Random cluster model on regular graphs

Péter Csikvári
Alfréd Rényi Institute of Mathematics and
Eötvös Loránd University

Joint work with Ferenc Bencs and Márton Borbényi.

Graph limits, Nonparametric Models, and Estimation September 26th, 2022

For a graph $G=(V, E)$ the partition function of the random cluster model is defined by

$$
Z_{G}(q, w)=\sum_{A \subseteq E(G)} q^{k(A)} w^{|A|}
$$

where $k(A)$ denotes the number of connected components of the graph (V, A).

Tutte polynomial

$$
T_{G}(x, y)=\sum_{A \subseteq E}(x-1)^{k(A)-k(E)}(y-1)^{k(A)+|A|-v(G)},
$$

where $k(A)$ denotes the number of connected components of the graph (V, A), and $v(G)$ denotes the number of vertices of the graph G.

$$
T_{G}(x, y)=(x-1)^{-k(E)}(y-1)^{-v(G)} Z_{G}((x-1)(y-1), y-1) .
$$

Tutte polynomial and random cluster model

$$
T_{G}(x, y)
$$

Combinatorics

- $T_{G}(1,1)$ spanning trees
- $T_{G}(2,1)$ spanning forests
- $T_{G}(1,2)$ connected subgraphs
- $T_{G}(2,2)=2^{e(G)}$
- $T_{G}(2,0)$ acyclic orientations
- $T_{G}(0,2)$ strong orientations
- chromatic polynomial
- flow polynomial

$$
Z_{G}(q, w)
$$

Statistical physics

- $q=2$ Ising model
- $q \in \mathbb{Z}_{>0}$ Potts model
- $q>0$ and $w \geq-1$ random cluster model

Main problem

Let $\left(G_{n}\right)_{n}$ be an essentially large girth sequence of d-regular graphs. Let $v(G)$ denote the number of vertices of G. Does the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{v\left(G_{n}\right)} \ln Z_{G_{n}}(q, w)
$$

exist?

Essentially large girth: for every fixed g,
$\frac{\text { number of cycles of length } g \text { in } G_{n}}{\text { number of vertices of } G_{n}} \rightarrow 0$

Earlier results

Dembo and Montanari: Ising model ($q=2$)
Dembo, Montanari, Sun: Potts model (positive integer q), except an interval (w_{0}, w_{1})
Dembo, Montanari, Sly and Sun: even d and positive integer q Helmuth, Jenssen and Perkins: proof of convergence for large q assuming some expansion property of $\left(G_{n}\right)_{n}$
Bandyopadhyay and Gamarnik: graph coloring, integer $q \geq d+1$ and $w=-1$.
Bencs and Csikvári: Tutte-polynomial with $x \geq 1$ and $0 \leq y \leq 1$.

Main theorem

Theorem (Bencs, Borbényi and Cs.)

For a graph $G=(V, E)$ let $Z_{G}(q, w)=\sum_{A \subseteq E(G)} q^{k(A)} w^{|A|}$. If $\left(G_{n}\right)_{n}$ is an essentially large girth sequence of d-regular graphs, then the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{v\left(G_{n}\right)} \ln Z_{G_{n}}(q, w)=\ln \Phi_{d, q, w}
$$

exists for $q \geq 2$ and $w \geq 0$. The quantity $\Phi_{d, q, w}$ can be computed as follows. Let

$$
\left(\sqrt{1+\frac{w}{q}} \cos (t)+\sqrt{\frac{(q-1) w}{q}} \sin (t)\right)^{d}+(q-1)\left(\sqrt{1+\frac{w}{q}} \cos (t)-\sqrt{\frac{w}{q(q-1)}} \sin (t)\right)^{d},
$$

then

$$
\Phi_{d, q, w}:=\max _{t \in[-\pi, \pi]} \Phi_{d, q, w}(t)
$$

The same conclusion holds true with probability 1 for a sequence of random d-regular graphs.

