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Partition function of the random cluster model

For a graph G = (V,E) the partition function of the random
cluster model is defined by

ZG(q, w) =
∑

A⊆E(G)

qk(A)w|A|,

where k(A) denotes the number of connected components of
the graph (V,A).



Tutte polynomial

TG(x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−v(G),

where k(A) denotes the number of connected components of
the graph (V,A), and v(G) denotes the number of vertices of
the graph G.

TG(x, y) = (x− 1)−k(E)(y − 1)−v(G)ZG((x− 1)(y − 1), y − 1).



Tutte polynomial and random cluster model

TG(x, y)

Combinatorics

TG(1, 1) spanning trees

TG(2, 1) spanning forests

TG(1, 2) connected
subgraphs

TG(2, 2) = 2e(G)

TG(2, 0) acyclic
orientations

TG(0, 2) strong orientations

chromatic polynomial

flow polynomial

ZG(q, w)

Statistical physics

q = 2 Ising model

q ∈ Z>0 Potts model

q > 0 and w ≥ −1 random
cluster model



Main problem

Let (Gn)n be an essentially large girth sequence of d-regular
graphs. Let v(G) denote the number of vertices of G. Does the
limit

lim
n→∞

1

v(Gn)
lnZGn(q, w)

exist?

Essentially large girth: for every fixed g,

number of cycles of length g in Gn
number of vertices of Gn

→ 0



Earlier results

Dembo and Montanari: Ising model (q = 2)

Dembo, Montanari, Sun: Potts model (positive integer q),
except an interval (w0, w1)

Dembo, Montanari, Sly and Sun: even d and positive integer q

Helmuth, Jenssen and Perkins: proof of convergence for large
q assuming some expansion property of (Gn)n

Bandyopadhyay and Gamarnik: graph coloring, integer
q ≥ d+ 1 and w = −1.

Bencs and Csikvári: Tutte-polynomial with x ≥ 1 and 0 ≤ y ≤ 1.



Main theorem

Theorem (Bencs, Borbényi and Cs.)

For a graph G = (V,E) let ZG(q, w) =
∑
A⊆E(G) q

k(A)w|A|. If (Gn)n is
an essentially large girth sequence of d-regular graphs, then the limit

lim
n→∞

1

v(Gn)
lnZGn(q, w) = ln Φd,q,w

exists for q ≥ 2 and w ≥ 0. The quantity Φd,q,w can be computed as
follows. Let
(√

1 +
w

q
cos(t) +

√
(q − 1)w

q
sin(t)

)d

+ (q − 1)

(√
1 +

w

q
cos(t) −

√
w

q(q − 1)
sin(t)

)d

,

then
Φd,q,w := max

t∈[−π,π]
Φd,q,w(t).

The same conclusion holds true with probability 1 for a sequence of
random d-regular graphs.



Phase transition

Theorem (BBC)

Let q ≥ 2 and

wc :=
q − 2

(q − 1)1−2/d − 1
− 1.

If 0 ≤ w ≤ wc, then Φd,q,w = q
(

1 + w
q

)d/2
. If w > wc, then

Φd,q,w > q
(

1 + w
q

)d/2
.



Picture

q = 1
q = 2
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Figure: The investigated parameters are in blue. The dashed lines
are x = d− 1 and the phase transition parametrized in x, y. We have
q = (x− 1)(y − 1) and w = y − 1.



Plan of the proof

The proof consists of two parts:
Approximations of the partition function ZG(q, w)

Study of ferromagnetic 2-spin models



Approximations of the partition function ZG(q, w)



Spin models

Given a graph G = (V,E), a symmetric matrix N ∈ Rr×r and
µ ∈ Rr let

ZG(N,µ) :=
∑

σ:V→[r]

∏
v∈V

µσ(v)
∏

(u,v)∈E(G)

Nσ(u),σ(v).



