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Abstract: We discuss recent proofs of both differentiable and sin-
gular responses of dense graphs as contraints on edge and trian-
gle densities are varied. Proving differentiability requires control
over typical (exponentially most) graphs with given sharp values of
those two densities. Based on arxiv:2110.14052 (Joe Neeman, CR

and Lorenzo Sadun).



This talk is on the pure mathematics of large, dense graphs sub-
jected to ‘competing constraints’. I emphasize the notion of com-
peting constraints, and more specifically the consequences in finite

graphs of such competition between constraints (‘tension’).

To give some perspective I begin with a quick review of competing

constraints in two other combinatorial settings:

1) densest packing of unit spheres (covering fraction vs. no overlap)

2) permutations with extreme densities of patterns 123 and 321



1) The tension in packing problems is easily seen when trying to
maximize covering fraction. For unit disks in the plane, the optimal

configuration is unique: each disk surrounded by six others.
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2) Among permutations the possible joint densities of the patterns

123 and 321 are shown in the following figure; certain portions of
the edges exhibit the competition. Note the kink at (0.278, 0.278).
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In both sphere packing and constrained permutations there is real
interest in the ‘states’ (configurations/permutations) which achieve
extreme constraints. Competition is seen there but is better ex-
plored in nonextremely constrained states, analyzing the effect of

the competition on ‘typical’ states with such given constraints.

For example in dimension 2 one expects from simulations (1950’s)
that typical disk packings with high density remain ordered like the
optimum as the covering fraction is decreased from the optimum of
7/v/12 ~ 0.91 down to about 0.71 where the typical state changes

sharply to become disordered — though this cannot be proven.



Also, the permutation kink might be expected to have effects in the

interior, which in this case has been proven in Section 10 of:

R. Kenyon, D. Kral’, CR and P. Winkler, Permutations with fixed
pattern densities, Random Structures Algorithms 56(2020) 220-250.



Now on to constrained graphs, which is the best developed of these
three ‘competing constraints’ combinatorial areas. More specifi-
cally we consider dense graphs at large but finite (fixed) n, with

constraints on edge and triangle density.

This example from extremal graph theory is old. I start with its

status in 2012 (Pikhurko/Razborov):
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Our new results concern nonextreme constraints, as in sphere pack-

ing and permutations above. The project began with:

C. Radin and L. Sadun, Phase transitions in a complex network, J.
Phys. A: Math. Theor. 46(2013) 305002

And followed closely after:

Chatterjee/Varadhan (2010) LDP for G(n, p), some ERGMs
Chatterjee/Diaconis (2011) more on ERGMs, esp edge/triangle
Pikhurko/Razborov (2012) extreme edge/triangle constraints
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With (e,7) in the interior of the Razborov triangle, new thread
began with the study of Z,(e,7,9), the cardinality of the set of
graphs on n nodes with edge density in the interval (¢ — J,e + ¢)
and triangle density in the interval (7 — §,7 + 9).

We first proved that the limits exist:

lim lim (1/n?)In[Z,(e,7,6)] = 5c.-

0—0 n—oo
and that this ‘Boltzmann entropy’ can be represented as follows:
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Variational principle for Boltzmann entropy

Se.; = max S(q),
’ te(q)=c,t-(q)=T (@)

where S(q) is the ‘Shannon entropy’ of graphon g:

- /[O § %{q(x, y)Infg(z,y)] + [1 — q(z,y)] In[1 — q(z, y)|} dzdy

and the densities t.(q) and t.(q) are given by:

o(q) = /[ L 0() dedy 11(a) = /[ 4@ u)aly, )a(z, @) dady
0,1]2 0,1]3
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Our recent results: For each of two open sets in the parameter
plane, separated by the ER curve, we determine unique S(q)-optimal
graphons ¢. » at each point (e, 7); the ¢. . are bipodal with 4 real
parameters which are real analytic in € and 7 and can be determined

to arbitrary accuracy.
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0 C 1
The parameters of a bipodal graphon
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Using this drop in degrees of freedom we prove that these define
a pair of 2 dimensional analytic surfaces in 4 dimensions, with a

common boundary of singularities.