Phase transition

Theorem (BBC)

Let $q \geq 2$ and

$$
w_{c}:=\frac{q-2}{(q-1)^{1-2 / d}-1}-1 .
$$

If $0 \leq w \leq w_{c}$, then $\Phi_{d, q, w}=q\left(1+\frac{w}{q}\right)^{d / 2}$. If $w>w_{c}$, then $\Phi_{d, q, w}>q\left(1+\frac{w}{q}\right)^{d / 2}$.

Figure: The investigated parameters are in blue. The dashed lines are $x=d-1$ and the phase transition parametrized in x, y. We have $q=(x-1)(y-1)$ and $w=y-1$.

Plan of the proof

The proof consists of two parts:

- Approximations of the partition function $Z_{G}(q, w)$
- Study of ferromagnetic 2-spin models

Approximations of the partition function $Z_{G}(q, w)$

Spin models

Given a graph $G=(V, E)$, a symmetric matrix $N \in \mathbb{R}^{r \times r}$ and $\underline{\mu} \in \mathbb{R}^{r}$ let

$$
Z_{G}(N, \underline{\mu}):=\sum_{\sigma: V \rightarrow[r]} \prod_{v \in V} \mu_{\sigma(v)} \prod_{(u, v) \in E(G)} N_{\sigma(u), \sigma(v)}
$$

Potts model with q spins: When q is a positive integer and M is the $q \times q$ matrix with diagonal elements $1+w$ and off-diagonal elements 1 , and $\underline{\mu} \equiv 1$, then

$$
Z_{G}(M, \underline{1})=Z_{G}(q, w) .
$$

Motivation: assume that q is a positive integer.

$$
M=\left(\begin{array}{cccc}
1+w & 1 & \ldots & 1 \\
1 & 1+w & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 1+w
\end{array}\right) \quad \text { and } \quad M_{1}=\left(\begin{array}{cccc}
1+\frac{w}{q} & 1+\frac{w}{q} & \ldots & 1+\frac{w}{q} \\
1+\frac{w}{q} & 1+\frac{w}{q} & \ldots & 1+\frac{w}{q} \\
\vdots & \vdots & \ddots & \vdots \\
1+\frac{w}{q} & 1+\frac{w}{q} & \ldots & 1+\frac{w}{q}
\end{array}\right)
$$

Idea: approximate $Z_{G}(M)$ with $Z_{G}\left(M_{1}\right)$. Let

$$
Z_{G}^{(1)}(q, w):=Z_{G}\left(M_{1}\right)=q^{v(G)}\left(1+\frac{w}{q}\right)^{e(G)}
$$

the rank 1 approximation of $Z_{G}(q, w)$. Make sense for any $q>0$.

Lemma

If $q \geq 1$, then

$$
Z_{G}(q, w) \geq Z_{G}^{(1)}(q, w)
$$

If $0<q \leq 1$, then

$$
Z_{G}(q, w) \leq Z_{G}^{(1)}(q, w)
$$

Proof.

Using the fact that $k(A) \geq v(G)-|A|$ for an $A \subseteq E(G)$ we get that for $q \geq 1$ we have

$$
Z_{G}(q, w)=\sum_{A \subseteq E(G)} q^{k(A)} w^{|A|} \geq \sum_{A \subseteq E(G)} q^{v(G)-|A|} w^{|A|}=q^{v(G)}\left(1+\frac{w}{q}\right)^{e(G)} .
$$

For $q \leq 1$ we have the opposite inequality in the above computation.

What is better than a rank 1 approximation? Of course, a rank 2...

