A Large Deviation Principle for Block Models

Julia Gaudio

Department of Industrial Engineering and Management Sciences Northwestern University

Joint work with Christian Borgs, Jennifer Chayes, Samantha Petti, and Subhabrata Sen

September 26, 2022

• Let $G(n, p_n)$ be an Erdős-Rényi random graph.

- Let $G(n, p_n)$ be an Erdős-Rényi random graph.
- Let T_n denote the number of triangles in $G(n, p_n)$.

- Let $G(n, p_n)$ be an Erdős-Rényi random graph.
- Let T_n denote the number of triangles in $G(n, p_n)$.
- Fix $\delta > 0$.

$$\mathbb{P}(T_n > (1+\delta)\mathbb{E}[T_n]) = ?$$

- Let $G(n, p_n)$ be an Erdős-Rényi random graph.
- Let T_n denote the number of triangles in $G(n, p_n)$.
- Fix $\delta > 0$.

$$\mathbb{P}(T_n > (1+\delta)\mathbb{E}[T_n]) = ?$$

• What is the "structure" of the graph, conditioned on this rare event?

- Let $G(n, p_n)$ be an Erdős-Rényi random graph.
- Let T_n denote the number of triangles in $G(n, p_n)$.
- Fix $\delta > 0$.

$$\mathbb{P}(T_n > (1+\delta)\mathbb{E}[T_n]) = ?$$

- What is the "structure" of the graph, conditioned on this rare event?
- What is responsible for an elevated triangle count?

- Let $G(n, p_n)$ be an Erdős-Rényi random graph.
- Let T_n denote the number of triangles in $G(n, p_n)$.
- Fix $\delta > 0$.

$$\mathbb{P}(T_n > (1+\delta)\mathbb{E}[T_n]) = ?$$

- What is the "structure" of the graph, conditioned on this rare event?
- What is responsible for an elevated triangle count?
 - More edges spread throughout the graph?

- Let $G(n, p_n)$ be an Erdős-Rényi random graph.
- Let T_n denote the number of triangles in $G(n, p_n)$.
- Fix $\delta > 0$.

$$\mathbb{P}(T_n > (1+\delta)\mathbb{E}[T_n]) = ?$$

- What is the "structure" of the graph, conditioned on this rare event?
- What is responsible for an elevated triangle count?
 - More edges spread throughout the graph?
 - Some small, dense graphs?

- Let $G(n, p_n)$ be an Erdős-Rényi random graph.
- Let T_n denote the number of triangles in $G(n, p_n)$.
- Fix $\delta > 0$.

$$\mathbb{P}(T_n > (1+\delta)\mathbb{E}[T_n]) = ?$$

- What is the "structure" of the graph, conditioned on this rare event?
- What is responsible for an elevated triangle count?
 - More edges spread throughout the graph?
 - Some small, dense graphs? "localization"

$$T_n = \sum_{i < j < k} A_{ij} A_{jk} A_{ki} - nonlinear$$

$$T_n = \sum_{i < j < k} A_{ij} A_{jk} A_{ki} - nonlinear$$

Standard LD theory does not apply

$$T_n = \sum_{i < j < k} A_{ij} A_{jk} A_{ki} - nonlinear$$

Standard LD theory does not apply

• Expect localization!

$$T_n = \sum_{i < j < k} A_{ij} A_{jk} A_{ki} - nonlinear$$

Standard LD theory does not apply

- Expect localization!
- Referred to as the infamous upper tail problem.

$$T_n = \sum_{i < j < k} A_{ij} A_{jk} A_{ki} - nonlinear$$

Standard LD theory does not apply

- Expect localization!
- Referred to as the infamous upper tail problem.
- Inspired many new ideas in probabilistic combinatorics

$$T_n = \sum_{i < j < k} A_{ij} A_{jk} A_{ki} - nonlinear$$

Standard LD theory does not apply

- Expect localization!
- Referred to as the infamous upper tail problem.
- Inspired many new ideas in probabilistic combinatorics

Today's focus: Large deviations in dense graphs

Key idea: represent an Erdős-Rényi random graph as a graphon[CV'11, LZ'15]

Figure 1: Empirical graphon ¹

Key idea: represent an Erdős-Rényi random graph as a graphon[CV'11, LZ'15]

Figure 1: Empirical graphon ¹

- The region $[0,1]^2$ is divided into $n\times n$ cells.
- If $(i, j) \in E$, then the (i, j) cell takes value 1.
- If $(i, j) \notin E$, then the (i, j) cell takes value 0.

Key idea: represent an Erdős-Rényi random graph as a graphon[CV'11, LZ'15]

Figure 1: Empirical graphon ¹

- The region $[0,1]^2$ is divided into $n\times n$ cells.
- If $(i, j) \in E$, then the (i, j) cell takes value 1.
- If $(i,j) \notin E$, then the (i,j) cell takes value 0.

Figure 2: A sequence of empirical graphons

¹Images: Forkert 2015

Key idea: represent an Erdős-Rényi random graph as a graphon[CV'11, LZ'15]

Figure 1: Empirical graphon ¹

- The region $[0,1]^2$ is divided into $n\times n$ cells.
- If $(i, j) \in E$, then the (i, j) cell takes value 1.
- If $(i,j) \notin E$, then the (i,j) cell takes value 0.

Figure 2: A sequence of empirical graphons

Describe large deviations through the language of graphons!

¹Images: Forkert 2015

LDP for Block Models

Developed by Borgs, Chayes, Lovász, Sos, Szegedy, Vesztergombi, ...

• A graphon is a measurable function $f:[0,1]^2 \to [0,1]$, satisfying f(x,y) = f(y,x).

