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DATA DRIVEN DECISION PROCESSES

Examples of past instances
or

Model of input generating process
or

Predictions about future instance

Sequential/Online decision making

Lack of complete knowledge of input

Focus of this talk: 
Information available at a cost



Focus of this talk: 
Information available at a cost

What piece(s) of information should we buy?



WEITZMAN’S PANDORA’S BOX PROBLEM

• 𝑛 boxes containing “costs” drawn from known distributions

• Goal: find the box with smallest cost

• Can open boxes in any order by paying a “probing penalty” 
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Algorithm’s net loss = cost of chosen box + total probing penalty = 𝑐# + (𝑡! + 𝑡#)
Want to minimize this

in expectation



SOLUTIONS TO PANDORA’S BOX: DECISION TREES

Two components of any algorithm:

• What to probe next?

• When to stop and choose?

A primary source of difficulty: both decisions can depend adaptively                          
on information obtained previously.

Can the tree be large? Is it succinctly representable? Is it efficiently computable?

Upshot: in general, hard to compute or learn
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WEITZMAN’S SOLUTION (1979)

• Compute an amortized cost (a.k.a. Gittins index). 𝑔" is a function of only 𝒟" and 𝑡".

• Probe boxes in greedy order of increasing amortized cost.

• Stop when an observed cost < all remaining indices. Select box with min observed cost.

Note: no adaptivity in probing order!

Theorem:  Weitzman’s algorithm is optimal if the cost distributions 𝒟#, … , 𝒟$ are independent.

But it fails as soon as we modify the model, e.g.:
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𝑐#Non-obligatory inspection

i.e. can select boxes without 
opening them

Correlated costs

E.g.  𝑐! being high implies  
𝑐" is also high

Combinatorial/correlated selection

E.g. boxes are edges in a network and want 
to select a shortest path; boxes are 
attributes, and must select all or none

This talk

[Doval’18, Beyhaghi Kleinberg’19] [C. Gergatsouli Teng Tzamos Zhang’20, 
C. Gergatsouli McMahan Tzamos’22] [Singla’18, Klabjan Olszewski Wolinsky’14]



A ROUGH OUTLINE

• Distributional models

• Some components of a Pandora’s Box algorithm

• Challenges

• Related optimization problems

• Benchmarks

• Putting everything together and some results

• Open questions

Objective: 

Develop an algorithm to efficiently compute and 
learn an approximately optimal probing strategy 



MODELING THE UNCERTAINTY IN COSTS 

Explicitly-described distribution

• 𝒟 is a “small support” distribution over 𝑚
scenarios or states of the world.

• The size of the input, and therefore also the 
complexity of the problem, depend on 𝑚.

Arbitrary distribution with sample access

• The distribution 𝒟 is arbitrary and we have no 
direct access to it

• But we are given 𝑚 “samples” drawn from it.

• Each sample is a possible scenario or state of the 
world.

𝑐!, 𝑐", … , 𝑐# ~𝒟

Example: 𝒟 = Unif

1, 4, 10
8, 2, 10
8, 4, 1
8, 4, 10
10, 2, 10



COMPONENTS OF A PANDORA’S BOX ALGORITHM

• Exploration:  gathering data about which “world” we’re in

• Exploitation: opening a low cost box quickly

• Knowing when to stop

• Learning from limited data:  sample access to the distribution

Terminology cheat-sheet:
• Alg’s loss = cost of chosen box + 

total probing penalty
• Scenario or state of the world ≡

particular realization of costs in boxes



COMPONENTS OF A PANDORA’S BOX ALGORITHM

• Exploration:  gathering data about 
which “world” we’re in

• Exploitation:                      
opening a low cost box quickly

• Knowing when to stop

• Learning from limited data:  
sample access to the distribution

• Optimal stopping rule can be quite complicated: unclear if we can learn it 
effectively from data, or even represent it succinctly

But we can effectively approximate it!