Motivation: again assume that q is a positive integer.
$M=\left(\begin{array}{cccc}1+w & 1 & \ldots & 1 \\ 1 & 1+w & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \ldots & 1+w\end{array}\right) \quad$ and $M_{2}=\left(\begin{array}{ccc}1+w & 1 & \ldots \\ 1 & 1+\frac{w}{q-1} & \cdots \\ 1+\frac{w}{q-1} \\ \vdots & \vdots & \ddots \\ \vdots & 1+\frac{w}{q-1} & \cdots \\ 1+\frac{w}{q-1}\end{array}\right)$
Then
$Z_{G}^{(2)}(q, w):=Z_{G}\left(M_{2}\right)=\sum_{S \subseteq V}(1+w)^{e(S)}(q-1)^{v(G)-|S|}\left(1+\frac{w}{q-1}\right)^{e(G-S)}$.
Makes sense if $q>1$.

2-spin model

Note that $Z_{G}^{(2)}(q, w)=Z_{G}\left(M_{2}^{\prime}, \underline{\nu}_{2}\right)$, where

$$
M_{2}^{\prime}=\left(\begin{array}{cc}
1+w & 1 \\
1 & 1+\frac{w}{q-1}
\end{array}\right) \quad \text { and } \quad \underline{\nu}_{2}=\binom{1}{q-1}
$$

even if q is not an integer. Also observe that

$$
Z_{G}^{(2)}(q, w)=\sum_{S \subseteq V(G)}(1+w)^{e(S)} Z_{G-S}^{(1)}(q-1, w) .
$$

Rank 2 approximation

Lemma

We have

$$
Z_{G}(q, w)=\sum_{S \subseteq V}(1+w)^{e(S)} Z_{G-S}(q-1, w)
$$

Lemma

For $q \geq 2$ we have

$$
Z_{G}(q, w) \geq Z_{G}^{(2)}(q, w) .
$$

For $1<q \leq 2$ we have
$Z_{G}(q, w) \leq Z_{G}^{(2)}(q, w)$.

Rank 2 approximation

Lemma

We have

$$
Z_{G}(q, w)=\sum_{S \subseteq V}(1+w)^{e(S)} Z_{G-S}(q-1, w)
$$

Lemma

For $q \geq 2$ we have

$$
Z_{G}(q, w) \geq Z_{G}^{(2)}(q, w)
$$

For $1<q \leq 2$ we have

$$
Z_{G}(q, w) \leq Z_{G}^{(2)}(q, w)
$$

Large girth graphs

Theorem (BBC)

Let G be a graph with $L=L(G, g)$ cycles of length at most $g-1$. Let $q \geq 2$. Then

$$
Z_{G}^{(2)}(q, w) \leq Z_{G}(q, w) \leq q^{n / g+L} Z_{G}^{(2)}(q, w) .
$$

Theorem (BBC)
Let $q \geq 2$ and $w \geq 0$. Let $\left(G_{n}\right)_{n}$ be an essentially large girth
sequence of d-regular graphs. If the limit
$\lim _{n \rightarrow \infty} \frac{1}{v\left(G_{n}\right)} \ln Z_{G_{n}}^{(2)}(q, w)$ exists, then the limit
$\lim _{n \rightarrow \infty} \frac{1}{v\left(G_{n}\right)} \ln Z_{G_{n}}(q, w)$ exists too, and they have the same value.

Large girth graphs

Theorem (BBC)

Let G be a graph with $L=L(G, g)$ cycles of length at most $g-1$. Let $q \geq 2$. Then

$$
Z_{G}^{(2)}(q, w) \leq Z_{G}(q, w) \leq q^{n / g+L} Z_{G}^{(2)}(q, w)
$$

Theorem (BBC)

Let $q \geq 2$ and $w \geq 0$. Let $\left(G_{n}\right)_{n}$ be an essentially large girth sequence of d-regular graphs. If the limit $\lim _{n \rightarrow \infty} \frac{1}{v\left(G_{n}\right)} \ln Z_{G_{n}}^{(2)}(q, w)$ exists, then the limit $\lim _{n \rightarrow \infty} \frac{1}{v\left(G_{n}\right)} \ln Z_{G_{n}}(q, w)$ exists too, and they have the same value.