- A graphon is a measurable function $f:[0,1]^2 \to [0,1]$, satisfying f(x,y) = f(y,x).
- $\mathcal{W} = \{f: [0,1]^2 \rightarrow [0,1] \text{ measurable}, f(x,y) = f(y,x)\}$

- A graphon is a measurable function $f: [0,1]^2 \to [0,1]$, satisfying f(x,y) = f(y,x).
- $\mathcal{W} = \{f: [0,1]^2 \rightarrow [0,1] \text{ measurable}, f(x,y) = f(y,x)\}$
- Cut distance: $d_{\Box}(f,g) = \sup_{S,T \subset [0,1]} \left| \int_{S \times T} (f(x,y) g(x,y)) dx dy \right|$

- A graphon is a measurable function $f: [0,1]^2 \to [0,1]$, satisfying f(x,y) = f(y,x).
- $\mathcal{W} = \{f: [0,1]^2 \rightarrow [0,1] \text{ measurable}, f(x,y) = f(y,x)\}$
- Cut distance: $d_{\Box}(f,g) = \sup_{S,T \subset [0,1]} \left| \int_{S \times T} (f(x,y) g(x,y)) dx dy \right|$
- Cut metric: $\delta_{\Box}(f,g) = \inf_{\phi \in \mathcal{M}} d_{\Box}(f,g^{\phi})$
 - $\mathcal{M} = \{\phi : [0,1] \to [0,1] : \text{bijective, measure preserving}\}$
 - $g^{\phi}(x,y) = g(\phi(x),\phi(y))$

- A graphon is a measurable function $f: [0,1]^2 \to [0,1]$, satisfying f(x,y) = f(y,x).
- $\mathcal{W} = \{f: [0,1]^2 \rightarrow [0,1] \text{ measurable}, f(x,y) = f(y,x)\}$
- Cut distance: $d_{\Box}(f,g) = \sup_{S,T \subset [0,1]} \left| \int_{S \times T} (f(x,y) g(x,y)) dx \, dy \right|$
- Cut metric: $\delta_{\Box}(f,g) = \inf_{\phi \in \mathcal{M}} d_{\Box}(f,g^{\phi})$
 - $\mathcal{M} = \{\phi : [0,1] \to [0,1] : \text{bijective, measure preserving} \}$ • $q^{\phi}(x,y) = q(\phi(x),\phi(y))$
- Equivalence relation: $f \sim q$ if $\delta_{\Box}(f,q) = 0$.

- A graphon is a measurable function $f: [0,1]^2 \to [0,1]$, satisfying f(x,y) = f(y,x).
- $\mathcal{W} = \{f: [0,1]^2 \rightarrow [0,1] \text{ measurable}, f(x,y) = f(y,x)\}$
- Cut distance: $d_{\Box}(f,g) = \sup_{S,T \subset [0,1]} \left| \int_{S \times T} (f(x,y) g(x,y)) dx \, dy \right|$

• Cut metric:
$$\delta_{\Box}(f,g) = \inf_{\phi \in \mathcal{M}} d_{\Box}(f,g^{\phi})$$

- $\mathcal{M} = \{\phi : [0,1] \rightarrow [0,1] : \text{bijective, measure preserving} \}$ • $g^{\phi}(x,y) = g(\phi(x),\phi(y))$
- Equivalence relation: $f \sim g$ if $\delta_{\Box}(f,g) = 0$.
- $\widetilde{\mathcal{W}} = \{\widetilde{f} : f \in \mathcal{W}\}, \ \delta_{\Box}(\widetilde{f}, \widetilde{g}) = \delta_{\Box}(f, g)$

Developed by Borgs, Chayes, Lovász, Sos, Szegedy, Vesztergombi, ...

- A graphon is a measurable function $f: [0,1]^2 \to [0,1]$, satisfying f(x,y) = f(y,x).
- $\mathcal{W} = \{f: [0,1]^2 \rightarrow [0,1] \text{ measurable}, f(x,y) = f(y,x)\}$
- Cut distance: $d_{\Box}(f,g) = \sup_{S,T \subset [0,1]} \left| \int_{S \times T} (f(x,y) g(x,y)) dx dy \right|$

• Cut metric:
$$\delta_{\Box}(f,g) = \inf_{\phi \in \mathcal{M}} d_{\Box}(f,g^{\phi})$$

- $\mathcal{M} = \{\phi : [0,1] \rightarrow [0,1] : \text{bijective, measure preserving} \}$ • $g^{\phi}(x,y) = g(\phi(x),\phi(y))$
- Equivalence relation: $f \sim g$ if $\delta_{\Box}(f,g) = 0$.
- $\widetilde{\mathcal{W}} = \{ \widetilde{f} : f \in \mathcal{W} \}, \ \delta_{\Box}(\widetilde{f}, \widetilde{g}) = \delta_{\Box}(f, g)$

Theorem (Lovász & Szegedy (2007))

 $(\widetilde{\mathcal{W}}, \delta_{\Box})$ is a compact metric space.

Definition (Homomorphism density)

Fix a subgraph H. For $f \in \mathcal{W}$, define

$$t(H,f) = \int_{[0,1]^{|V(H)|}} \prod_{(i,j) \in E(H)} f(x_i, x_j) \prod_{i=1}^{|V(H)|} dx_i.$$

Definition (Homomorphism density)

Fix a subgraph H. For $f \in \mathcal{W}$, define

$$t(H,f) = \int_{[0,1]^{|V(H)|}} \prod_{(i,j)\in E(H)} f(x_i, x_j) \prod_{i=1}^{|V(H)|} dx_i.$$

Let f^G be the empirical graphon associated with G.

$$\frac{6}{n^3} \sum_{i < j < k} A_{ij} A_{jk} A_{ki} = t(\Delta, f^G)$$

Can talk about $t(H, \tilde{f})$ as well!

Definition (Homomorphism density)

Fix a subgraph H. For $f \in \mathcal{W}$, define

$$t(H,f) = \int_{[0,1]^{|V(H)|}} \prod_{(i,j)\in E(H)} f(x_i, x_j) \prod_{i=1}^{|V(H)|} dx_i.$$

Let f^G be the empirical graphon associated with G.

$$\frac{6}{n^3} \sum_{i < j < k} A_{ij} A_{jk} A_{ki} = t(\Delta, f^G)$$

Can talk about $t(H, \tilde{f})$ as well!

