) \, dx \, dy, \]
Recall the rate function from the Erdős-Rényi setting:

\[I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_p(f(x,y)) \, dx \, dy, \]

First guess: \[I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_{W_0(x,y)}(f(x,y)) \, dx \, dy. \]
The rate function

Recall the rate function from the Erdős-Rényi setting:

\[I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_p(f(x,y)) \, dx \, dy, \]

First guess: \(I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_{W_0}(x,y)(f(x,y)) \, dx \, dy. \)

Issues:

- Not well-defined on \((\tilde{\mathcal{W}}, \delta_{\square})\).
- The rate function should be lower semi-continuous.
Recall the rate function from the Erdős-Rényi setting:

\[
I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_p(f(x,y)) \, dx \, dy,
\]

First guess:

\[
I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_{W_0}(x,y)(f(x, y)) \, dx \, dy.
\]

Issues:

- Not well-defined on \((\tilde{\mathcal{W}}, \delta_{\square})\).
- The rate function should be lower semi-continuous.

Our rate function:

\[
J_{W_0}(\tilde{f}) = \begin{cases}
\sup_{\eta > 0} \inf_{h \in B(\tilde{f}, \eta)} I_{W_0}(h) & \text{if } \tilde{f} \in \tilde{\mathcal{W}}_\Omega, \\
\infty & \text{o.w.}
\end{cases}
\]
Theorem (BCGPS '20+)

The sequence \tilde{P}_{kn,W_0} satisfies an LDP with speed n^2 and rate function J_{W_0}.
LDP for dense block models

\[
J_{W_0}(\tilde{f}) = \begin{cases}
\sup_{\eta > 0} \inf_{h \in B(\tilde{f}, \eta)} I_{W_0}(h) & \text{if } \tilde{f} \in \tilde{W}_\Omega, \\
\infty & \text{o.w.}
\end{cases}
\]

Theorem (BCGPS '20+)

The sequence \(\tilde{P}_{kn, W_0} \) satisfies an LDP with speed \(n^2 \) and rate function \(J_{W_0} \).

- Grebik and Pikhurko '21+ simplified the rate function to

\[
J_{W_0}(\tilde{f}) = \inf_{h: \delta(\tilde{h}, \tilde{f}) = 0} I_{W_0}(h).
\]
\[J_{W_0}(\tilde{f}) = \begin{cases} \sup_{\eta > 0} \inf_{h \in B(\tilde{f}, \eta)} I_{W_0}(h) & \text{if } \tilde{f} \in \tilde{\mathcal{W}}_\Omega, \\ \infty & \text{o.w.} \end{cases} \]

Theorem (BCGPS '20+)

The sequence \(\tilde{P}_{kn,W_0} \) satisfies an LDP with speed \(n^2 \) and rate function \(J_{W_0} \).

- Grebik and Pikhurko '21+ simplified the rate function to
 \[J_{W_0}(\tilde{f}) = \inf_{h : \delta_\square(h, \tilde{f}) = 0} I_{W_0}(h). \]

- Markering '22 showed that the same rate function applies when \(\log(W_0), \log(1 - W_0) \in L^1([0, 1]^2) \).
Theorem (BCGPS’20+)

Fix H. Set $t_{\text{max}} = \max_{\tilde{f} \in \tilde{W}} t(H, \tilde{f})$. For $t < t_{\text{max}}$ define

$$
\phi(W_0, t) = \inf \{ J_{W_0}(\tilde{f}) : t(H, \tilde{f}) \geq t \}.
$$
Application to homomorphism densities

Theorem (BCGPS’20+)

Fix H. Set $t_{\text{max}} = \max_{\tilde{f} \in \tilde{W}} t(H, \tilde{f})$. For $t < t_{\text{max}}$ define

$$\phi(W_0, t) = \inf \{ J_{W_0}(\tilde{f}) : t(H, \tilde{f}) \geq t \}.$$

(i) For $t < t_{\text{max}}$, \(\lim_{n \to \infty} \frac{1}{(kn)^2} \log \mathbb{P}_{kn,W_0}(t(H, G_{kn}) \geq t) = -\phi(W_0, t). \)
Theorem (BCGPS’20+)

Fix H. Set $t_{\text{max}} = \max_{\tilde{f} \in \tilde{W}} t(H, \tilde{f})$. For $t < t_{\text{max}}$ define

$$\phi(W_0, t) = \inf \{ J_{W_0}(\tilde{f}) : t(H, \tilde{f}) \geq t \}.$$

(i) For $t < t_{\text{max}}$, $\lim_{n \to \infty} \frac{1}{(kn)^2} \log P_{kn,W_0}(t(H, G_{kn}) \geq t) = -\phi(W_0, t)$.