Figure: Large component: a component containing cycle. Set \mathcal{L}_{A}. Small component: component not containing cycle. Set \mathcal{S}_{A}. Compatible vertex set R : union of some small components (it may be empty), notation $R \sim A$.

Computation

$$
\begin{aligned}
& \text { - } k(A)=\left|\mathcal{L}_{A}\right|+\left|\mathcal{S}_{A}\right| \\
& \text { - }\left|\mathcal{L}_{A}\right| \leq \frac{n}{g}+L(G, g) \\
& q^{\left|\mathcal{S}_{A}\right|}=((q-1)+1)^{\left|\mathcal{S}_{A}\right|}=\sum_{R \sim A}(q-1)^{k(R, A)} .
\end{aligned}
$$

$$
\begin{aligned}
Z_{G}(q, w) & =\sum_{A \subseteq E(G)} q^{k(A)} w^{|A|}=\sum_{A \subseteq E(G)} q^{\left|\mathcal{L}_{A}\right|+\left|\mathcal{S}_{A}\right|} w^{|A|} \\
& \leq q^{n / g+L} \sum_{A \subseteq E(G)} q^{\left|\mathcal{S}_{A}\right|} w^{|A|} \\
& =q^{n / g+L} \sum_{A \subseteq E(G)} \sum_{R: R \sim A}(q-1)^{k(R, A)} w^{|A|} \\
& =q^{n / g+L} \sum_{R \subseteq V(G)} \sum_{A: A \sim R}(q-1)^{k(R, A)} w^{|A[R]|+|A[V \backslash R]|} \\
& =q^{n / g+L} \sum_{R \subseteq V(G)}(1+w)^{e(V \backslash R)} \sum_{D}(q-1)^{k(D)} w^{|D|}
\end{aligned}
$$

In the last sum, D is a subset of the edges induced by R such that none of the induced connected components contains a cycle. Then
$\sum_{D}(q-1)^{k(D)} w^{|D|}=\sum_{D}(q-1)^{|R|-|D|} w^{|D|} \leq(q-1)^{|R|}\left(1+\frac{w}{q-1}\right)^{e(R)}$.
Hence

$$
Z_{G}(q, w) \leq q^{n / g+L} \sum_{R \subseteq V(G)}(1+w)^{e(V \backslash R)} Z_{G[R]}^{(1)}(q-1, w),
$$

that is

$$
Z_{G}(q, w) \leq q^{n / g+L} Z_{G}^{(2)}(q, w)
$$

Analysis of ferromagnetic 2-spin models

Ferromagnetic 2 -spin models

Recall that $Z_{G}^{(2)}(q, w)=Z_{G}\left(M_{2}^{\prime}, \underline{\nu}_{2}\right)$, where

$$
M_{2}^{\prime}=\left(\begin{array}{cc}
1+w & 1 \\
1 & 1+\frac{w}{q-1}
\end{array}\right) \quad \text { and } \quad \underline{\nu}_{2}=\binom{1}{q-1}
$$

So we need to show that the limit $\lim _{n \rightarrow \infty} \frac{1}{v\left(G_{n}\right)} \ln Z_{G_{n}}^{(2)}(q, w)$ exists for an essentially large girth sequence of d-regular graphs $\left(G_{n}\right)_{n}$. This is already done!

Dembo, Montanari, Sly and Sun

The work of Dembo, Montanari, Sly and Sun

- Amir Dembo and Andrea Montanari. Ising models on locally tree-like graphs.
- Allan Sly and Nike Sun. Counting in two-spin models on d-regular graphs.
- Amir Dembo, Andrea Montanari, and Nike Sun. Factor models on locally tree-like graphs.
- Amir Dembo, Andrea Montanari, Allan Sly, and Nike Sun. The replica symmetric solution for Potts models on d-regular graphs.