Potts model

Potts model with q spins: When q is a positive integer and M
is the q × q matrix with diagonal elements 1 + w and
off-diagonal elements 1, and µ ≡ 1, then

ZG(M, 1) = ZG(q, w).



Rank 1 approximation

Motivation: assume that q is a positive integer.

M =


1 + w 1 . . . 1

1 1 + w . . . 1

.

.

.
.
.
.

. . .
.
.
.

1 1 . . . 1 + w

 and M1 =


1 + w

q
1 + w

q
. . . 1 + w

q
1 + w

q
1 + w

q
. . . 1 + w

q

.

.

.
.
.
.

. . .
.
.
.

1 + w
q

1 + w
q

. . . 1 + w
q

 .

Idea: approximate ZG(M) with ZG(M1). Let

Z
(1)
G (q, w) := ZG(M1) = qv(G)

(
1 +

w

q

)e(G)

,

the rank 1 approximation of ZG(q, w). Make sense for any q > 0.



Lemma

If q ≥ 1, then
ZG(q, w) ≥ Z(1)

G (q, w).

If 0 < q ≤ 1, then

ZG(q, w) ≤ Z(1)
G (q, w).

Proof.
Using the fact that k(A) ≥ v(G)− |A| for an A ⊆ E(G) we get
that for q ≥ 1 we have

ZG(q, w) =
∑

A⊆E(G)

q
k(A)

w
|A| ≥

∑
A⊆E(G)

q
v(G)−|A|

w
|A|

= q
v(G)

(
1 +

w

q

)e(G)
.

For q ≤ 1 we have the opposite inequality in the above
computation.



Rank 2 approximation

What is better than a rank 1 approximation? Of course, a rank
2...
Motivation: again assume that q is a positive integer.

M =


1 + w 1 . . . 1

1 1 + w . . . 1

.

.

.
.
.
.

. . .
.
.
.

1 1 . . . 1 + w

 and M2 =


1 + w 1 . . . 1

1 1 + w
q−1

. . . 1 + w
q−1

.

.

.
.
.
.

. . .
.
.
.

1 1 + w
q−1

. . . 1 + w
q−1

 .

Then

Z
(2)
G (q, w) := ZG(M2) =

∑
S⊆V

(1+w)e(S)(q−1)v(G)−|S|
(

1 +
w

q − 1

)e(G−S)
.

Makes sense if q > 1.



2-spin model

Note that Z(2)
G (q, w) = ZG(M ′2, ν2), where

M ′2 =

(
1 + w 1

1 1 + w
q−1

)
and ν2 =

(
1

q − 1

)
even if q is not an integer. Also observe that

Z
(2)
G (q, w) =

∑
S⊆V (G)

(1 + w)e(S)Z
(1)
G−S(q − 1, w).



Rank 2 approximation

Lemma

We have

ZG(q, w) =
∑
S⊆V

(1 + w)e(S)ZG−S(q − 1, w).

Lemma

For q ≥ 2 we have

ZG(q, w) ≥ Z(2)
G (q, w).

For 1 < q ≤ 2 we have

ZG(q, w) ≤ Z(2)
G (q, w).



Rank 2 approximation

Lemma

We have

ZG(q, w) =
∑
S⊆V

(1 + w)e(S)ZG−S(q − 1, w).

Lemma

For q ≥ 2 we have

ZG(q, w) ≥ Z(2)
G (q, w).

For 1 < q ≤ 2 we have

ZG(q, w) ≤ Z(2)
G (q, w).



Large girth graphs

Theorem (BBC)

Let G be a graph with L = L(G, g) cycles of length at most
g − 1. Let q ≥ 2. Then

Z
(2)
G (q, w) ≤ ZG(q, w) ≤ qn/g+LZ(2)

G (q, w).