(ii) Fix $t < t_{\text{max}}$.

- Let \tilde{F}^* be the subset of $\{ \tilde{f} : t(H, \tilde{f}) \geq t \}$ where J_{W_0} is minimized.
Application to homomorphism densities

Theorem (BCGPS’20+)

Fix H. Set $t_{\text{max}} = \max_{\tilde{f} \in \tilde{W}} t(H, \tilde{f})$. For $t < t_{\text{max}}$ define

$$\phi(W_0, t) = \inf \{ J_{W_0}(\tilde{f}) : t(H, \tilde{f}) \geq t \}.$$

(i) For $t < t_{\text{max}}$, $\lim_{n \to \infty} \frac{1}{(kn)^2} \log \mathbb{P}_{kn,W_0}(t(H, G_{kn}) \geq t) = -\phi(W_0, t)$.

(ii) Fix $t < t_{\text{max}}$.

- Let \tilde{F}^\ast be the subset of $\{ \tilde{f} : t(H, \tilde{f}) \geq t \}$ where J_{W_0} is minimized.
- \tilde{F}^\ast is non-empty and compact.
Application to homomorphism densities

Theorem (BCGPS’20+)

Fix H. Set $t_{\text{max}} = \max_{\tilde{f} \in \tilde{\mathcal{W}}} t(H, \tilde{f})$. For $t < t_{\text{max}}$ define

$$\phi(W_0, t) = \inf \{ J_{W_0}(\tilde{f}) : t(H, \tilde{f}) \geq t \}.$$

(i) For $t < t_{\text{max}}$, $\lim_{n \to \infty} \frac{1}{(kn)^2} \log \mathbb{P}_{kn, W_0}(t(H, G_{kn}) \geq t) = -\phi(W_0, t)$.

(ii) Fix $t < t_{\text{max}}$.

- Let \tilde{F}^* be the subset of $\{ \tilde{f} : t(H, \tilde{f}) \geq t \}$ where J_{W_0} is minimized.
- \tilde{F}^* is non-empty and compact.
- $\mathbb{P}_{kn, W_0}(\delta(\mathbb{F}_{kn}^*, \tilde{F}^*) < \varepsilon | t(H, G_{kn}) \geq t) \geq 1 - \exp(-Cn^2)$ for some $C > 0$.

Application to homomorphism densities

Theorem (BCGPS’20+)

Fix H. Set $t_{\text{max}} = \max_{\tilde{f} \in \tilde{W}} t(H, \tilde{f})$. For $t < t_{\text{max}}$ define

\[
\phi(W_0, t) = \inf \{ J_{W_0}(\tilde{f}) : t(H, \tilde{f}) \geq t \}.
\]

(i) *For $t < t_{\text{max}}$, $\lim_{n \to \infty} \frac{1}{(kn)^2} \log \mathbb{P}_{kn, W_0}(t(H, G_{kn}) \geq t) = -\phi(W_0, t)$.*

(ii) *Fix $t < t_{\text{max}}$.*

- Let \tilde{F}^* be the subset of $\{ \tilde{f} : t(H, \tilde{f}) \geq t \}$ where J_{W_0} is minimized.
- \tilde{F}^* is non-empty and compact.
- $\mathbb{P}_{kn, W_0}(\delta(\tilde{G}_{kn}, \tilde{F}^*) < \varepsilon | t(H, G_{kn}) \geq t) \geq 1 - \exp(-Cn^2)$ for some $C > 0$.
- *If \tilde{F}^* is a singleton, the conditional distribution is concentrated at a single point.*
A new notion of symmetry

Question

Do the minimizers of \(\min \left\{ J_{W_0}(\tilde{f}) : \tilde{f} \in \tilde{W}, t(H, \tilde{f}) \geq t \right\} \) have the same block structure as \(W_0 \)?
A new notion of symmetry

Question
Do the minimizers of \(\min \{ J_{W_0}(\tilde{f}) : \tilde{f} \in \tilde{W}, t(H, \tilde{f}) \geq t \} \) have the same block structure as \(W_0 \)?