Limit theorem

Theorem (Sly and Sun building on Dembo and Montanari)

Let N be a 2×2 positive definite matrix with positive entries and let $\underline{\mu} \in \mathbb{R}_{>0}^{2}$. Then there exists a $\Phi_{d}(N, \underline{\mu})$ such that if $\left(G_{n}\right)_{n}$ is an essentially large girth sequence of d-regular graphs, then

$$
\lim _{n \rightarrow \infty} \frac{1}{v\left(G_{n}\right)} \ln Z_{G_{n}}(N, \underline{\mu})=\ln \Phi_{d}(N, \underline{\mu})
$$

The same statement holds true for a sequence of random d-regular graphs with probability 1.

Some improvements

Theorem (BBC)

Let N be a 2×2 positive definite matrix with positive entries and let $\mu \in \mathbb{R}_{>0}^{2}$. Let $\left(G_{n}\right)_{n}$ be a Benjamini-Schramm convergent sequence of d-regular graphs. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{v\left(G_{n}\right)} \ln Z_{G_{n}}(N, \underline{\mu})
$$

exists.
Theorem (BBC)
Let N be a 2×2 positive definite matrix with positive entries and let $\mu \in \mathbb{R}_{>0}^{2}$. For any d-regular graph G we have $Z_{G}(N, \mu) \geq \Phi_{d}(N, \mu)^{v(G)}$. Furthermore, if G contains $\varepsilon v(G)$ cycles of length g, then there exists a $\delta=\delta(d, N, \mu, \varepsilon, g)>0$ such that

Some improvements

Theorem (BBC)

Let N be a 2×2 positive definite matrix with positive entries and let $\underline{\mu} \in \mathbb{R}_{>0}^{2}$. Let $\left(G_{n}\right)_{n}$ be a Benjamini-Schramm convergent sequence of d-regular graphs. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{v\left(G_{n}\right)} \ln Z_{G_{n}}(N, \underline{\mu})
$$

exists.

Theorem (BBC)

Let N be a 2×2 positive definite matrix with positive entries and let $\underline{\mu} \in \mathbb{R}_{>0}^{2}$. For any d-regular graph G we have $Z_{G}(N, \underline{\mu}) \geq \Phi_{d}(N, \underline{\mu})^{v(G)}$. Furthermore, if G contains $\varepsilon v(G)$ cycles of length g, then there exists a $\delta=\delta(d, N, \underline{\mu}, \varepsilon, g)>0$ such that $Z_{G}(N, \underline{\mu}) \geq\left((1+\delta) \Phi_{d}(N, \underline{\mu})\right)^{v(G)}$.

Subgraph counting polynomial

Subgraph counting polynomial of a d-regular graph:

$$
F_{G}\left(x_{0}, \ldots, x_{d}\right)=\sum_{A \subseteq E}\left(\prod_{v \in V} x_{d_{A}(v)}\right)
$$

and a bit more generally,
$F_{G}\left(x_{0}, \ldots, x_{d} \mid z\right)=\sum_{A \subseteq E}\left(\prod_{v \in V} x_{d_{A}(v)}\right) z^{2|A|}=F_{G}\left(x_{0}, x_{1} z, x_{2} z, \ldots, x_{d} z^{d}\right)$
Example: $F_{K_{5}}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)$

