PANDORA'S BOX: LEARNING TO LEVERAGE COSTLY INFORMATION

Shuchi Chawla

The University of Texas at Austin

Based on joint work with Eva Gergatsouli, Jeremy McMahan, Yifeng Teng, Christos Tzamos, and Ruimin ZhangUW-MadisonUW-MadisonGoogleUW-MadisonUW-MadisonU. Chicago

WEITZMAN'S PANDORA'S BOX PROBLEM

- *n* boxes containing "costs" drawn from known distributions
- Goal: find the box with smallest cost
- Can open boxes in any order by paying a "probing penalty"

Algorithm's net loss = cost of chosen box + total probing penalty = $(t_1 + t_3)$

Want to minimize this in expectation

SOLUTIONS TO PANDORA'S BOX: DECISION TREES

Two components of any algorithm:

- What to probe next?
- When to stop and choose?

A primary source of difficulty: both decisions can depend adaptively on information obtained previously.

Can the tree be large? Is it succinctly representable? Is it efficiently computable?

Upshot: in general, hard to compute or learn

WEITZMAN'S SOLUTION (1979)

- Compute an amortized cost (a.k.a. Gittins index). g_i is a function of only \mathcal{D}_i and t_i .
- Probe boxes in greedy order of increasing amortized cost.
- Stop when an observed cost < all remaining indices. Select box with min observed cost.

Note: no adaptivity in probing order!

Theorem: Weitzman's algorithm is optimal if the cost distributions $\mathcal{D}_1, ..., \mathcal{D}_n$ are independent.

But it fails as soon as we modify the model, e.g.:

Non-obligatory inspection

i.e. can select boxes without opening them

[Doval'18, Beyhaghi Kleinberg'19]

Correlated costs

E.g. c_1 being high implies c_2 is also high

[C. Gergatsouli Teng Tzamos Zhang'20,C. Gergatsouli McMahan Tzamos'22]

This talk

Combinatorial/correlated selection

E.g. boxes are edges in a network and want to select a shortest path; boxes are attributes, and must select all or none g_6

 $-C_{2}$

 $-g_{5}$

 $- c_1$

 $-g_4$

 g_1

[Singla'18, Klabjan Olszewski Wolinsky'14]

A ROUGH OUTLINE

- Distributional models
- Some components of a Pandora's Box algorithm
 - Challenges
 - Related optimization problems
- Benchmarks
- Putting everything together and some results
- Open questions

Objective:

Develop an algorithm to efficiently compute and learn an approximately optimal probing strategy

MODELING THE UNCERTAINTY IN COSTS

$(c_1, c_2, \dots, c_n) \sim \mathcal{D}$

Explicitly-described distribution

- \mathcal{D} is a "small support" distribution over m scenarios or states of the world.
- The size of the input, and therefore also the complexity of the problem, depend on *m*.

Arbitrary distribution with sample access

- The distribution $\ensuremath{\mathcal{D}}$ is arbitrary and we have no direct access to it
- But we are given *m* "samples" drawn from it.
- Each sample is a possible scenario or state of the world.

Example:
$$\mathcal{D} = \text{Unif} \begin{pmatrix} 1, 4, 10 \\ 8, 2, 10 \\ 8, 4, 1 \\ 8, 4, 10 \\ 10, 2, 10 \end{pmatrix}$$

- Alg's loss = cost of chosen box + total probing penalty
- Scenario or state of the world ≡ particular realization of costs in boxes

COMPONENTS OF A PANDORA'S BOX ALGORITHM

- **Exploration**: gathering data about which "world" we're in
- Exploitation: opening a low cost box quickly
- Knowing when to stop
- Learning from limited data: sample access to the distribution

- Alg's loss = cost of chosen box + total probing penalty
- Scenario or state of the world \equiv particular realization of costs in boxes

COMPONENTS OF A PANDORA'S BOX ALGORITHM

- Exploration: gathering data about which "world" we're in
- Exploitation: opening a low cost box quickly
- Knowing when to stop
- Learning from limited data: sample access to the distribution

Optimal stopping rule can be quite complicated: unclear if we can learn it effectively from data, or even represent it succinctly

But we can effectively approximate it!

