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Abstract: We discuss recent proofs of both differentiable and sin-

gular responses of dense graphs as contraints on edge and trian-

gle densities are varied. Proving differentiability requires control

over typical (exponentially most) graphs with given sharp values of

those two densities. Based on arxiv:2110.14052 (Joe Neeman, CR

and Lorenzo Sadun).
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This talk is on the pure mathematics of large, dense graphs sub-

jected to ‘competing constraints’. I emphasize the notion of com-

peting constraints, and more specifically the consequences in finite

graphs of such competition between constraints (‘tension’).

To give some perspective I begin with a quick review of competing

constraints in two other combinatorial settings:

1) densest packing of unit spheres (covering fraction vs. no overlap)

2) permutations with extreme densities of patterns 123 and 321
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1) The tension in packing problems is easily seen when trying to

maximize covering fraction. For unit disks in the plane, the optimal

configuration is unique: each disk surrounded by six others.
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2) Among permutations the possible joint densities of the patterns

123 and 321 are shown in the following figure; certain portions of

the edges exhibit the competition. Note the kink at (0.278, 0.278).
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In both sphere packing and constrained permutations there is real

interest in the ‘states’ (configurations/permutations) which achieve

extreme constraints. Competition is seen there but is better ex-

plored in nonextremely constrained states, analyzing the effect of

the competition on ‘typical’ states with such given constraints.

For example in dimension 2 one expects from simulations (1950’s)

that typical disk packings with high density remain ordered like the

optimum as the covering fraction is decreased from the optimum of

π/
√

12 ≈ 0.91 down to about 0.71 where the typical state changes

sharply to become disordered – though this cannot be proven.
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Also, the permutation kink might be expected to have effects in the

interior, which in this case has been proven in Section 10 of:

R. Kenyon, D. Král’, CR and P. Winkler, Permutations with fixed

pattern densities, Random Structures Algorithms 56(2020) 220-250.
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Now on to constrained graphs, which is the best developed of these

three ‘competing constraints’ combinatorial areas. More specifi-

cally we consider dense graphs at large but finite (fixed) n, with

constraints on edge and triangle density.

This example from extremal graph theory is old. I start with its

status in 2012 (Pikhurko/Razborov):
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Our new results concern nonextreme constraints, as in sphere pack-

ing and permutations above. The project began with:

C. Radin and L. Sadun, Phase transitions in a complex network, J.

Phys. A: Math. Theor. 46(2013) 305002

And followed closely after:

Chatterjee/Varadhan (2010) LDP for G(n, p), some ERGMs

Chatterjee/Diaconis (2011) more on ERGMs, esp edge/triangle

Pikhurko/Razborov (2012) extreme edge/triangle constraints
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With (ε, τ) in the interior of the Razborov triangle, new thread

began with the study of Zn(ε, τ, δ), the cardinality of the set of

graphs on n nodes with edge density in the interval (ε − δ, ε + δ)

and triangle density in the interval (τ − δ, τ + δ).

We first proved that the limits exist:

lim
δ→0

lim
n→∞

(1/n2) ln[Zn(ε, τ, δ)] = sε,τ

and that this ‘Boltzmann entropy’ can be represented as follows:
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Variational principle for Boltzmann entropy

sε,τ = max
tε(q)=ε,tτ (q)=τ

S(q),

where S(q) is the ‘Shannon entropy’ of graphon q:

−
∫
[0,1]2

1

2
{q(x, y) ln[q(x, y)] + [1− q(x, y)] ln[1− q(x, y)]} dxdy

and the densities tε(q) and tτ (q) are given by:

tε(q) =

∫
[0,1]2

q(x, y) dxdy; tτ (q) =

∫
[0,1]3

q(x, y)q(y, z)q(z, x) dxdy.
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Our recent results: For each of two open sets in the parameter

plane, separated by the ER curve, we determine unique S(q)-optimal

graphons qε,τ at each point (ε, τ); the qε,τ are bipodal with 4 real

parameters which are real analytic in ε and τ and can be determined

to arbitrary accuracy.
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The parameters of a bipodal graphon
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Using this drop in degrees of freedom we prove that these define

a pair of 2 dimensional analytic surfaces in 4 dimensions, with a

common boundary of singularities.