$$
\begin{aligned}
& x_{0}^{5}+10 x_{0}^{3} x_{1}^{2}+15 x_{0} x_{1}^{4}+30 x_{0}^{2} x_{1}^{2} x_{2}+30 x_{1}^{4} x_{2}+60 x_{0} x_{1}^{2} x_{2}^{2}+10 x_{0}^{2} x_{2}^{3}+70 x_{1}^{2} x_{2}^{3}+15 x_{0} x_{2}^{4} \\
& +12 x_{2}^{5}+20 x_{0} x_{1}^{3} x_{3}+60 x_{1}^{3} x_{2} x_{3}+60 x_{0} x_{1} x_{2}^{2} x_{3}+120 x_{1} x_{2}^{3} x_{3}+60 x_{1}^{2} x_{2} x_{3}^{2}+30 x_{0} x_{2}^{2} x_{3}^{2}+70 x_{2}^{3} x_{3}^{2} \\
& +60 x_{1} x_{2} x_{3}^{3}+5 x_{0} x_{3}^{4}+30 x_{2} x_{3}^{4}+5 x_{1}^{4} x_{4}+30 x_{1}^{2} x_{2}^{2} x_{4}+15 x_{2}^{4} x_{4}+60 x_{1} x_{2}^{2} x_{3} x_{4}+60 x_{2}^{2} x_{3}^{2} x_{4} \\
& +20 x_{1} x_{3}^{3} x_{4}+15 x_{3}^{4} x_{4}+10 x_{2}^{3} x_{4}^{2}+30 x_{2} x_{3}^{2} x_{4}^{2}+10 x_{3}^{2} x_{4}^{3}+x_{4}^{5} .
\end{aligned}
$$

Ferromagnetic 2-spin models and subgraph counting polynomial

Suppose that we can write an $r \times r$ matrix N into the form $N=\underline{a a}^{T}+\underline{b b}^{T}$ and let $\underline{\mu} \in \mathbb{R}^{r}$. Then

$$
\begin{aligned}
z_{G}(N, \underline{\mu}) & =\sum_{\varphi: V \rightarrow[r]} \prod_{v \in V} \mu_{\varphi(v)} \prod_{(u, v) \in E} N_{\varphi(u) \varphi(v)} \\
& \left.=\sum_{\varphi: V \rightarrow[r]} \prod_{v \in V} \mu_{\varphi(v)} \prod_{(u, v) \in E} \underline{a ́ a}^{T}+\underline{b b}^{T}\right)_{\varphi(u) \varphi(v)} \\
& \left.=\sum_{S \subseteq E} \sum_{\varphi: V \rightarrow[r]} \prod_{v \in V} \mu_{\varphi(v)} \prod_{(u, v) \in E \backslash S}\left(\underline{a a}^{T}\right)_{\varphi(u) \varphi(v)} \prod_{(u, v) \in S}{ }^{(b \underline{b}}{ }^{T}\right)_{\varphi(u) \varphi(v)} \\
& =\sum_{S \subseteq E} \sum_{\varphi: V \rightarrow[r]} \prod_{v \in V} \mu_{\varphi(v)} \prod_{(u, v) \in E \backslash S}\left(\underline{a}_{\varphi(u)} \underline{a}_{\varphi(v)}\right) \prod_{(u, v) \in S}\left(\underline{b}_{\varphi(u)} \underline{b} \varphi(v)\right) \\
& =\sum_{S \subseteq E} \prod_{v \in V}\left(\sum_{k=1}^{r} \mu_{k} a_{k}^{d-d}{ }_{k}(v) b_{k}^{d} S(v)\right. \\
& =F_{G}\left(r_{0}, \ldots, r_{d}\right),
\end{aligned}
$$

where $r_{j}=\sum_{k=1}^{r} \mu_{k} a_{k}^{d-j} b_{k}^{j}$.

More than one way

\underline{a} and \underline{b} are not the only vectors satisfying $N=\underline{a a^{T}}+\underline{b b}^{T}$. Indeed, let us define the vectors $\underline{a}(t)$ and $\underline{b}(t)$ as follows:

$$
\underline{a}(t)_{j}=a_{j} \cos (t)+b_{j} \sin (t)
$$

and

$$
\underline{b}(t)_{j}=-a_{j} \sin (t)+b_{j} \cos (t) .
$$

Then $N=\underline{a}(t) \underline{a}(t)^{T}+\underline{b}(t) \underline{b}(t)^{T}$. So each pairs $\underline{a}(t), \underline{b}(t)$ gives rise to a vector $\underline{v}(t)=\left(r_{0}(t), \ldots, r_{d}(t)\right)$ such that

$$
F_{G}(\underline{v}(t))=Z_{G}(N, \underline{\mu}) .
$$

We can apply our argument to $N=M_{2}^{\prime}, \underline{\mu}=\underline{\nu}_{2}$ with the following vectors.