Theorem (LS'07, BCLSV'08)

For any fixed graph H, $\tilde{f} \mapsto t(H, \tilde{f})$ is continuous under the cut topology.

• Consider now the random graph G(n,p) for $p \in (0,1)$.

- Consider now the random graph G(n,p) for $p \in (0,1)$.
- The empirical graphon induces a distribution on $(\widetilde{\mathcal{W}}, \delta_{\Box})$.

- Consider now the random graph G(n,p) for $p \in (0,1)$.
- The empirical graphon induces a distribution on $(\widetilde{\mathcal{W}}, \delta_{\Box})$.
- Naturally induces a sequence of probability measures $\tilde{\mathbb{P}}_{n,p}$ on $(\widetilde{\mathcal{W}}, \delta_{\Box})!$

- Consider now the random graph G(n,p) for $p \in (0,1)$.
- The empirical graphon induces a distribution on $(\widetilde{\mathcal{W}}, \delta_{\Box})$.
- Naturally induces a sequence of probability measures $\tilde{\mathbb{P}}_{n,p}$ on $(\widetilde{\mathcal{W}}, \delta_{\Box})!$

Derive LDP for graphs in terms of $\tilde{\mathbb{P}}_{n,p}$!

- Consider now the random graph G(n,p) for $p \in (0,1)$.
- The empirical graphon induces a distribution on $(\widetilde{\mathcal{W}}, \delta_{\Box})$.
- Naturally induces a sequence of probability measures $\tilde{\mathbb{P}}_{n,p}$ on $(\widetilde{\mathcal{W}}, \delta_{\Box})!$

Derive LDP for graphs in terms of $\tilde{\mathbb{P}}_{n,p}$!

Definition (Relative entropy)

Define $I_{W_0}:\mathcal{W}
ightarrow \mathbb{R} \cup \{\infty\}$ as

$$I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_p(f(x,y)) \, dx dy,$$

where $h_p(u)$ is the usual relative entropy,

$$h_p(u) = u \log \frac{u}{p} + (1-u) \log \frac{1-u}{1-p}.$$

Theorem (Chatterjee-Varadhan(2011))

For any fixed $p \in (0,1)$, $\{\tilde{P}_{n,p} : n \ge 1\}$ satisfies an LDP with speed n^2 and rate function $I_p(\cdot)$. Formally,
For any fixed $p \in (0,1)$, $\{\tilde{P}_{n,p} : n \ge 1\}$ satisfies an LDP with speed n^2 and rate function $I_p(\cdot)$. Formally,

• For any closed set $\widetilde{F} \subset \widetilde{\mathcal{W}}$,

$$\limsup_{n \to \infty} \frac{1}{n^2} \log \tilde{\mathbb{P}}_{n,p}(\tilde{F}) \le -\inf_{\tilde{h} \in \tilde{F}} I_p(\tilde{h}),$$

For any fixed $p \in (0,1)$, $\{\tilde{P}_{n,p} : n \ge 1\}$ satisfies an LDP with speed n^2 and rate function $I_p(\cdot)$. Formally,

• For any closed set $\widetilde{F} \subset \widetilde{\mathcal{W}}$,

$$\limsup_{n \to \infty} \frac{1}{n^2} \log \tilde{\mathbb{P}}_{n,p}(\tilde{F}) \le -\inf_{\tilde{h} \in \tilde{F}} I_p(\tilde{h}),$$

• For any open set $\tilde{O} \subset \widetilde{\mathcal{W}}$,

$$\liminf_{n \to \infty} \frac{1}{n^2} \log \tilde{\mathbb{P}}_{n,p}(\tilde{O}) \ge -\inf_{\tilde{h} \in \tilde{O}} I_p(\tilde{h}).$$

For any fixed $p \in (0,1)$, $\{\tilde{P}_{n,p} : n \ge 1\}$ satisfies an LDP with speed n^2 and rate function $I_p(\cdot)$. Formally,

• For any closed set $\widetilde{F} \subset \widetilde{\mathcal{W}}$,

$$\limsup_{n \to \infty} \frac{1}{n^2} \log \tilde{\mathbb{P}}_{n,p}(\tilde{F}) \le -\inf_{\tilde{h} \in \tilde{F}} I_p(\tilde{h}),$$

• For any open set $\tilde{O} \subset \widetilde{\mathcal{W}}$,

$$\liminf_{n \to \infty} \frac{1}{n^2} \log \tilde{\mathbb{P}}_{n,p}(\tilde{O}) \ge -\inf_{\tilde{h} \in \tilde{O}} I_p(\tilde{h}).$$

$$I_p(\tilde{h}) = \frac{1}{2} \int_{[0,1]^2} I_p(h(x,y)) dx \, dy.$$

• Let $\widetilde{F} \subset \widetilde{\mathcal{W}}$ be closed.

- Let $\tilde{F} \subset \widetilde{\mathcal{W}}$ be closed.
- Let \tilde{F}^* be the subset of \tilde{F} where I_p is minimized.

- Let $\tilde{F} \subset \widetilde{\mathcal{W}}$ be closed.
- Let \tilde{F}^* be the subset of \tilde{F} where I_p is minimized.

Then

• \tilde{F}^* is non-empty and compact.

- Let $\tilde{F} \subset \widetilde{W}$ be closed.
- Let \tilde{F}^* be the subset of \tilde{F} where I_p is minimized.

Then

- \tilde{F}^* is non-empty and compact.
- $\mathbb{P}_{n,p}(\delta_{\Box}(G(n,p),\tilde{F}^*) < \varepsilon | G(n,p) \in \tilde{F}) \ge 1 \exp(-Cn^2)$ for some C > 0.

- Let $\tilde{F} \subset \widetilde{W}$ be closed.
- Let \tilde{F}^* be the subset of \tilde{F} where I_p is minimized.

Then

- \tilde{F}^* is non-empty and compact.
- $\mathbb{P}_{n,p}(\delta_{\Box}(G(n,p),\tilde{F}^*) < \varepsilon | G(n,p) \in \tilde{F}) \ge 1 \exp(-Cn^2)$ for some C > 0.