More specifically, in terms of the function

H(p) = —|pln(p) + (1 — p) In(1 — p)]

of the real variable p we have proven:
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Theorem 1. There is an open subset (O; in the planar set of
achievable parameters (¢,7), whose upper boundary is the curve
T =¢%, 1/2 < e < 1, such that at (¢,7) in O; there is a unique
entropy-optimizing graphon g ). This graphon is bipodal and for
fixed (e,7) = (e, e —48?), the values of a, b, ¢, d can be approximated
to arbitrary accuracy via an explicit iterative scheme. These pa-
rameters can also be expressed via asymptotic power series in o

whose leading terms are:
a=1—e—086+0(5)
2 53
C2e—1 +007)
0 ik
T2 -1 2-—1

d=e+0+ df(e) (H’(e) - (e _ 1) H”(e)> +0(5%).

b=c¢e

+ 0(8%)

C
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Theorem 2. There is an open subset Oy in the planar set of
achievable parameters (e,7), whose lower boundary is the curve
T = &3, 1/2 < € < 1, such that at each (g,7) in Oy there is a
unique entropy-optimizing graphon g »y. This graphon is bipodal
and for fixed (e,7) = (e, e? + A7) the values of a, b, c,d can be ap-
proximated to arbitrary accuracy via an explicit iterative scheme.
These parameters can also be expressed via asymptotic power series
in A7 whose leading terms are:

a = ag + O(AT)
2AT 5
b=e— 3e(2e — 1) + O(|AT]?)
AT 0
©= 3e(2e — 1)? +O(AT])



where ag 1s the solution to

H'(a) = (1 ~ 3) H'(e).

€

Connection with finite graphs. If graphon ¢ optimizing S(q) is
unique under given constraints (e, 7), then as the number of nodes
n diverges and the window 9,, — 0, exponentially most graphs G
with densities (G) € (¢ — 0p,e 4+ 0p) and 7(G) € (T — 0pn, T + 0n)

will have reduced 0 — 1 graphon close to ¢ in cut metric.
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Summary: In conflicting-constraints for graphs we know more than
for sphere packing and permutations; we know quantitatively, to
any desired accuracy, how the system adjusts to the conflict, mostly

smoothly but with occasional singularity.

Open problems:

symmetry as an order parameter near edge density 1/2
discontinuous transition

behavior near (g,7) = (1/2,1/8)
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Symmetric graphon, proven extremal fore =1/2, 0<7<1/8
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It was Landau (1958) who, long ago, first pointed out the vital im-
portance of symmetry in phase transitions. This, the First Theorem
of solid-state physics, can be stated very simply: it is impossible to
change symmetry gradually. A given symmetry element is either
there or it is not; there is no way for it to grow imperceptibly. This
means, for instance, that there can be no critical point for the melt-
ing curve as there is for the boiling point: it will never be possible

to go continuously through some high-pressure phase from liquid
to solid.

P.W. Anderson, Basic Notions of Condensed Matter Physics, (1984), p.

This is the theoretical argument, which has appeared to some to
be a little too straightforward to be absolutely convincing.

A.B. Pippard, Classical Thermodynamics (1957), p. 122
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Problem: Show that (¢ —1/2)? = 0 in an open set near ¢ = 1/2.

In summary, if one can construct an ‘order parameter’ associated
with the optimal graphons g. -, which is real analytic in € and T,
positive in one parameter region and (constant) zero in another re-
gion, one has a powerful method for understanding why the system

cannot be connected smoothly between such parameter regions.

22



Graphon corresponding to t= 0.25979 e= 0.67 Graphon corresponding to t= 0.25907 e= 0.67

r 10.6

r 10.5

Transition between phases B(1,1) and A(3,0) at edge density 0.670
Triangle densities: 0.25979, 0.25907
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