$$
\underline{a}=\binom{\sqrt{1+\frac{w}{q}}}{\sqrt{1+\frac{w}{q}}} \quad \text { and } \quad \underline{b}=\binom{\sqrt{\frac{(q-1) w}{q}}}{-\sqrt{\frac{w}{q(q-1)}}} .
$$

One can check that $M_{2}^{\prime}=\underline{a a^{T}}+\underline{b b}^{T}$ indeed holds true. We can again introduce the vectors $\underline{a}(t), \underline{b}(t)$ giving rise to a vector $\underline{v}(t)=\left(r_{0}(t), \ldots, r_{d}(t)\right)$ such that

$$
F_{G}(\underline{v}(t))=Z_{G}\left(M_{2}^{\prime}, \underline{\nu}_{2}\right)=Z_{G}^{(2)}(q, w)
$$

Example

Let $d=8, q=5$ and $w=1$. Then the vector

$$
\underline{v}(0)=(10.368,0,1.728,1.058,0.936,0.749,0.615,0.501,0.409)
$$

where we kept only the first three digits everywhere. Note that $10.368=5 \cdot\left(1+\frac{1}{5}\right)^{8 / 2}$. So for every 8 -regular graph G we have $Z_{G}^{(2)}(5,1)=F_{G}(10.368,0,1.728,1.058,0.936,0.749,0.615,0.501,0.409)$.

Using $t_{0}=0.6619549492373429$ we get the vector

$$
\underline{v}\left(t_{0}\right)=(16.277,0,0.433,-0.496,0.581,-0.679,0.794,-0.929,1.086)
$$

and

$$
Z_{G}^{(2)}(5,1)=F_{G}\left(\underline{v}\left(t_{0}\right)\right) \geq 16.277^{v(G)}
$$

for every 8 -regular graph G.

Bethe limit

Lemma (BBC)

Let N be a 2×2 positive definite matrix and $\underline{\mu} \in \mathbb{R}^{2}$. Suppose that $N=\underline{a a}^{T}+\underline{b b}^{T}$. Let t_{0} be the maximizer of

$$
r_{0}(t)=\mu_{1}\left(a_{1} \cos (t)+b_{1} \sin (t)\right)^{d}+\mu_{2}\left(a_{2} \cos (t)+b_{2} \sin (t)\right)^{d}
$$

Let

$$
\begin{aligned}
r_{j}(t) & =\mu_{1}\left(a_{1} \cos (t)+b_{1} \sin (t)\right)^{d-j}\left(-a_{1} \sin (t)+b_{1} \cos (t)\right)^{j} \\
& +\mu_{2}\left(a_{2} \cos (t)+b_{2} \sin (t)\right)^{d-j}\left(-a_{2} \sin (t)+b_{2} \cos (t)\right)^{j}
\end{aligned}
$$

Then $r_{1}\left(t_{0}\right)=0$ and either
(i) $r_{j}\left(t_{0}\right) \geq 0$ for $j=0, \ldots, d$ or
(ii) $r_{j}\left(t_{0}\right) \geq 0$ for even j, and $r_{j}\left(t_{0}\right) \leq 0$ for odd j.

$$
\Phi_{d}(N, \underline{\mu})=\max _{t \in[-\pi, \pi]} r_{0}(t)
$$

Lee-Yang theory

Theorem (BBC)

Let N be a 2×2 positive definite matrix with positive entries and let $\mu_{1}, \mu_{2}>0$. Then, there exists a $t_{1} \in[0,2 \pi)$ such that for any d-regular graph G all the complex zeros of $F_{G}\left(\underline{v}\left(t_{1}\right) \mid z\right)$ are on a circle around 0 of radius $R_{c}(N, \underline{\mu})$.

