Analytic Approach to Quasirandomness

Dan Král'
Masaryk University, Brno

September 26, 2022

Classical results

- quasirandom graph \approx Erdős-Rényi graph $G_{n, p}$ not a property of a single graph but a sequence

Classical results

- quasirandom graph \approx Erdős-Rényi graph $G_{n, p}$ not a property of a single graph but a sequence
- Rödl, Thomason, Chung, Graham and Wilson (1980's)
- $d(H, G)=$ induced density of H in G $t(H, G)=$ homomorphic density of H in G
- G_{1}, G_{2}, \ldots is quasirandom if $d\left(H, G_{i}\right) \rightarrow \mathbb{E} d\left(H, G_{n, p}\right)$ equivalently, if $t\left(H, G_{i}\right) \rightarrow \mathbb{E} t\left(H, G_{n, p}\right)$

Equivalent characterizations

- G_{1}, G_{2}, \ldots is quasirandom if $d\left(H, G_{i}\right) \rightarrow \mathbb{E} d\left(H, G_{n, p}\right)$
$\Leftrightarrow t\left(H, G_{i}\right) \rightarrow \mathbb{E} t\left(H, G_{n, p}\right)$
$\Leftrightarrow t\left(K_{2}, G_{i}\right) \rightarrow p$ and $t\left(C_{4}, G_{i}\right) \rightarrow p^{4}$
\Leftrightarrow every n-vertex subset induces $\approx p n^{2} / 2$ edges
\Leftrightarrow number of edges between A and B is $\approx p|A||B|$
\Leftrightarrow spectrum of the adjacency matrix is $\{p n, o(n), \ldots$,

Graph limit view

- a sequence G_{i} is convergent if $t\left(H, G_{i}\right)$ converges quasirandom $\Leftrightarrow t\left(H, G_{i}\right) \rightarrow \mathbb{E} t\left(H, G_{n, p}\right)$
- graphon analytic representation of the limit $W:[0,1]^{2} \rightarrow[0,1]$, a "continuous" adjacency matrix regularity decompositions, martingale convergence
- possible to define $t(H, W)$ for every graph H

Graph limit view

- a sequence G_{i} is convergent if $t\left(H, G_{i}\right)$ converges
- graphon analytic representation of the limit $W:[0,1]^{2} \rightarrow[0,1]$, a "continuous" adjacency matrix density $t(H, W)$ of a graph H in W
- a sequence G_{i} is quasirandom iff $W=1 / 2$ a.e.
$t\left(K_{2}, W\right)=p$ and $t\left(C_{4}, W\right)=p^{4} \Leftrightarrow W=p$
- this implies that $t\left(C_{4}, W\right) \geq t\left(K_{2}, W\right)^{4}$ for every W

Step graphons

- Theorem (Lovász, Sós, 2008) K-step graphon characterized by $O\left(K^{K}\right)$-vertex graphs

Step graphons

- Theorem (Lovász, Sós, 2008) K-step graphon characterized by $O\left(K^{K}\right)$-vertex graphs
- Theorem (Lovász, 2012) K-step graphon characterized by $O\left(K^{8}\right)$-vertex graphs

Step graphons

- Theorem (Lovász, Sós, 2008) K-step graphon characterized by $O\left(K^{K}\right)$-vertex graphs
- Theorem (Lovász, 2012) K-step graphon characterized by $O\left(K^{8}\right)$-vertex graphs
- Theorem (Grzesik, K., Pikhurko, 2022+) K-step graphon characterized by $O\left(K^{2}\right)$-vertex graphs

Step graphons

- Theorem (Lovász, Sós, 2008) K-step graphon characterized by $O\left(K^{K}\right)$-vertex graphs
- Theorem (Lovász, 2012) K-step graphon characterized by $O\left(K^{8}\right)$-vertex graphs
- Theorem (Grzesik, K., Pikhurko, 2022+) K-step graphon characterized by $O\left(K^{2}\right)$-vertex graphs
- Theorem (Spencer, 2010) degrees of parts different $\Rightarrow 8 K-4$ vertices suffice

Step graphons

- Theorem (Lovász, Sós, 2008) K-step graphon characterized by $O\left(K^{K}\right)$-vertex graphs
- Theorem (Lovász, 2012) K-step graphon characterized by $O\left(K^{8}\right)$-vertex graphs
- Theorem (Grzesik, K., Pikhurko, 2022+) K-step graphon characterized by $O\left(K^{2}\right)$-vertex graphs
- Theorem (Spencer, 2010) degrees of parts different $\Rightarrow 8 K-4$ vertices suffice
- Theorem (Grzesik, K., Pikhurko, 2022+) degrees of parts different $\Rightarrow \max \{2 K+1,4\}$ vertices