Theorem (BCGPS'20+)
Fix a d-regular graph \(H \). Set \(t_{\text{max}} = \max_{\tilde{f} \in \tilde{W}} t(H, \tilde{f}) \).

\[\begin{align*}
\text{Fix a d-regular graph } H. \text{ Set } t_{\text{max}} &= \max_{\tilde{f} \in \tilde{W}} t(H, \tilde{f}).
\end{align*} \]
A new notion of symmetry

Question

Do the minimizers of \(\min\{J_{W_0}(\tilde{f}) : \tilde{f} \in \tilde{W}, t(H, \tilde{f}) \geq t\} \) have the same block structure as \(W_0 \)?

Theorem (BCGPS’20+)

Fix a \(d \)-regular graph \(H \). Set \(t_{\text{max}} = \max_{\tilde{f} \in \tilde{W}} t(H, \tilde{f}) \).

(i) There exists \(\delta > 0 \) such that if \(t \in [t(H, W_0), (1 + \delta)t(H, W_0)] \), the minimizer is unique and symmetric.
A new notion of symmetry

Question

Do the minimizers of \(\min \{ J_{W_0}(\tilde{f}) : \tilde{f} \in \tilde{W}, t(H, \tilde{f}) \geq t \} \) have the same block structure as \(W_0 \)?

Theorem (BCGPS’20+)

Fix a \(d \)-regular graph \(H \). Set \(t_{\text{max}} = \max_{\tilde{f} \in \tilde{W}} t(H, \tilde{f}) \).

(i) There exists \(\delta > 0 \) such that if \(t \in [t(H, W_0), (1 + \delta) t(H, W_0)] \), the minimizer is unique and symmetric.

(ii) There exists \(\eta > 0 \) such that if \(t \in [(1 - \eta) t_{\text{max}}, t_{\text{max}}] \) the minimizer is unique and symmetric.
In the symmetry-breaking regime, the optimizing graphon has a different structure from the base graphon.
Symmetry-breaking

- In the symmetry-breaking regime, the optimizing graphon has a different structure from the base graphon.
- Can establish symmetry-breaking for certain W_0.

Know the specific symmetry/symmetry-breaking boundary for Erdős-Rényi bipartite graphs.

In these examples, this establishes a “re-entrant phase transition.”
Symmetry-breaking

- In the symmetry-breaking regime, the optimizing graphon has a different structure from the base graphon.
- Can establish symmetry-breaking for certain W_0.
- In these examples, this establishes a “re-entrant phase transition.”
In the symmetry-breaking regime, the optimizing graphon has a different structure from the base graphon.

Can establish symmetry-breaking for certain W_0.

In these examples, this establishes a “re-entrant phase transition.”

Know the specific symmetry/symmetry-breaking boundary for Erdős-Rényi bipartite graphs.
Proof ideas: LDP

- Prior work [CV ’11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
Proof ideas: LDP

- Prior work [CV ’11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!
Proof ideas: LDP

- Prior work [CV ’11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

Two-step approach:
Proof ideas: LDP

- Prior work [CV ’11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

Two-step approach:

1. Apply Szemerédi’s Regularity Lemma:
Proof ideas: LDP

- Prior work [CV ’11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

Two-step approach:

1. Apply Szemerédi’s Regularity Lemma:
 - Construct a Szemerédi net of block graphons
Proof ideas: LDP

- Prior work [CV ’11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

Two-step approach:

1. Apply Szemerédi’s Regularity Lemma:
 - Construct a Szemerédi net of block graphons
 - Cover an event by a finite union of open balls centered on the elements of this net
Proof ideas: LDP

- Prior work [CV ’11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

Two-step approach:

1. Apply Szemerédi’s Regularity Lemma:
 - Construct a Szemerédi net of block graphons
 - Cover an event by a finite union of open balls centered on the elements of this net
 - It suffices to characterize the limiting probability of each open ball.
Proof ideas: LDP

- Prior work [CV ’11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

Two-step approach:

1. Apply Szemerédi’s Regularity Lemma:
 - Construct a Szemerédi net of block graphons
 - *Cover* an event by a finite union of open balls centered on the elements of this net
 - It suffices to characterize the limiting probability of each open ball.