Example

Figure: For $d=4, q=5$ and $w=3$. The graph of the trigonometric polynomial $\Phi_{4,5,3}(t)$ is depicted in the figure.

Let $d=4, q=5$ and $w=3$. Then

$$
\underline{v}(0)=(12.8,0,4.8,4.409,5.85) .
$$

Let $t_{0}=0.8316331320342567$ and $\Phi_{4,5,3}=16.315621073058985$ while

$$
\underline{v}\left(t_{0}\right)=(16.315,0,1.878,-3.867,8.176)
$$

Example continued

Let $t_{1}=1.06627054934707$ and the corresponding vector

$$
\underline{v}\left(t_{1}\right)=(15.010,-2.835,0.994,-2.454,11.249) .
$$

Figure: The zeros of $F_{G}(15.010,-2.835,0.994,-2.454,11.249 \mid z)$, where G is K_{5} (red) and G is the octahedron (black x). The radius is approximately 1.0747696 .

Convergence

Given a vector $\underline{a} \in \mathbb{R}^{d+1}$ and a graph G on n vertices let $\lambda_{1}(G), \ldots, \lambda_{n d}(G)$ be the zeros of the polynomial $F_{G}(\underline{a} \mid z)$. Let us define the probability measure $\rho_{G, \underline{a}}$ on \mathbb{C} as follows:

$$
\rho_{G, \underline{a}}:=\frac{1}{n d} \sum_{k=1}^{n d} \delta_{\lambda_{i}(G)},
$$

where δ_{λ} is the Dirac-measure on the number λ.

Convergence continued

Lemma

(a) For any integer $k \geq 0$, a vector $\underline{a} \in \mathbb{R}^{d+1}$ and a

Benjamini-Schramm convergent sequence of d-regular graphs $\left(G_{n}\right)_{n}$ the sequence

$$
\int z^{k} d \rho_{G_{n}, \underline{a}}(z)
$$

is convergent.
(b) Let t_{1} be such that the zeros of $F_{G}\left(\underline{v}\left(t_{1}\right) \mid z\right)$ lie on a circle of radius R_{c} for all graph G. If $\left(G_{n}\right)_{n}$ is a Benjamini-Schramm convergent sequence of d-regular graphs, then the sequence of measures $\rho_{G_{n}, \underline{v}\left(t_{1}\right)}$ converges weakly.

If $R_{c}(N, \underline{\mu}) \neq 1$, then $\ln |z-1|$ is a continuous function on an appropriāte region.

Phase transition

Definition

We say that (N, μ) exhibits a mixed state for a fixed positive integer d if $R_{c}(N, \underline{\mu})=1$.

Note that $R_{c}(N, \underline{\mu})=1$ does not depend on which
representation $N=\underline{a a}^{T}+\underline{b b}^{T}$ we choose. We also know that $R=R_{c}(N, \underline{\mu})$ is a solution of

$$
\left(N_{11} N_{22}-N_{12}^{2}\right) R^{4}+\left(-N_{22}^{2} T+2 N_{12}^{2}-N_{11}^{2} T^{-1}\right) R^{2}+\left(N_{11} N_{22}-N_{12}^{2}\right)=0,
$$

where $T=\left(\frac{\mu_{2}}{\mu_{1}}\right)^{2 / d}$. This shows that $(N, \underline{\mu})$ exhibits a mixed state for d if

$$
2\left(N_{11} N_{22}-N_{12}^{2}\right)-\left(N_{22}^{2} T-2 N_{12}^{2}+N_{11}^{2} T^{-1}\right)=0
$$

Specialization

($M_{2}^{\prime}, \underline{\nu}_{2}$) exhibits mixed state for some d if $q=2$ or

$$
w_{c}=\frac{q-2}{(q-1)^{1-2 / d}-1}-1
$$

Figure: For $d=4$ and $q=10$ we have $w_{c}=3$. The graph of the trigonometric polynomial $\Phi_{4,10,3}(t)$ is depicted in the figure.

Thank for your attention!

