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Classical results

• quasirandom graph ≈ Erdős-Rényi graph Gn,p

not a property of a single graph but a sequence

• Rödl, Thomason, Chung, Graham and Wilson (1980’s)

• d(H ,G ) = induced density of H in G
t(H ,G ) = homomorphic density of H in G

• G1,G2, . . . is quasirandom if d(H ,Gi)→ E d(H ,Gn,p)
equivalently, if t(H ,Gi)→ E t(H ,Gn,p)
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• Rödl, Thomason, Chung, Graham and Wilson (1980’s)

• d(H ,G ) = induced density of H in G
t(H ,G ) = homomorphic density of H in G

• G1,G2, . . . is quasirandom if d(H ,Gi)→ E d(H ,Gn,p)
equivalently, if t(H ,Gi)→ E t(H ,Gn,p)



Equivalent characterizations

• G1,G2, . . . is quasirandom if d(H ,Gi)→ E d(H ,Gn,p)
⇔ t(H ,Gi)→ E t(H ,Gn,p)
⇔ t(K2,Gi)→ p and t(C4,Gi)→ p4

⇔ every n-vertex subset induces ≈ pn2/2 edges
⇔ number of edges between A and B is ≈ p |A| |B |
⇔ spectrum of the adjacency matrix is {pn, o(n), . . . , }



Graph limit view

• a sequence Gi is convergent if t(H ,Gi) converges
quasirandom ⇔ t(H ,Gi)→ E t(H ,Gn,p)

• graphon analytic representation of the limit
W : [0, 1]2 → [0, 1], a “continuous” adjacency matrix
regularity decompositions, martingale convergence

• possible to define t(H ,W ) for every graph H
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Graph limit view

• a sequence Gi is convergent if t(H ,Gi) converges

• graphon analytic representation of the limit
W : [0, 1]2 → [0, 1], a “continuous” adjacency matrix
density t(H ,W ) of a graph H in W

• a sequence Gi is quasirandom iff W = 1/2 a.e.
t(K2,W ) = p and t(C4,W ) = p4 ⇔ W = p

• this implies that t(C4,W ) ≥ t(K2,W )4 for every W
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Step graphons

• Theorem (Lovász, Sós, 2008)
K -step graphon characterized by O(KK )-vertex graphs

• Theorem (Lovász, 2012)
K -step graphon characterized by O(K 8)-vertex graphs

• Theorem (Grzesik, K., Pikhurko, 2022+)
K -step graphon characterized by O(K 2)-vertex graphs
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degrees of parts different ⇒ 8K − 4 vertices suffice
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degrees of parts different ⇒ max{2K + 1, 4} vertices
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Tournaments

• tournament is an orientation of a complete graph

• tournamenton: W : [0, 1]2 → [0, 1], s.t.
W (x , y) + W (y , x) = 1

• Which tournaments T are quasirandom-forcing?

t(T ,W ) = 2−(|T |
2 ) iff W ≡ 1/2

• Every transitive tournament with k ≥ 4 vertices.
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Quasirandom-forcing tournaments

• every transitive tournament is quasirandom-forcing

• additional 5-vertex (Coregliano, Parente, Sato, 2019)

• no ≥ 7-vertex (Bucić, Long, Shapira, Sudakov, 2019+)

• no additional tournament (Hancock, Kabela, K., Martins,
Parente, Skerman, Volec, 2019+)
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Density of cycles

• What is maximum density of cycles of length k?
c(k) = maximum density / random tournament

• Kendall, Babington Smith; Szele (1940’s): c(3) = 1
Beineke, Harary (1965), Colombo (1964): c(4) = 4/3
Komarov, Mackey (2017): c(5) = 1

• Conjecture (Bartley 2018, Day 2017):
c(k) = 1 if and only if k is not divisible by four

c(k) = 1 + 2
∞∑
i=1

(
2

(2i−1)π

)k
if 4|k
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Maximum density of cycles

• What is maximum density of cycles of length k?
c(k) = maximum density / random tournament

• Conjecture (Bartley 2018, Day 2017):
c(k) = 1 if and only if k is not divisible by four
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• Theorem (Grzesik, K., Lovász Jr., Volec, 2020+)
c(k) = 1 ⇔ k not divisible by four
Ck is quasirandom-forcing if k = 2 mod 4
1 + 2 · (2/π)k ≤ c(k) ≤ 1 + (2/π + o(1))k if 4|k
c(8) = 332/315



Orientations of cycles

• Which orientations of cycles are quasirandom-forcing?