2. “Method of types”-style argument
Proof ideas: LDP

- Prior work [CV ’11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

Two-step approach:

1. Apply Szemeredi’s Regularity Lemma:
 - Construct a Szemeredi net of block graphons
 - Cover an event by a finite union of open balls centered on the elements of this net
 - It suffices to characterize the limiting probability of each open ball.

2. “Method of types”-style argument
 - Each vertex is a member of some block (“type”)
Proof ideas: LDP

- Prior work [CV '11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

Two-step approach:

1. Apply Szemerédi’s Regularity Lemma:
 - Construct a Szemerédi net of block graphons
 - *Cover* an event by a finite union of open balls centered on the elements of this net
 - It suffices to characterize the limiting probability of each open ball.

2. “Method of types”-style argument
 - Each vertex is a member of some block ("type")
 - Its type influences how likely it forms edges with vertices of other types.
Proof ideas: LDP

- Prior work [CV ’11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

Two-step approach:

1. Apply Szemerédi’s Regularity Lemma:
 - Construct a Szemerédi net of block graphons
 - Cover an event by a finite union of open balls centered on the elements of this net
 - It suffices to characterize the limiting probability of each open ball.

2. “Method of types”-style argument
 - Each vertex is a member of some block ("type")
 - Its type influences how likely it forms edges with vertices of other types.
 - Compare base graphon to empirical graphon according to alignment of types
Proof Ideas: Symmetric Regime

Definition

Let $p \in (0, 1)$ and $d \geq 2$. We define $\psi_p : [0, 1] \to \mathbb{R}$ as

$$
\psi_p(x) = h_p(x^{1/d}),
$$

and let $\hat{\psi}_p(x)$ denote the convex minorant of $\psi_p(x)$.

Figure 4: Illustration of the function $x \mapsto h_p(x^{1/\gamma})$ and its convex minorant (Lubetzky–Zhao 2015))
Proof Ideas: Symmetric Regime

Figure 5: A graphon $f = (f_{ij})_{i, j \in [m]}$
Proof Ideas: Symmetric Regime

Figure 5: A graphon $f = (f_{ij})_{i,j \in [m]}$

Let $\|g\|_d = \left(\int_{[0,1]^2} g(x,y)^d \, dx \, dy \right)^{\frac{1}{d}}$.
The Convex Minorant Condition

Definition

- Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon
- Let $f = (f_{ij})_{i,j \in [m]}$
The Convex Minorant Condition

Definition

- Let \(W_0 = (p_{ij})_{i,j \in [m]} \) be the base graphon
- Let \(f = (f_{ij})_{i,j \in [m]} \)

We say \(f \) satisfies the \(\varepsilon \)-neighborhood minorant condition if for all \((i, j)\) such that \(p_{ij} \in (0, 1)\)

\[
x \in (\|f_{ij}\|_d - \varepsilon, \|f_{ij}\|_d + \varepsilon) \cap [0, 1] \implies \psi_{p_{ij}}(x) = \hat{\psi}_{p_{ij}}(x).
\]
The Convex Minorant Condition

Definition

- Let \(W_0 = (p_{ij})_{i,j \in [m]} \) be the base graphon
- Let \(f = (f_{ij})_{i,j \in [m]} \)

We say \(f \) satisfies the \(\varepsilon \)-neighborhood minorant condition if for all \((i, j)\) such that \(p_{ij} \in (0, 1) \)

\[
x \in (\|f_{ij}\|_d - \varepsilon, \|f_{ij}\|_d + \varepsilon) \cap [0, 1] \implies \psi_{p_{ij}}(x) = \hat{\psi}_{p_{ij}}(x).
\]

Figure 6: The function \(x \mapsto h_p(x^{1/\gamma}) \) and its convex minorant [LZ '15]
Key Lemma for Symmetric Regime

Lemma

Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon
Key Lemma for Symmetric Regime

Lemma

- Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon
- Suppose \tilde{f} is a minimizer of the variational problem for $\tau = t(H, \cdot)$
Lemma

- Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon
- Suppose \tilde{f} is a minimizer of the variational problem for $\tau = t(H, \cdot)$
- Suppose there exists a sequence of graphons $f_n \in \mathcal{W}_\Omega$ such that
Lemma

- Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon
- Suppose \tilde{f} is a minimizer of the variational problem for $\tau = t(H, \cdot)$
- Suppose there exists a sequence of graphons $f_n \in \mathcal{W}_\Omega$ such that
 - Each f_n satisfies the ε-neighborhood minorant condition,
Lemma

- Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon.
- Suppose \tilde{f} is a minimizer of the variational problem for $\tau = t(H, \cdot)$.
- Suppose there exists a sequence of graphons $f_n \in \mathcal{W}_\Omega$ such that:
 - Each f_n satisfies the ε-neighborhood minorant condition,
 - $\delta_{\square}(f_n, \tilde{f}) \to 0$,
- Then \tilde{f} matches the block structure of W_0.
Lemma

Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon.

Suppose \tilde{f} is a minimizer of the variational problem for $\tau = t(H, \cdot)$.

Suppose there exists a sequence of graphons $f_n \in \mathcal{W}_\Omega$ such that

- Each f_n satisfies the ε-neighborhood minorant condition,
- $\delta_{\square}(f_n, \tilde{f}) \to 0$,
- and $I_{W_0}(f_n) \to J_{W_0}(\tilde{f})$.

Then \tilde{f} matches the block structure of W_0.

Lemma

Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon.

Suppose \tilde{f} is a minimizer of the variational problem for $\tau = t(H, \cdot)$.

Suppose there exists a sequence of graphons $f_n \in \mathcal{W}_\Omega$ such that

- Each f_n satisfies the ε-neighborhood minorant condition,
- $\delta_\square(f_n, \tilde{f}) \to 0$,
- and $I_{W_0}(f_n) \to J_{W_0}(\tilde{f})$.

Then \tilde{f} matches the block structure of W_0.
Build a non-symmetric graphon such that:

\[\gamma \quad 0 \quad \alpha_2 \quad \alpha_3 \]

\[\alpha_1 \quad r \quad r_1 \quad r \quad \alpha_1 \]

\[r_1 \quad r \quad r_2 \quad \alpha_4 \]

\[r \quad r_2 \quad 1 - \gamma \quad 0 \]

\[r_1 \quad r \quad r_2 \]

\[r \quad r_2 \quad r \]

Figure 7: Construction of a non-symmetric graphon
Proof Ideas: Non-Symmetric Regime

Figure 7: Construction of a non-symmetric graphon

Build a non-symmetric graphon such that

- The constraint (e.g. homomorphism density) is satisfied
Proof Ideas: Non-Symmetric Regime

Figure 7: Construction of a non-symmetric graphon

Build a non-symmetric graphon such that

- The constraint (e.g. homomorphism density) is satisfied
- The relative entropy is strictly lower than what the symmetric solution attains.
Subsequent Developments

- Dupuis, Medvedev’20—inhomogeneous LDP (proof using weak convergence methods)
- Chakraborty, Hazra, den Hollander, Sfragara ’20 (variational problem for spectral radius)
- Braunsteins, den Hollander, Mandjes’20 (sample path large deviations)
- Grebik, Pikhurko ’21 (irrational block lengths)
Open Problems

1. What is the precise boundary between the symmetric and non-symmetric regimes?
Open Problems

1. What is the precise boundary between the symmetric and non-symmetric regimes?
2. What happens in the symmetry-breaking phase?
Open Problems

1. What is the precise boundary between the symmetric and non-symmetric regimes?
2. What happens in the symmetry-breaking phase?
3. In the symmetry-breaking phase, does the upper tail variational problem have a unique minimizer?
Open Problems

1. What is the precise boundary between the symmetric and non-symmetric regimes?

2. What happens in the symmetry-breaking phase?

3. In the symmetry-breaking phase, does the upper tail variational problem have a unique minimizer?

4. Large deviations of non-regular subgraph counts?
Open Problems

1. What is the precise boundary between the symmetric and non-symmetric regimes?

2. What happens in the symmetry-breaking phase?

3. In the symmetry-breaking phase, does the upper tail variational problem have a unique minimizer?

4. Large deviations of non-regular subgraph counts?

Thank you!