If \tilde{F}^* is a singleton, the conditional distribution is concentrated at a single point!

$\phi(p,t) = \inf\{I_p(\widetilde{f}) : \widetilde{f} \in \widetilde{\mathcal{W}}, t(\Delta, \widetilde{f}) \ge t\}.$

$$\phi(p,t) = \inf\{I_p(\tilde{f}) : \tilde{f} \in \widetilde{\mathcal{W}}, t(\Delta, \tilde{f}) \ge t\}.$$

• If minimizer is constant - Erdős-Rényi with higher edge density. (symmetry)

$$\phi(p,t) = \inf\{I_p(\widetilde{f}) : \widetilde{f} \in \widetilde{\mathcal{W}}, t(\Delta, \widetilde{f}) \ge t\}.$$

- If minimizer is constant Erdős-Rényi with higher edge density. (symmetry)
- If minimizer non-constant what happens? (symmetry-breaking)

• $G \sim G(n, p)$, conditioned on an elevated triangle count

- $G \sim G(n, p)$, conditioned on an elevated triangle count
- r: the edge probability for which the elevated triangle count is typical

- $G \sim G(n, p)$, conditioned on an elevated triangle count
- r: the edge probability for which the elevated triangle count is typical

Figure 3: The upper tail phase diagram for triangles. [Lubetzky-Zhao (2015)]

- $G \sim G(n, p)$, conditioned on an elevated triangle count
- r: the edge probability for which the elevated triangle count is typical

Figure 3: The upper tail phase diagram for triangles. [Lubetzky-Zhao (2015)]

• Blue region: symmetric regime $\rightarrow \min G(n, r)$

- $G \sim G(n, p)$, conditioned on an elevated triangle count
- r: the edge probability for which the elevated triangle count is typical

Figure 3: The upper tail phase diagram for triangles. [Lubetzky-Zhao (2015)]

- Blue region: symmetric regime $\rightarrow \min G(n, r)$
- White region: non-symmetric regime \rightarrow distribution does not match G(n, r)

• Phase diagram for non-regular graphs H?

- Phase diagram for non-regular graphs H?
- What happens in the symmetry-breaking regime?

- Phase diagram for non-regular graphs H?
- What happens in the symmetry-breaking regime?
- Other functionals?

- Phase diagram for non-regular graphs H?
- What happens in the symmetry-breaking regime?
- Other functionals?

A lot remains unknown!

- Phase diagram for non-regular graphs H?
- What happens in the symmetry-breaking regime?
- Other functionals?

A lot remains unknown!

Our focus: Large deviations beyond the Erdős-Rényi case

• Random graphs with inhomogeneities or constraints are common.

(a) The G(n,m) model. [Dembo-Lubetzky (2018)] (b) Random regular graphs. (c) Block models.

• Random graphs with inhomogeneities or constraints are common.

(a) The G(n, m) model. [Dembo-Lubetzky (2018)]
(b) Random regular graphs.
(c) Block models.

• Large deviations in this context is of natural interest!

• Expect new phenomena ...

• Construct a graphon with k blocks of equal length.

- Construct a graphon with k blocks of equal length.
- Edge probabilities are specified by $(p_{ab})_{1 \le a,b \le k}$, where $p_{ab} = p_{ba}$.

- Construct a graphon with k blocks of equal length.
- Edge probabilities are specified by $(p_{ab})_{1 \le a,b \le k}$, where $p_{ab} = p_{ba}$.
- Base graphon W_0 takes value p_{ab} on the (a, b) block.

- Construct a graphon with k blocks of equal length.
- Edge probabilities are specified by $(p_{ab})_{1 \le a,b \le k}$, where $p_{ab} = p_{ba}$.
- Base graphon W_0 takes value p_{ab} on the (a, b) block.
- Our random graph has kn vertices, with n vertices associated to each block.

- Construct a graphon with k blocks of equal length.
- Edge probabilities are specified by $(p_{ab})_{1 \le a,b \le k}$, where $p_{ab} = p_{ba}$.
- Base graphon W_0 takes value p_{ab} on the (a, b) block.
- Our random graph has kn vertices, with n vertices associated to each block.
- Add edges independently with probability $p_{\lceil i/n \rceil \lceil j/n \rceil}$.

- Construct a graphon with k blocks of equal length.
- Edge probabilities are specified by $(p_{ab})_{1 \le a,b \le k}$, where $p_{ab} = p_{ba}$.
- Base graphon W_0 takes value p_{ab} on the (a, b) block.
- Our random graph has kn vertices, with n vertices associated to each block.
- Add edges independently with probability $p_{\lceil i/n \rceil \lceil j/n \rceil}$.
- In other words, if
 - Vertex i is in block a
 - Vertex j is in block b,

then connect i and j with probability p_{ab}

- Construct a graphon with k blocks of equal length.
- Edge probabilities are specified by $(p_{ab})_{1 \le a,b \le k}$, where $p_{ab} = p_{ba}$.
- Base graphon W_0 takes value p_{ab} on the (a, b) block.
- Our random graph has kn vertices, with n vertices associated to each block.
- Add edges independently with probability $p_{\lceil i/n \rceil \lceil j/n \rceil}$.
- In other words, if
 - Vertex *i* is in block *a*
 - Vertex j is in block b,

then connect i and j with probability p_{ab}

• Note: repeated p_{ab} are allowed; we can accommodate rational-length blocks.

- Construct a graphon with k blocks of equal length.
- Edge probabilities are specified by $(p_{ab})_{1 \le a,b \le k}$, where $p_{ab} = p_{ba}$.
- Base graphon W_0 takes value p_{ab} on the (a, b) block.
- Our random graph has kn vertices, with n vertices associated to each block.
- Add edges independently with probability $p_{\lceil i/n \rceil \lceil j/n \rceil}$.
- In other words, if
 - Vertex i is in block a
 - Vertex j is in block b,

then connect i and j with probability p_{ab}

• Note: repeated p_{ab} are allowed; we can accommodate rational-length blocks.