Tournaments

- tournament is an orientation of a complete graph
- tournamenton: $W:[0,1]^{2} \rightarrow[0,1]$, s.t.

$$
W(x, y)+W(y, x)=1
$$

Tournaments

- tournament is an orientation of a complete graph
- tournamenton: $W:[0,1]^{2} \rightarrow[0,1]$, s.t.

$$
W(x, y)+W(y, x)=1
$$

- Which tournaments T are quasirandom-forcing?

$$
t(T, W)=2^{-\binom{|T|}{2}} \text { iff } W \equiv 1 / 2
$$

Tournaments

- tournament is an orientation of a complete graph
- tournamenton: $W:[0,1]^{2} \rightarrow[0,1]$, s.t.

$$
W(x, y)+W(y, x)=1
$$

- Which tournaments T are quasirandom-forcing?

$$
t(T, W)=2^{-\binom{|T|}{2}} \text { iff } W \equiv 1 / 2
$$

- Every transitive tournament with $k \geq 4$ vertices.

Quasirandom-forcing tournaments

- every transitive tournament is quasirandom-forcing

Quasirandom-forcing tournaments

- every transitive tournament is quasirandom-forcing
- additional 5-vertex (Coregliano, Parente, Sato, 2019)

Quasirandom-forcing tournaments

- every transitive tournament is quasirandom-forcing
- additional 5-vertex (Coregliano, Parente, Sato, 2019)
- no \geq 7-vertex (Bucić, Long, Shapira, Sudakov, 2019+)

Quasirandom-forcing tournaments

- every transitive tournament is quasirandom-forcing
- additional 5-vertex (Coregliano, Parente, Sato, 2019)
- no \geq 7-vertex (Bucić, Long, Shapira, Sudakov, 2019+)
- no additional tournament (Hancock, Kabela, K., Martins, Parente, Skerman, Volec, 2019+)

Density of cycles

- What is maximum density of cycles of length k ? $c(k)=$ maximum density / random tournament

Density of cycles

- What is maximum density of cycles of length k ? $c(k)=$ maximum density / random tournament
- Kendall, Babington Smith; Szele (1940's): c(3) $=1$ Beineke, Harary (1965), Colombo (1964): $c(4)=4 / 3$ Komarov, Mackey (2017): c(5) = 1

Density of cycles

- What is maximum density of cycles of length k ? $c(k)=$ maximum density / random tournament
- Kendall, Babington Smith; Szele (1940's): $c(3)=1$ Beineke, Harary (1965), Colombo (1964): $c(4)=4 / 3$ Komarov, Mackey (2017): c(5) = 1
- Conjecture (Bartley 2018, Day 2017): $c(k)=1$ if and only if k is not divisible by four $c(k)=1+2 \sum_{i=1}^{\infty}\left(\frac{2}{(2 i-1) \pi}\right)^{k}$ if $4 \mid k$

Maximum density of cycles

- What is maximum density of cycles of length k ? $c(k)=$ maximum density / random tournament
- $c(3)=1, c(4)=4 / 3, c(5)=1$
- Conjecture (Bartley 2018, Day 2017): $c(k)=1$ if and only if k is not divisible by four $c(k)=1+2 \sum_{i=1}^{\infty}\left(\frac{2}{(2 i-1) \pi}\right)^{k}$ if $4 \mid k$

Maximum density of cycles

- What is maximum density of cycles of length k ? $c(k)=$ maximum density / random tournament
- Conjecture (Bartley 2018, Day 2017): $c(k)=1$ if and only if k is not divisible by four $c(k)=1+2 \sum_{i=1}^{\infty}\left(\frac{2}{(2 i-1) \pi}\right)^{k}$ if $4 \mid k$
- Theorem (Grzesik, K., Lovász Jr., Volec, 2020+) $c(k)=1 \Leftrightarrow k$ not divisible by four C_{k} is quasirandom-forcing if $k=2 \bmod 4$ $1+2 \cdot(2 / \pi)^{k} \leq c(k) \leq 1+(2 / \pi+o(1))^{k}$ if $4 \mid k$ $c(8)=332 / 315$

Orientations of cycles

- Which orientations of cycles are quasirandom-forcing?