Theorem (BBC)

Let q ≥ 2 and w ≥ 0. Let (Gn)n be an essentially large girth
sequence of d-regular graphs. If the limit
limn→∞

1
v(Gn)

lnZ
(2)
Gn

(q, w) exists, then the limit
limn→∞

1
v(Gn)

lnZGn(q, w) exists too, and they have the same
value.
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Picture

Figure: Large component: a component containing cycle. Set LA.
Small component: component not containing cycle. Set SA.
Compatible vertex set R: union of some small components (it may be
empty), notation R ∼ A.



Computation

k(A) = |LA|+ |SA|
|LA| ≤ n

g + L(G, g)

q|SA| = ((q − 1) + 1)|SA| =
∑

R∼A(q − 1)k(R,A).

ZG(q, w) =
∑

A⊆E(G)

qk(A)w|A| =
∑

A⊆E(G)

q|LA|+|SA|w|A|

≤ qn/g+L
∑

A⊆E(G)

q|SA|w|A|

= qn/g+L
∑

A⊆E(G)

∑
R:R∼A

(q − 1)k(R,A)w|A|

= qn/g+L
∑

R⊆V (G)

∑
A:A∼R

(q − 1)k(R,A)w|A[R]|+|A[V \R]|

= qn/g+L
∑

R⊆V (G)

(1 + w)e(V \R)
∑
D

(q − 1)k(D)w|D|,



Proof continued...

In the last sum, D is a subset of the edges induced by R such
that none of the induced connected components contains a
cycle. Then

∑
D

(q−1)k(D)w|D| =
∑
D

(q−1)|R|−|D|w|D| ≤ (q−1)|R|
(

1 +
w

q − 1

)e(R)

.

Hence

ZG(q, w) ≤ qn/g+L
∑

R⊆V (G)

(1 + w)e(V \R)Z
(1)
G[R](q − 1, w),

that is
ZG(q, w) ≤ qn/g+LZ(2)

G (q, w).



Analysis of ferromagnetic 2-spin models



Ferromagnetic 2-spin models

Recall that Z(2)
G (q, w) = ZG(M ′2, ν2), where

M ′2 =

(
1 + w 1

1 1 + w
q−1

)
and ν2 =

(
1

q − 1

)
So we need to show that the limit limn→∞

1
v(Gn)

lnZ
(2)
Gn

(q, w)

exists for an essentially large girth sequence of d-regular
graphs (Gn)n. This is already done!



Dembo, Montanari, Sly and Sun

The work of Dembo, Montanari, Sly and Sun

Amir Dembo and Andrea Montanari. Ising models on
locally tree-like graphs.
Allan Sly and Nike Sun. Counting in two-spin models on
d-regular graphs.
Amir Dembo, Andrea Montanari, and Nike Sun. Factor
models on locally tree-like graphs.
Amir Dembo, Andrea Montanari, Allan Sly, and Nike Sun.
The replica symmetric solution for Potts models on
d-regular graphs.



Limit theorem

Theorem (Sly and Sun building on Dembo and Montanari)

Let N be a 2× 2 positive definite matrix with positive entries
and let µ ∈ R2

>0. Then there exists a Φd(N,µ) such that if (Gn)n
is an essentially large girth sequence of d-regular graphs, then

lim
n→∞

1

v(Gn)
lnZGn(N,µ) = ln Φd(N,µ).

The same statement holds true for a sequence of random
d-regular graphs with probability 1.



Some improvements

Theorem (BBC)
Let N be a 2× 2 positive definite matrix with positive entries
and let µ ∈ R2

>0. Let (Gn)n be a Benjamini–Schramm
convergent sequence of d-regular graphs. Then

lim
n→∞

1

v(Gn)
lnZGn(N,µ).

exists.