Sampled graph \leftrightarrow Empirical graphon

Distribution over graphs $\leftrightarrow \tilde{\mathbb{P}}_{n,W_0}$, the induced law $\operatorname{on}(\widetilde{\mathcal{W}}, \delta_{\Box})$

Derive LDP for graphs in terms of $\tilde{\mathbb{P}}_{n,W_0}$!

 $\bullet\,$ Some blocks can be equal to 0 or 1

- Some blocks can be equal to $0 \mbox{ or } 1$
- Example: bipartite Erdős-Rényi graph

- $\bullet\,$ Some blocks can be equal to 0 or 1
- Example: bipartite Erdős-Rényi graph
- Leads to issues when calculating relative entropy of a graphon f compared to W_0 .

- Some blocks can be equal to $0 \mbox{ or } 1$
- Example: bipartite Erdős-Rényi graph
- Leads to issues when calculating relative entropy of a graphon f compared to W_0 .
- If $p_{ab} \in \{0,1\}$ and $f(x,y) \neq p_{a,b},$ then $h_{p_{a,b}}(f(x,y)) = \infty$

- Some blocks can be equal to $0 \mbox{ or } 1$
- Example: bipartite Erdős-Rényi graph
- Leads to issues when calculating relative entropy of a graphon f compared to W_0 .
- If $p_{ab} \in \{0,1\}$ and $f(x,y) \neq p_{a,b},$ then $h_{p_{a,b}}(f(x,y)) = \infty$
- Issue does not arise in Erdős-Rényi context
- Some blocks can be equal to $0 \mbox{ or } 1$
- Example: bipartite Erdős-Rényi graph
- Leads to issues when calculating relative entropy of a graphon f compared to W_0 .
- If $p_{ab} \in \{0,1\}$ and $f(x,y) \neq p_{a,b},$ then $h_{p_{a,b}}(f(x,y)) = \infty$
- Issue does not arise in Erdős-Rényi context

Solution: Restrict support appropriately for LDP.

 $\Omega = \{(x,y) : W_0(x,y) \in (0,1)\}$

- Some blocks can be equal to $0 \mbox{ or } 1$
- Example: bipartite Erdős-Rényi graph
- Leads to issues when calculating relative entropy of a graphon f compared to W_0 .
- If $p_{ab} \in \{0,1\}$ and $f(x,y) \neq p_{a,b},$ then $h_{p_{a,b}}(f(x,y)) = \infty$
- Issue does not arise in Erdős-Rényi context

Solution: Restrict support appropriately for LDP.

 $\Omega = \{(x, y) : W_0(x, y) \in (0, 1)\}$

$$\mathcal{W}_{\Omega} = \{ f \in \mathcal{W} : f = W_0 \ \lambda - a.s. \text{ on } \Omega^c \}$$

Graphons that "agree" with W_0

- Some blocks can be equal to $0 \mbox{ or } 1$
- Example: bipartite Erdős-Rényi graph
- Leads to issues when calculating relative entropy of a graphon f compared to W_0 .
- If $p_{ab} \in \{0,1\}$ and $f(x,y) \neq p_{a,b}$, then $h_{p_{a,b}}(f(x,y)) = \infty$
- Issue does not arise in Erdős-Rényi context

Solution: Restrict support appropriately for LDP.

 $\Omega = \{(x, y) : W_0(x, y) \in (0, 1)\}$

$$\mathcal{W}_{\Omega} = \{ f \in \mathcal{W} : f = W_0 \ \lambda - a.s. \text{ on } \Omega^c \}$$

Graphons that "agree" with W_0

$$\widetilde{\mathcal{W}}_{\Omega} = \{ \widetilde{f} \in \widetilde{\mathcal{W}} : \delta_{\Box}(f,g) = 0 \text{ for some } g \in \mathcal{W}_{\Omega} \}$$

Equivalence classes that "agree" with W_0

- $\bullet\,$ Some blocks can be equal to 0 or 1
- Example: bipartite Erdős-Rényi graph
- Leads to issues when calculating relative entropy of a graphon f compared to W_0 .
- If $p_{ab} \in \{0,1\}$ and $f(x,y) \neq p_{a,b},$ then $h_{p_{a,b}}(f(x,y)) = \infty$
- Issue does not arise in Erdős-Rényi context

Solution: Restrict support appropriately for LDP.

 $\Omega = \{(x,y): W_0(x,y) \in (0,1)\}$

$$\mathcal{W}_{\Omega} = \{ f \in \mathcal{W} : f = W_0 \ \lambda - a.s. \text{ on } \Omega^c \}$$

Graphons that "agree" with W_0

$$\widetilde{\mathcal{W}}_{\Omega} = \{ \widetilde{f} \in \widetilde{\mathcal{W}} : \delta_{\Box}(f,g) = 0 \text{ for some } g \in \mathcal{W}_{\Omega} \}$$

Equivalence classes that "agree" with W_0

 $\widetilde{\mathcal{W}}_{\Omega}$ closed, $\mathbb{\widetilde{P}}_{n,W_0}$ supported on $\widetilde{\mathcal{W}}_{\Omega}.$

Recall the rate function from the Erdős-Rényi setting:

$$I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_p(f(x,y)) \, dx dy,$$

Recall the rate function from the Erdős-Rényi setting:

$$I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_p(f(x,y)) \, dx dy,$$

First guess: $I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_{W_0(x,y)}(f(x,y)) dx dy.$

Recall the rate function from the Erdős-Rényi setting:

$$I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_p(f(x,y)) \, dx dy,$$

First guess:
$$I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_{W_0(x,y)}(f(x,y)) dx dy$$
.

Issues:

- Not well-defined on $(\widetilde{\mathcal{W}}, \delta_{\Box})$.
- The rate function should be lower semi-continuous.

Recall the rate function from the Erdős-Rényi setting:

$$I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_p(f(x,y)) \, dx dy,$$

First guess:
$$I_{W_0}(f) = \frac{1}{2} \int_{[0,1]^2} h_{W_0(x,y)}(f(x,y)) dx dy$$
.