- "Myopic" stopping: stop when probing cost exceeds the cost of the best solution found
- Let τ = stopping time. Then $Cost_{\tau}$ = Penalty_{τ}
- At any other time, either cost or penalty is higher.

 \Rightarrow 2-approx. ($^{e}/_{e-1}$ with randomness) [C. Gergatsouli Teng Tzamos Zhang'20]

Upshot: can approximate the **hindsight optimal** stopping rule easily with small loss in approximation factor.

- Alg's loss = cost of chosen box + total probing penalty
- Scenario or state of the world \equiv particular realization of costs in boxes

COMPONENTS OF A PANDORA'S BOX ALGORITHM

- Exploration: gathering data about which "world" we're in
- Exploitation: _______
 opening a low cost box quickly
- Knowing when to stop
- Learning from limited data: sample access to the distribution

- A special case: the Min Sum Set Cover problem
- All costs are 0 or ∞ . I.e. boxes are "acceptable" or "unacceptable".
- For simplicity: all probing penalties are 1; Uniform distribution over m scenarios.
- Think of the scenarios as elements and boxes as sets. If an "acceptable" box is opened in a scenario, the scenario gets covered.
- Objective: minimize total penalty a.k.a. covering time.

- Alg's loss = cost of chosen box + total probing penalty
- Scenario or state of the world \equiv particular realization of costs in boxes

COMPONENTS OF A PANDORA'S BOX ALGORITHM

- Exploration: gathering data about which "world" we're in
- Exploitation: _________
 opening a low cost box quickly
- Knowing when to stop
- Learning from limited data: sample access to the distribution

- A special case: the Min Sum Set Cover problem
- All costs are 0 or ∞ . I.e. boxes are "acceptable" or "unacceptable".
- For simplicity: all probing penalties are 1; Uniform distribution over m scenarios.
- Think of the scenarios as elements and boxes as sets. If an "acceptable" box is opened in a scenario, the scenario gets covered.
- Objective: minimize total penalty a.k.a. covering time.
- NP-Hard but approximable. [Feige Lovasz Tetali'02]
- E.g. greedy 4-approx.: at every step, pick the box that covers the most remaining scenarios Alternatively: LP-relaxation and rounding.

But doesn't capture the richness of informational structure in Pandora's Box

- Alg's loss = cost of chosen box + total probing penalty
- Scenario or state of the world ≡ particular realization of costs in boxes

COMPONENTS OF A PANDORA'S BOX ALGORITHM

- Exploration: gathering data about which "world" we're in
- Exploitation: opening a low cost box quickly
- Knowing when to stop
- Learning from limited data: sample access to the distribution

Related problem: the Optimal Decision Tree problem

Use experiments/tests to discover which of m given hypotheses is true

Many applications: experiment design; disease diagnosis; fault-tolerant computing

NP-hard even when tests are binary and prior is uniform [Hyafil Rivest'76]

Some approaches:

- Greedy w.r.t. a "nice" proxy for information gain
- Successive elimination of scenarios

m states of the world $\Rightarrow O(\log m)$ -approximation. [Gupta Nagarajan Ravi'18, Li Liang Mussmann'20]

Tight in general!

[Chakaravarthy et al.'07]

Open: constant approx. when the prior over hypotheses is uniform?

Upshot: exploration/isolation can be solved approximately when there are "few" possible states of the world.

COMPONENTS OF A PANDORA'S BOX ALGORITHM

- Exploration: gathering data about which "world" we're in
 - Exploitation: opening a low cost box quickly

Knowing when to stop

V

- Can solve approximately when there are few states of the world.

Can approximate hindsight optimal stopping rule without any stochastic info.

 Learning from limited data: sample access to the distribution ??