Orientations of cycles

- Which orientations of cycles are quasirandom-forcing?
- Theorem (Grzesik, K., Lovász Jr., Volec, 2020+) C_{k} is quasirandom-forcing iff $k=2 \bmod 4$

Orientations of cycles

- Which orientations of cycles are quasirandom-forcing?
- Theorem (Grzesik, K., Lovász Jr., Volec, 2020+) C_{k} is quasirandom-forcing iff $k=2 \bmod 4$
- Theorem (Grzesik, Il'kovič, Kielak, K., 2022+) Full characterization of orientations upto length 12. No orientation of an odd cycle is quasirandom-forcing.

Yes:

No:

Quasirandom permutations

- permutation of order n : order on numbers $1, \ldots, n$ subpermutation: 4ㅍ3216 $\rightarrow 213 \quad 4 \underline{53216} 6321$

Quasirandom permutations

- permutation of order n : order on numbers $1, \ldots, n$ subpermutation: 4ㅍ3216 $\rightarrow 213 \quad 4 \underline{53216} \rightarrow 321$
- a sequence Π_{i} is quasirandom
$\Leftrightarrow d\left(\pi, \Pi_{i}\right) \rightarrow 1 / k!$ for every $\pi \in S_{k}$ and all k

Quasirandom permutations

- permutation of order n : order on numbers $1, \ldots, n$ subpermutation: 4ㅍ3216 $\rightarrow 213 \quad 4 \underline{53216} 6 \rightarrow 321$
- a sequence Π_{i} is quasirandom
$\Leftrightarrow d\left(\pi, \Pi_{i}\right) \rightarrow 1 / k$! for every $\pi \in S_{k}$ and all k
- Question (Graham)

Does there exist k_{0} such that quasirandomness $\Leftrightarrow d\left(\pi, \Pi_{i}\right) \rightarrow 1 / k_{0}$! for every $\pi \in S_{k_{0}}$?

Permutation limits

- a convergent sequence is represented by a permuton probability measure μ on $[0,1]^{2}$ with unit marginals Hoppen, Kohayakawa, Moreira, Ráth and Sampaio similar ideas in work of Presutti and Stromquist
- μ-random permutation choose n random points, x - and y-coordinates $(0.2,0.6),(0.4,0.3),(0.7,0.8) \rightarrow 213$

Quasirandom permutations

- Question (Graham)

Does there exist k_{0} such that quasirandomness $\Leftrightarrow d\left(\pi, \Pi_{i}\right) \rightarrow 1 / k_{0}$! for every $\pi \in S_{k_{0}}$?

Quasirandom permutations

- Question (Graham)

Does there exist k_{0} such that quasirandomness $\Leftrightarrow d\left(\pi, \Pi_{i}\right) \rightarrow 1 / k_{0}$! for every $\pi \in S_{k_{0}}$?

- Theorem (K., Pikhurko, 2013) μ is uniform $\Leftrightarrow d(\pi, \mu) \rightarrow 1 / 24$ for every $\pi \in S_{4}$ independence tests (Hoeffding 1948, Yanagimoto 1970)

Quasirandom permutations

- Question (Graham)

Does there exist k_{0} such that quasirandomness $\Leftrightarrow d\left(\pi, \Pi_{i}\right) \rightarrow 1 / k_{0}$! for every $\pi \in S_{k_{0}}$?

- Theorem (K., Pikhurko, 2013) μ is uniform $\Leftrightarrow d(\pi, \mu) \rightarrow 1 / 24$ for every $\pi \in S_{4}$ independence tests (Hoeffding 1948, Yanagimoto 1970)
- $k_{0}=3$ is not sufficient: $d(123,$.$) ranges from 1 / 4$ to $1 / 8$

Forcing sets

- Theorem (Glebov, Grzesik, Klimošová, K., 2015) $F(x, y)=\mu([0, x] \times[0, y])$ is piecewise polynomial \Rightarrow finite characterization
step permutons characterized by finitely many densities

Forcing sets

- Theorem (Glebov, Grzesik, Klimošová, K., 2015) $F(x, y)=\mu([0, x] \times[0, y])$ is piecewise polynomial \Rightarrow finite characterization
step permutons characterized by finitely many densities
- Do we need that $d(\pi, \mu)=1 / 24$ for all $\pi \in S_{4}$?