Issues:

- Not well-defined on $(\widetilde{\mathcal{W}}, \delta_{\Box})$.
- The rate function should be lower semi-continuous.

Our rate function:

$$J_{W_0}(\widetilde{f}) = \begin{cases} \sup_{\eta>0} \inf_{h\in B(\widetilde{f},\eta)} I_{W_0}(h) & \text{if } \widetilde{f}\in \widetilde{\mathcal{W}}_{\Omega}, \\ \infty & \text{o.w.} \end{cases}$$

LDP for dense block models

$$J_{W_0}(\widetilde{f}) = \begin{cases} \sup_{\eta>0} \inf_{h\in B(\widetilde{f},\eta)} I_{W_0}(h) & \text{if } \widetilde{f}\in\widetilde{\mathcal{W}}_{\Omega}, \\ \infty & \text{o.w.} \end{cases}$$

Theorem (BCGPS '20+)

The sequence $\tilde{\mathbb{P}}_{kn,W_0}$ satisfies an LDP with speed n^2 and rate function J_{W_0} .

LDP for dense block models

$$J_{W_0}(\widetilde{f}) = \begin{cases} \sup_{\eta>0} \inf_{h\in B(\widetilde{f},\eta)} I_{W_0}(h) & \text{if } \widetilde{f}\in\widetilde{\mathcal{W}}_{\Omega}, \\ \infty & \text{o.w.} \end{cases}$$

Theorem (BCGPS '20+)

The sequence $\tilde{\mathbb{P}}_{kn,W_0}$ satisfies an LDP with speed n^2 and rate function J_{W_0} .

• Grebik and Pikhurko '21+ simplified the rate function to

$$J_{W_0}(\tilde{f}) = \inf_{h:\delta_{\square}(h,\tilde{f})=0} I_{W_0}(h).$$

LDP for dense block models

$$J_{W_0}(\widetilde{f}) = \begin{cases} \sup_{\eta>0} \inf_{h\in B(\widetilde{f},\eta)} I_{W_0}(h) & \text{if } \widetilde{f}\in\widetilde{\mathcal{W}}_{\Omega}, \\ \infty & \text{o.w.} \end{cases}$$

Theorem (BCGPS '20+)

The sequence $\tilde{\mathbb{P}}_{kn,W_0}$ satisfies an LDP with speed n^2 and rate function J_{W_0} .

• Grebik and Pikhurko '21+ simplified the rate function to

$$J_{W_0}(\tilde{f}) = \inf_{h:\delta_{\square}(h,\tilde{f})=0} I_{W_0}(h).$$

• Markering '22 showed that the same rate function applies when $\log(W_0), \log(\mathbf{1} - W_0) \in L^1([0, 1]^2).$

Fix H. Set $t_{\max} = \max_{\tilde{f} \in \widetilde{W}} t(H, \tilde{f})$. For $t < t_{\max}$ define

$$\phi(W_0, t) = \inf\{ J_{W_0}(\tilde{f}) : t(H, \tilde{f}) \ge t \}.$$

Fix H. Set $t_{\max} = \max_{\tilde{f} \in \widetilde{W}} t(H, \tilde{f})$. For $t < t_{\max}$ define

$$\phi(W_0, t) = \inf\{ J_{W_0}(\tilde{f}) : t(H, \tilde{f}) \ge t \}.$$

(i) For $t < t_{\max}$, $\lim_{n \to \infty} \frac{1}{(kn)^2} \log \mathbb{P}_{kn, W_0}(t(H, G_{kn}) \ge t) = -\phi(W_0, t)$.

Fix H. Set $t_{\max} = \max_{\tilde{f} \in \widetilde{W}} t(H, \tilde{f})$. For $t < t_{\max}$ define

$$\phi(W_0, t) = \inf\{ J_{W_0}(\tilde{f}) : t(H, \tilde{f}) \ge t \}.$$

(i) For $t < t_{\max}$, $\lim_{n \to \infty} \frac{1}{(kn)^2} \log \mathbb{P}_{kn,W_0}(t(H, G_{kn}) \ge t) = -\phi(W_0, t)$. (ii) Fix $t < t_{\max}$.

• Let \tilde{F}^* be the subset of $\{\tilde{f}: t(H, \tilde{f}) \ge t\}$ where J_{W_0} is minimized.

Fix H. Set $t_{\max} = \max_{\tilde{f} \in \widetilde{W}} t(H, \tilde{f})$. For $t < t_{\max}$ define

$$\phi(W_0, t) = \inf\{ J_{W_0}(\tilde{f}) : t(H, \tilde{f}) \ge t \}.$$

(i) For $t < t_{\max}$, $\lim_{n \to \infty} \frac{1}{(kn)^2} \log \mathbb{P}_{kn, W_0}(t(H, G_{kn}) \ge t) = -\phi(W_0, t)$. (ii) Fix $t < t_{\max}$.

Let *F*^{*} be the subset of {*f* : t(H, *f*) ≥ t} where J_{W0} is minimized. *F*^{*} is non-empty and compact.

Fix H. Set $t_{\max} = \max_{\tilde{f} \in \widetilde{W}} t(H, \tilde{f})$. For $t < t_{\max}$ define

$$\phi(W_0, t) = \inf\{ J_{W_0}(\tilde{f}) : t(H, \tilde{f}) \ge t \}.$$

(i) For $t < t_{\max}$, $\lim_{n \to \infty} \frac{1}{(kn)^2} \log \mathbb{P}_{kn, W_0}(t(H, G_{kn}) \ge t) = -\phi(W_0, t)$.

(ii) Fix $t < t_{\max}$.

- Let \tilde{F}^* be the subset of $\{\tilde{f}: t(H, \tilde{f}) \ge t\}$ where J_{W_0} is minimized.
- \tilde{F}^* is non-empty and compact.
- $\mathbb{P}_{kn,W_0}(\delta_{\Box}(G_{kn}, \tilde{F}^*) < \varepsilon | t(H, G_{kn}) \ge t) \ge 1 \exp(-Cn^2)$ for some C > 0.