• Theorem (Grzesik, K., Lovász Jr., Volec, 2020+)
Ck is quasirandom-forcing iff k = 2 mod 4

• Theorem (Grzesik, Il’kovič, Kielak, K., 2022+)
Full characterization of orientations upto length 12.
No orientation of an odd cycle is quasirandom-forcing.

Yes:

No:
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Full characterization of orientations upto length 12.
No orientation of an odd cycle is quasirandom-forcing.

Yes:

No:



Quasirandom permutations

• permutation of order n: order on numbers 1, . . . , n
subpermutation: 453216 → 213 453216 → 321

• a sequence Πi is quasirandom
⇔ d(π,Πi)→ 1/k! for every π ∈ Sk and all k

• Question (Graham)
Does there exist k0 such that quasirandomness
⇔ d(π,Πi)→ 1/k0! for every π ∈ Sk0 ?
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Permutation limits

• a convergent sequence is represented by a permuton
probability measure µ on [0, 1]2 with unit marginals
Hoppen, Kohayakawa, Moreira, Ráth and Sampaio
similar ideas in work of Presutti and Stromquist

• µ-random permutation
choose n random points, x- and y -coordinates
(0.2, 0.6), (0.4, 0.3), (0.7, 0.8) → 213

2

1

3



Quasirandom permutations

• Question (Graham)
Does there exist k0 such that quasirandomness
⇔ d(π,Πi)→ 1/k0! for every π ∈ Sk0 ?

• Theorem (K., Pikhurko, 2013)
µ is uniform ⇔ d(π, µ)→ 1/24 for every π ∈ S4

independence tests (Hoeffding 1948, Yanagimoto 1970)

• k0 = 3 is not sufficient: d(123, .) ranges from 1/4 to 1/8
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Forcing sets

• Theorem (Glebov, Grzesik, Klimošová, K., 2015)
F (x , y) = µ([0, x ]× [0, y ]) is piecewise polynomial
⇒ finite characterization
step permutons characterized by finitely many densities

• Do we need that d(π, µ) = 1/24 for all π ∈ S4?

• 8-element set of 4-point permutations (see next slide)

• Theorem (Crudele, Dukes, Noel, 2022++)
Quasirandom-forcing set of 6 permutations.

• Theorem (Kurečka, 2022)
At least 4 permutations (regardless of orders) needed.
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Sum forcing

• Do we need that d(π, µ) = 1/24 for all π ∈ S4?

• Theorem (Chan, K., Noel, Pehova, Sharifzadeh, Volec)
characterization of sets T ⊆ S4 such that
µ is uniform ⇔

∑
π∈T

d(π, µ) = |T |/24

• T ⊆ S4 is quasirandom-forcing iff T is

or symmetric/complementary to one of these four sets



Latin squares

• Latin square
each row/column contain all numbers 1, . . . , n

• pattern density: choose rows and columns

• limit theory by Garbe, Hancock, Hladký, Sharifzadeh
sampling is tricky (existence of designs)

1 2 3 4 5
3 1 4 5 2
4 5 1 2 3
2 3 5 1 4
5 4 2 3 1

→ 1 3
2 4
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Latin squares

• Conjecture (Garbe, Hancock, Hladký, Sharifzadeh)
quasirandomness ⇔ density of k × ` pattern is 1/(k`)!

• Theorem (Cooper, K., Lamaison, Mohr, 2022)
quasirandomness ⇔ density of 2× 3 pattern is 1/720

• 2× 3 cannot be replaced with 1× ` or 2× 2
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2 3 5 1 4
5 4 2 3 1

→ 1 3
2 4
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Thank you for your attention!