Forcing sets

- Theorem (Glebov, Grzesik, Klimošová, K., 2015) $F(x, y)=\mu([0, x] \times[0, y])$ is piecewise polynomial \Rightarrow finite characterization
step permutons characterized by finitely many densities
- Do we need that $d(\pi, \mu)=1 / 24$ for all $\pi \in S_{4}$?
- 8-element set of 4-point permutations (see next slide)

Forcing sets

- Theorem (Glebov, Grzesik, Klimošová, K., 2015) $F(x, y)=\mu([0, x] \times[0, y])$ is piecewise polynomial \Rightarrow finite characterization
step permutons characterized by finitely many densities
- Do we need that $d(\pi, \mu)=1 / 24$ for all $\pi \in S_{4}$?
- 8-element set of 4-point permutations (see next slide)
- Theorem (Crudele, Dukes, Noel, 2022++) Quasirandom-forcing set of 6 permutations.

Forcing sets

- Theorem (Glebov, Grzesik, Klimošová, K., 2015) $F(x, y)=\mu([0, x] \times[0, y])$ is piecewise polynomial \Rightarrow finite characterization
step permutons characterized by finitely many densities
- Do we need that $d(\pi, \mu)=1 / 24$ for all $\pi \in S_{4}$?
- 8-element set of 4-point permutations (see next slide)
- Theorem (Crudele, Dukes, Noel, 2022++) Quasirandom-forcing set of 6 permutations.
- Theorem (Kurečka, 2022) At least 4 permutations (regardless of orders) needed.

Sum forcing

- Do we need that $d(\pi, \mu)=1 / 24$ for all $\pi \in S_{4}$?
- Theorem (Chan, K., Noel, Pehova, Sharifzadeh, Volec) characterization of sets $T \subseteq S_{4}$ such that μ is uniform $\Leftrightarrow \sum_{\pi \in T} d(\pi, \mu)=|T| / 24$
- $T \subseteq S_{4}$ is quasirandom-forcing iff T is

or symmetric/complementary to one of these four sets

Latin squares

- Latin square each row/column contain all numbers $1, \ldots, n$

1	2	3	4	5				
3	1	4	5	2				
4	5	1	2	3	\rightarrow	1	3	
2	3	5	1	4				4
5	4	2	3	1				

Latin squares

- Latin square
each row/column contain all numbers $1, \ldots, n$
- pattern density: choose rows and columns

1	2	3	4	5			
3	1	4	5	2			
4	5	1	2	3	\rightarrow		
2	3	5	1	4			
5	4	2	3	1			

Latin squares

- Latin square each row/column contain all numbers $1, \ldots, n$
- pattern density: choose rows and columns
- limit theory by Garbe, Hancock, Hladký, Sharifzadeh sampling is tricky (existence of designs)

1	2	3	4	5			
3	1	4	5	2			
4	5	1	2	3	\rightarrow		
2	3	5	1	4			
5	4	2	3	1			

Latin squares

- Conjecture (Garbe, Hancock, Hladký, Sharifzadeh) quasirandomness \Leftrightarrow density of $k \times \ell$ pattern is $1 /(k \ell)$!

1	2	3	4	5				
3	1	4	5	2				
4	5	1	2	3		\rightarrow	1	3
2	3	5	1	4			4	
5	4	2	3	1				

Latin squares

- Conjecture (Garbe, Hancock, Hladký, Sharifzadeh) quasirandomness \Leftrightarrow density of $k \times \ell$ pattern is $1 /(k \ell)$!
- Theorem (Cooper, K., Lamaison, Mohr, 2022) quasirandomness \Leftrightarrow density of 2×3 pattern is $1 / 720$

1	2	3	4	5				
3	1	4	5	2				
4	5	1	2	3		\rightarrow	1	3
2	3	5	1	4				
5	4	2	3	1				

Latin squares

- Conjecture (Garbe, Hancock, Hladký, Sharifzadeh) quasirandomness \Leftrightarrow density of $k \times \ell$ pattern is $1 /(k \ell)$!
- Theorem (Cooper, K., Lamaison, Mohr, 2022) quasirandomness \Leftrightarrow density of 2×3 pattern is $1 / 720$
- 2×3 cannot be replaced with $1 \times \ell$ or 2×2

1	2	3	4	5				
3	1	4	5	2				
4	5	1	2	3	\rightarrow	1	3	
2	3	5	1	4			4	
5	4	2	3	1				

Thank you for your attention!