Fix H. Set $t_{\max} = \max_{\tilde{f} \in \widetilde{W}} t(H, \tilde{f})$. For $t < t_{\max}$ define

$$\phi(W_0, t) = \inf\{ J_{W_0}(\tilde{f}) : t(H, \tilde{f}) \ge t \}.$$

(i) For $t < t_{\max}$, $\lim_{n \to \infty} \frac{1}{(kn)^2} \log \mathbb{P}_{kn, W_0}(t(H, G_{kn}) \ge t) = -\phi(W_0, t)$.

(ii) Fix $t < t_{\max}$.

- Let \tilde{F}^* be the subset of $\{\tilde{f}: t(H, \tilde{f}) \ge t\}$ where J_{W_0} is minimized.
- \tilde{F}^* is non-empty and compact.
- $\mathbb{P}_{kn,W_0}(\delta_{\Box}(G_{kn}, \tilde{F}^*) < \varepsilon | t(H, G_{kn}) \ge t) \ge 1 \exp(-Cn^2)$ for some C > 0.
- If *F*^{*} is a singleton, the conditional distribution is concentrated at a single point.

Do the minimizers of $\min\{J_{W_0}(\tilde{f}) : \tilde{f} \in \widetilde{\mathcal{W}}, t(H, \tilde{f}) \ge t\}$ have the same block structure as W_0 ?

Do the minimizers of $\min\{J_{W_0}(\tilde{f}) : \tilde{f} \in \widetilde{\mathcal{W}}, t(H, \tilde{f}) \ge t\}$ have the same block structure as W_0 ?

Theorem (BCGPS'20+)

Fix a d-regular graph H. Set $t_{\max} = \max_{\tilde{f} \in \widetilde{W}} t(H, \tilde{f})$.

Do the minimizers of $\min\{J_{W_0}(\tilde{f}) : \tilde{f} \in \widetilde{\mathcal{W}}, t(H, \tilde{f}) \ge t\}$ have the same block structure as W_0 ?

Theorem (BCGPS'20+)

Fix a d-regular graph H. Set $t_{\max} = \max_{\tilde{f} \in \widetilde{W}} t(H, \tilde{f})$.

(i) There exists $\delta > 0$ such that if $t \in [t(H, W_0), (1 + \delta)t(H, W_0))$, the minimizer is unique and symmetric.

Do the minimizers of $\min\{J_{W_0}(\tilde{f}) : \tilde{f} \in \widetilde{\mathcal{W}}, t(H, \tilde{f}) \ge t\}$ have the same block structure as W_0 ?

Theorem (BCGPS'20+)

Fix a d-regular graph H. Set $t_{\max} = \max_{\tilde{f} \in \widetilde{W}} t(H, \tilde{f})$.

- (i) There exists $\delta > 0$ such that if $t \in [t(H, W_0), (1 + \delta)t(H, W_0))$, the minimizer is unique and symmetric.
- (ii) There exists $\eta > 0$ such that if $t \in ((1 \eta)t_{\max}, t_{\max}]$ the minimizer is unique and symmetric.

• In the symmetry-breaking regime, the optimizing graphon has a different structure from the base graphon.

- In the symmetry-breaking regime, the optimizing graphon has a different structure from the base graphon.
- Can establish symmetry-breaking for certain W_0 .

- In the symmetry-breaking regime, the optimizing graphon has a different structure from the base graphon.
- Can establish symmetry-breaking for certain W_0 .
- In these examples, this establishes a "re-entrant phase transition."

- In the symmetry-breaking regime, the optimizing graphon has a different structure from the base graphon.
- Can establish symmetry-breaking for certain W_0 .
- In these examples, this establishes a "re-entrant phase transition."
- Know the specific symmetry/symmetry-breaking boundary for Erdős-Rényi bipartite graphs.

• Prior work [CV '11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.

- Prior work [CV '11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

- Prior work [CV '11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

- Prior work [CV '11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

Two-step approach:

Apply Szemerédi's Regularity Lemma:

- Prior work [CV '11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

- Apply Szemerédi's Regularity Lemma:
 - Construct a Szemerédi net of block graphons

- Prior work [CV '11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

- Apply Szemerédi's Regularity Lemma:
 - Construct a Szemerédi net of block graphons
 - *Cover* an event by a finite union of open balls centered on the elements of this net

- Prior work [CV '11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

- Apply Szemerédi's Regularity Lemma:
 - Construct a Szemerédi net of block graphons
 - *Cover* an event by a finite union of open balls centered on the elements of this net
 - It suffices to characterize the limiting probability of each open ball.

- Prior work [CV '11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

- Apply Szemerédi's Regularity Lemma:
 - Construct a Szemerédi net of block graphons
 - *Cover* an event by a finite union of open balls centered on the elements of this net
 - It suffices to characterize the limiting probability of each open ball.
- Image: "Method of types"-style argument

- Prior work [CV '11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

- Apply Szemerédi's Regularity Lemma:
 - Construct a Szemerédi net of block graphons
 - *Cover* an event by a finite union of open balls centered on the elements of this net
 - It suffices to characterize the limiting probability of each open ball.
- Image: "Method of types"-style argument
 - Each vertex is a member of some block ("type")

- Prior work [CV '11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

- Apply Szemerédi's Regularity Lemma:
 - Construct a Szemerédi net of block graphons
 - *Cover* an event by a finite union of open balls centered on the elements of this net
 - It suffices to characterize the limiting probability of each open ball.
- Image: "Method of types"-style argument
 - Each vertex is a member of some block ("type")
 - Its type influences how likely it forms edges with vertices of other types.

- Prior work [CV '11] relies on the fact that an Erdős-Rényi random graph remains invariant in law under vertex permutation.
- This is not true for general block models!