More specifically, in terms of the function

H(p) = −[p ln(p) + (1− p) ln(1− p)]

of the real variable p we have proven:
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Theorem 1. There is an open subset O1 in the planar set of
achievable parameters (ε, τ), whose upper boundary is the curve
τ = ε3, 1/2 < ε < 1, such that at (ε, τ) in O1 there is a unique
entropy-optimizing graphon g(ε,τ). This graphon is bipodal and for
fixed (ε, τ) = (e, e3−δ3), the values of a, b, c, d can be approximated
to arbitrary accuracy via an explicit iterative scheme. These pa-
rameters can also be expressed via asymptotic power series in δ
whose leading terms are:

a = 1− e− δ +O(δ2)

b = e− δ2

2e− 1
+O(δ3)

c =
δ

2e− 1
− 2δ2

2e− 1
+O(δ3)

d = e+ δ +
δ2

eH ′(e)

(
H ′(e)−

(
e− 1

2

)
H ′′(e)

)
+O(δ3).
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Theorem 2. There is an open subset O2 in the planar set of
achievable parameters (ε, τ), whose lower boundary is the curve
τ = ε3, 1/2 < ε < 1, such that at each (ε, τ) in O2 there is a
unique entropy-optimizing graphon g(ε,τ). This graphon is bipodal
and for fixed (ε, τ) = (e, e3 + ∆τ) the values of a, b, c, d can be ap-
proximated to arbitrary accuracy via an explicit iterative scheme.
These parameters can also be expressed via asymptotic power series
in ∆τ whose leading terms are:

a = a0 +O(∆τ)

b = e− 2∆τ

3e(2e− 1)
+O([∆τ ]2)

c =
∆τ

3e(2e− 1)2
+O([∆τ ]2)

d = 1− e+O(∆τ),
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where a0 is the solution to

H ′(a0) =

(
1− 2

e

)
H ′(e).

Connection with finite graphs. If graphon q optimizing S(q) is

unique under given constraints (ε, τ), then as the number of nodes

n diverges and the window δn → 0, exponentially most graphs G

with densities ε(G) ∈ (ε − δn, ε + δn) and τ(G) ∈ (τ − δn, τ + δn)

will have reduced 0− 1 graphon close to q in cut metric.
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Summary: In conflicting-constraints for graphs we know more than

for sphere packing and permutations; we know quantitatively, to

any desired accuracy, how the system adjusts to the conflict, mostly

smoothly but with occasional singularity.

Open problems:

symmetry as an order parameter near edge density 1/2

discontinuous transition

behavior near (ε, τ) = (1/2, 1/8)
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Symmetric graphon, proven extremal for ε = 1/2, 0 ≤ τ ≤ 1/8
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It was Landau (1958) who, long ago, first pointed out the vital im-

portance of symmetry in phase transitions. This, the First Theorem

of solid-state physics, can be stated very simply: it is impossible to

change symmetry gradually. A given symmetry element is either

there or it is not; there is no way for it to grow imperceptibly. This

means, for instance, that there can be no critical point for the melt-

ing curve as there is for the boiling point: it will never be possible

to go continuously through some high-pressure phase from liquid

to solid.

P.W. Anderson, Basic Notions of Condensed Matter Physics, (1984), p. 19

This is the theoretical argument, which has appeared to some to

be a little too straightforward to be absolutely convincing.

A.B. Pippard, Classical Thermodynamics (1957), p. 122
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Problem: Show that (c− 1/2)2 = 0 in an open set near ε = 1/2.

In summary, if one can construct an ‘order parameter’ associated

with the optimal graphons qε,τ , which is real analytic in ε and τ ,

positive in one parameter region and (constant) zero in another re-

gion, one has a powerful method for understanding why the system

cannot be connected smoothly between such parameter regions.
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Transition between phases B(1, 1) and A(3, 0) at edge density 0.670
Triangle densities: 0.25979, 0.25907
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