Can we say anything interesting in the large support, sample access setting?

- Alg's loss = cost of chosen box + total probing penalty
- Scenario or state of the world \equiv particular realization of costs in boxes

COMPONENTS OF A PANDORA'S BOX ALGORITHM

Exploration: gathering data about which "world" we're in

Exploitation: opening a low cost box quickly

Knowing when to stop

Learning from limited data: sample access to the distribution

Upshot: competing against the optimum is hopeless! Probe 1 Let f be a random mapping from [n] to a large domain. $i \coloneqq f^{-1}(c_1)$ • $C^{(i)} = \begin{cases} c_1 = f(i) \\ c_i = 0 \\ c_{i'} = \infty & \text{for } i' \neq 1, i \end{cases}$ Probe *i* Stop & OPT = 2select i Alg cannot hope to invert f and find a zero-cost box with few samples.

COMPONENTS OF A PANDORA'S BOX ALGORITHM

- Exploration: gathering data about which "world" we're in
- Exploitation: opening a low cost box quickly

Knowing when to stop

V

- Can solve approximately when there are few states of the world.

Can approximate hindsight optimal stopping rule without any stochastic info.

Cannot learn any approx. optimal strategy from few samples.

BENCHMARK REVISITED

LEARNING AND APPROXIMATING PA-OPT IN THE SAMPLES SETTING

Arbitrary distribution with sample access: given m "samples" drawn from D. Each sample is a possible scenario or state of the world.

- I. Simplify stopping rule at small expense: use myopic stopping
- 2. Only n! different PA strategies with myopic stopping; algorithm's total loss is bounded

 \Rightarrow poly(n) samples suffice to learn optimal PA strategy.

- 3. Draw m = poly(n) samples from distribution.
- 4. Use LP relaxation and rounding to find optimal PA strategy over samples.

Inspired by algorithms for MSSC.

 \Rightarrow (3 + 2 $\sqrt{2}$)-approximation to the optimal PA strategy over samples.

Theorem: Constant approximation to PA-OPT in polynomial time using polynomial # of samples.

MODELING THE UNCERTAINTY IN COSTS (REVISITED)

 $(c_1, c_2, \dots, c_n) \sim \mathcal{D}$

Explicitly-described distribution

• \mathcal{D} is a "small support" distribution over m scenarios or states of the world.

 $O(\log m \log \log m)$ -approximation to FA-OPT

Arbitrary distribution with sample access

- \mathcal{D} is arbitrary; We are given m "samples" drawn from it.
- Each sample is a possible scenario or state of the world.

O(1)-approximation to PA-OPT

Product distribution

• Weitzman's algorithm gives an exact solution

FA-OPT = PA-OPT

Mixture of m product distributions

- Again exhibits explore-exploit tradeoff. Related to "noisy" ODT.
- Challenge: aggregating weak signals about the instantiated scenario. Need a "gap" assumption!
- $O\left(\frac{\log m}{gap}\right)$ -approximation in polynomial time.

[Gan Jia Li'21]

• $(1 + \epsilon)$ -approximation in time $\exp(\operatorname{poly}(m/\operatorname{gap})\log(\frac{1}{\epsilon}))$

[C. Gergatsouli McMahan Tzamos'22]

FURTHER DIRECTIONS AND OPEN QUESTIONS

- Other models of correlation or noise; better results for mixture of product distributions? [e.g. Liang Mu Syrgkanis'21, Bardhi'22]
- Other benchmarks?
- Combinatorial selection, e.g., selecting k boxes or matching in a network, etc.
 - Techniques generally extend to matroid-type settings [e.g. Singla'16, C. Gergatsouli Teng Tzamos Zhang'20]
 - Beyond matroids?
- Pandora's Box internalizes the cost-of-information versus optimization tradeoff
 Alternate approach to handle costly information: budgeted/constrained probing
 - Can we define Pandora-style models for other models of costly information, e.g. query complexity, sample complexity, ...

THANK YOU!

Questions?