- Apply Szemerédi's Regularity Lemma:
 - Construct a Szemerédi net of block graphons
 - *Cover* an event by a finite union of open balls centered on the elements of this net
 - It suffices to characterize the limiting probability of each open ball.
- Image: "Method of types"-style argument
 - Each vertex is a member of some block ("type")
 - Its type influences how likely it forms edges with vertices of other types.
 - Compare base graphon to empirical graphon according to alignment of types
Proof Ideas: Symmetric Regime

Definition

Let $p \in (0,1)$ and $d \ge 2$. We define $\psi_p : [0,1] \to \mathbb{R}$ as

$$\psi_p(x) = h_p(x^{1/d}),$$

and let $\hat{\psi}_p(x)$ denote the convex minorant of $\psi_p(x)$.

Figure 4: Illustration of the function $x \mapsto h_p(x^{1/\gamma})$ and its convex minorant (Lubetzky–Zhao 2015))

Proof Ideas: Symmetric Regime

Figure 5: A graphon $f = (f_{ij})_{i,j \in [m]}$

Proof Ideas: Symmetric Regime

Figure 5: A graphon $f = (f_{ij})_{i,j \in [m]}$

Let
$$||g||_d = \left(\int_{[0,1]^2} g(x,y)^d dx dy\right)^{\frac{1}{d}}$$
.

The Convex Minorant Condition

Definition

- Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon
- Let $f = (f_{ij})_{i,j \in [m]}$

The Convex Minorant Condition

Definition

- Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon
- Let $f = (f_{ij})_{i,j \in [m]}$

We say f satisfies the $\varepsilon\text{-neighborhood minorant condition if}$ for all (i,j) such that $p_{ij}\in(0,1)$

$$x \in \left(\|f_{ij}\|_d^d - \epsilon, \|f_{ij}\|_d^d + \epsilon \right) \cap [0, 1] \implies \psi_{p_{ij}}(x) = \hat{\psi}_{p_{ij}}(x).$$

The Convex Minorant Condition

Definition

- Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon
- Let $f = (f_{ij})_{i,j \in [m]}$

We say f satisfies the $\varepsilon\text{-neighborhood minorant condition if}$ for all (i,j) such that $p_{ij}\in(0,1)$

$$x \in \left(\|f_{ij}\|_d^d - \epsilon, \|f_{ij}\|_d^d + \epsilon \right) \cap [0, 1] \implies \psi_{p_{ij}}(x) = \hat{\psi}_{p_{ij}}(x).$$

Figure 6: The function $x\mapsto h_p(x^{1/\gamma})$ and its convex minorant [LZ '15]

• Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon

- Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon
- Suppose \tilde{f} is a minimizer of the variational problem for $\tau = t(H, \cdot)$

- Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon
- Suppose \tilde{f} is a minimizer of the variational problem for $\tau = t(H, \cdot)$
- Suppose there exists a sequence of graphons $f_n \in W_\Omega$ such that

- Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon
- Suppose \tilde{f} is a minimizer of the variational problem for $\tau = t(H, \cdot)$
- Suppose there exists a sequence of graphons $f_n \in \mathcal{W}_\Omega$ such that
 - Each f_n satisfies the ε -neighborhood minorant condition,

- Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon
- Suppose \widetilde{f} is a minimizer of the variational problem for $\tau = t(H, \cdot)$
- Suppose there exists a sequence of graphons $f_n \in \mathcal{W}_\Omega$ such that
 - Each f_n satisfies the ε -neighborhood minorant condition,
 - $\delta_{\Box}(f_n, \tilde{f}) \to 0$,

- Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon
- Suppose \tilde{f} is a minimizer of the variational problem for $\tau = t(H, \cdot)$
- Suppose there exists a sequence of graphons $f_n \in \mathcal{W}_\Omega$ such that
 - Each f_n satisfies the ε -neighborhood minorant condition,
 - $\delta_{\Box}(f_n, \hat{f}) \to 0$,
 - and $I_{W_0}(f_n) \to J_{W_0}(\tilde{f})$.

- Let $W_0 = (p_{ij})_{i,j \in [m]}$ be the base graphon
- Suppose \tilde{f} is a minimizer of the variational problem for $\tau = t(H, \cdot)$
- Suppose there exists a sequence of graphons $f_n \in \mathcal{W}_\Omega$ such that
 - Each f_n satisfies the ε -neighborhood minorant condition,
 - $\delta_{\Box}(f_n, \hat{f}) \to 0$,
 - and $I_{W_0}(f_n) \to J_{W_0}(\tilde{f}).$

Then \tilde{f} matches the block structure of W_0 .

Proof Ideas: Non-Symmetric Regime

Figure 7: Construction of a non-symmetric graphon

Build a non-symmetric graphon such that

Proof Ideas: Non-Symmetric Regime

Figure 7: Construction of a non-symmetric graphon

Build a non-symmetric graphon such that

• The constraint (e.g. homomorphism density) is satisfied

Proof Ideas: Non-Symmetric Regime

Figure 7: Construction of a non-symmetric graphon

Build a non-symmetric graphon such that

- The constraint (e.g. homomorphism density) is satisfied
- The relative entropy is strictly lower than what the symmetric solution attains.

- Dupuis, Medvedev'20—inhomogeneous LDP (proof using weak convergence methods)
- Chakraborty, Hazra, den Hollander, Sfragara '20 (variational problem for spectral radius)
- Braunsteins, den Hollander, Mandjes'20
- Grebik, Pikhurko '21

(sample path large deviations)

(irrational block lengths)

What is the precise boundary between the symmetric and non-symmetric regimes?

- What is the precise boundary between the symmetric and non-symmetric regimes?
- What happens in the symmetry-breaking phase?

- What is the precise boundary between the symmetric and non-symmetric regimes?
- What happens in the symmetry-breaking phase?
- In the symmetry-breaking phase, does the upper tail variational problem have a unique minimizer?

- What is the precise boundary between the symmetric and non-symmetric regimes?
- What happens in the symmetry-breaking phase?
- In the symmetry-breaking phase, does the upper tail variational problem have a unique minimizer?
- 4 Large deviations of non-regular subgraph counts?

- What is the precise boundary between the symmetric and non-symmetric regimes?
- What happens in the symmetry-breaking phase?
- In the symmetry-breaking phase, does the upper tail variational problem have a unique minimizer?
- 4 Large deviations of non-regular subgraph counts?

Thank you!