Theorem (BBC)
Let N be a 2× 2 positive definite matrix with positive entries
and let µ ∈ R2

>0. For any d-regular graph G we have
ZG(N,µ) ≥ Φd(N,µ)v(G). Furthermore, if G contains εv(G)
cycles of length g, then there exists a δ = δ(d,N, µ, ε, g) > 0

such that ZG(N,µ) ≥ ((1 + δ)Φd(N,µ))v(G).
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Subgraph counting polynomial

Subgraph counting polynomial of a d-regular graph:

FG(x0, . . . , xd) =
∑
A⊆E

(∏
v∈V

xdA(v)

)
,

and a bit more generally,

FG(x0, . . . , xd|z) =
∑
A⊆E

(∏
v∈V

xdA(v)

)
z2|A| = FG(x0, x1z, x2z, ..., xdz

d)

Example: FK5(x0, x1, x2, x3, x4)
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Ferromagnetic 2-spin models and subgraph counting
polynomial

Suppose that we can write an r × r matrix N into the form
N = aaT + bbT and let µ ∈ Rr. Then

ZG(N,µ) =
∑

ϕ:V→[r]

∏
v∈V

µϕ(v)

∏
(u,v)∈E

Nϕ(u)ϕ(v)

=
∑

ϕ:V→[r]

∏
v∈V

µϕ(v)

∏
(u,v)∈E

(aa
T

+ bb
T
)ϕ(u)ϕ(v)

=
∑

S⊆E

∑
ϕ:V→[r]

∏
v∈V

µϕ(v)

∏
(u,v)∈E\S

(aa
T
)ϕ(u)ϕ(v)

∏
(u,v)∈S

(bb
T
)ϕ(u)ϕ(v)

=
∑

S⊆E

∑
ϕ:V→[r]

∏
v∈V

µϕ(v)

∏
(u,v)∈E\S

(aϕ(u)aϕ(v))
∏

(u,v)∈S
(bϕ(u)bϕ(v))

=
∑

S⊆E

∏
v∈V

 r∑
k=1

µka
d−dS(v)

k
b
dS(v)

k


= FG(r0, . . . , rd),

where rj =
∑r

k=1 µka
d−j
k bjk.



More than one way

a and b are not the only vectors satisfying N = aaT + bbT .
Indeed, let us define the vectors a(t) and b(t) as follows:

a(t)j = aj cos(t) + bj sin(t),

and
b(t)j = −aj sin(t) + bj cos(t).

Then N = a(t)a(t)T + b(t)b(t)T . So each pairs a(t), b(t) gives
rise to a vector v(t) = (r0(t), . . . , rd(t)) such that

FG(v(t)) = ZG(N,µ).



Specialization

We can apply our argument to N = M ′2, µ = ν2 with the
following vectors.

a =

 √
1 + w

q√
1 + w

q

 and b =

 √
(q−1)w

q

−
√

w
q(q−1)

 .

One can check that M ′2 = aaT + bbT indeed holds true. We can
again introduce the vectors a(t), b(t) giving rise to a vector
v(t) = (r0(t), . . . , rd(t)) such that

FG(v(t)) = ZG(M ′2, ν2) = Z
(2)
G (q, w).



Example

Let d = 8, q = 5 and w = 1. Then the vector

v(0) = (10.368, 0, 1.728, 1.058, 0.936, 0.749, 0.615, 0.501, 0.409),

where we kept only the first three digits everywhere. Note that
10.368 = 5 ·

(
1 + 1

5

)8/2
. So for every 8-regular graph G we have

Z
(2)
G (5, 1) = FG(10.368, 0, 1.728, 1.058, 0.936, 0.749, 0.615, 0.501, 0.409).

Using t0 = 0.6619549492373429 we get the vector

v(t0) = (16.277, 0, 0.433,−0.496, 0.581,−0.679, 0.794,−0.929, 1.086)

and
Z

(2)
G (5, 1) = FG(v(t0)) ≥ 16.277v(G)

for every 8-regular graph G.



Bethe limit

Lemma (BBC)

Let N be a 2× 2 positive definite matrix and µ ∈ R2. Suppose
that N = aaT + bbT . Let t0 be the maximizer of

r0(t) = µ1(a1 cos(t) + b1 sin(t))d + µ2(a2 cos(t) + b2 sin(t))d.

Let

rj(t) = µ1(a1 cos(t) + b1 sin(t))d−j(−a1 sin(t) + b1 cos(t))j

+ µ2(a2 cos(t) + b2 sin(t))d−j(−a2 sin(t) + b2 cos(t))j .

Then r1(t0) = 0 and either
(i) rj(t0) ≥ 0 for j = 0, . . . , d or
(ii) rj(t0) ≥ 0 for even j, and rj(t0) ≤ 0 for odd j.

Φd(N,µ) = max
t∈[−π,π]

r0(t).



Lee-Yang theory

Theorem (BBC)
Let N be a 2× 2 positive definite matrix with positive entries
and let µ1, µ2 > 0. Then, there exists a t1 ∈ [0, 2π) such that for
any d-regular graph G all the complex zeros of FG(v(t1)|z) are
on a circle around 0 of radius Rc(N,µ).



Example
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Figure: For d = 4, q = 5 and w = 3. The graph of the trigonometric
polynomial Φ4,5,3(t) is depicted in the figure.

Let d = 4, q = 5 and w = 3. Then

v(0) = (12.8, 0, 4.8, 4.409, 5.85).

Let t0 = 0.8316331320342567 and Φ4,5,3 = 16.315621073058985
while

v(t0) = (16.315, 0, 1.878,−3.867, 8.176).



Example continued

Let t1 = 1.06627054934707 and the corresponding vector

v(t1) = (15.010,−2.835, 0.994,−2.454, 11.249).

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Figure: The zeros of FG(15.010,−2.835, 0.994,−2.454, 11.249 | z),
where G is K5 (red) and G is the octahedron (black x). The radius is
approximately 1.0747696.



Convergence

Given a vector a ∈ Rd+1 and a graph G on n vertices let
λ1(G), . . . , λnd(G) be the zeros of the polynomial FG(a|z). Let
us define the probability measure ρG,a on C as follows:

ρG,a :=
1

nd

nd∑
k=1

δλi(G),

where δλ is the Dirac-measure on the number λ.



Convergence continued

Lemma

(a) For any integer k ≥ 0, a vector a ∈ Rd+1 and a
Benjamini–Schramm convergent sequence of d-regular graphs
(Gn)n the sequence ∫

zk dρGn,a(z)

is convergent.
(b) Let t1 be such that the zeros of FG(v(t1)|z) lie on a circle of
radius Rc for all graph G. If (Gn)n is a Benjamini–Schramm
convergent sequence of d-regular graphs, then the sequence of
measures ρGn,v(t1) converges weakly.

If Rc(N,µ) 6= 1, then ln |z − 1| is a continuous function on an
appropriate region.



Phase transition

Definition
We say that (N,µ) exhibits a mixed state for a fixed positive
integer d if Rc(N,µ) = 1.

Note that Rc(N,µ) = 1 does not depend on which
representation N = aaT + bbT we choose. We also know that
R = Rc(N,µ) is a solution of

(N11N22−N2
12)R

4+(−N2
22T+2N2

12−N2
11T
−1)R2+(N11N22−N2

12) = 0,

where T =
(
µ2
µ1

)2/d
. This shows that (N,µ) exhibits a mixed

state for d if

2(N11N22 −N2
12)− (N2

22T − 2N2
12 +N2

11T
−1) = 0.



Specialization

(M ′2, ν2) exhibits mixed state for some d if q = 2 or

wc =
q − 2

(q − 1)1−2/d − 1
− 1.

3 2 1 0 1 2 3

4

6

8

10

12

14

16

Figure: For d = 4 and q = 10 we have wc = 3. The graph of the
trigonometric polynomial Φ4,10,3(t) is depicted in the figure.



Thank for your attention!