• “Myopic” stopping: stop when probing cost exceeds the cost of the best 
solution found

• Let 𝜏 = stopping time. Then Cost' = Penalty'

• At any other time, either cost or penalty is higher.

Upshot: can approximate the hindsight optimal stopping rule easily with small 
loss in approximation factor.

⟹ 2-approx. ( ⁄( ()! with randomness)
[C. Gergatsouli Teng Tzamos Zhang’20]

Terminology cheat-sheet:
• Alg’s loss = cost of chosen box + 

total probing penalty
• Scenario or state of the world ≡

particular realization of costs in boxes



COMPONENTS OF A PANDORA’S BOX ALGORITHM

A special case: the Min Sum Set Cover problem

• All costs are 0 or ∞. I.e. boxes are “acceptable” or “unacceptable”.

• For simplicity: all probing penalties are 1; Uniform distribution over 𝑚 scenarios.

• Think of the scenarios as elements and boxes as sets. If an “acceptable” box is opened in 
a scenario, the scenario gets covered.

• Objective: minimize total penalty a.k.a. covering time.

• Exploration:  gathering data about 
which “world” we’re in

• Exploitation:                      
opening a low cost box quickly

• Knowing when to stop

• Learning from limited data:  
sample access to the distribution
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Terminology cheat-sheet:
• Alg’s loss = cost of chosen box + 

total probing penalty
• Scenario or state of the world ≡

particular realization of costs in boxes



COMPONENTS OF A PANDORA’S BOX ALGORITHM

A special case: the Min Sum Set Cover problem

• All costs are 0 or ∞. I.e. boxes are “acceptable” or “unacceptable”.

• For simplicity: all probing penalties are 1; Uniform distribution over 𝑚 scenarios.

• Think of the scenarios as elements and boxes as sets. If an “acceptable” box is opened in 
a scenario, the scenario gets covered.

• Objective: minimize total penalty a.k.a. covering time.

NP-Hard but approximable.    [Feige Lovasz Tetali’02]

E.g. greedy 4-approx.: at every step, pick the box that covers the most remaining scenarios

Alternatively: LP-relaxation and rounding.  

But doesn’t capture the richness of informational structure in Pandora’s Box

• Exploration:  gathering data about 
which “world” we’re in

• Exploitation:                      
opening a low cost box quickly

• Knowing when to stop

• Learning from limited data:  
sample access to the distribution

Terminology cheat-sheet:
• Alg’s loss = cost of chosen box + 

total probing penalty
• Scenario or state of the world ≡

particular realization of costs in boxes



COMPONENTS OF A PANDORA’S BOX ALGORITHM

Related problem: the Optimal Decision Tree problem

Use experiments/tests to discover which of 𝑚 given hypotheses is true

Many applications: experiment design; disease diagnosis; fault-tolerant computing

NP-hard even when tests are binary and prior is uniform [Hyafil Rivest’76]

Some approaches:

• Greedy w.r.t. a “nice” proxy for information gain

• Successive elimination of scenarios

𝑚 states of the world ⟹𝑂(log𝑚)-approximation.    [Gupta Nagarajan Ravi’18, Li Liang Mussmann’20]

Tight in general!                                                       [Chakaravarthy et al.’07]

• Open: constant approx. when the prior over hypotheses is uniform?

Upshot: exploration/isolation can be solved approximately when there are “few” 
possible states of the world.

• Exploration:  gathering data about 
which “world” we’re in

• Exploitation:                      
opening a low cost box quickly

• Knowing when to stop

• Learning from limited data:  
sample access to the distribution

Terminology cheat-sheet:
• Alg’s loss = cost of chosen box + 

total probing penalty
• Scenario or state of the world ≡

particular realization of costs in boxes



COMPONENTS OF A PANDORA’S BOX ALGORITHM

• Exploration:  gathering data about 
which “world” we’re in

• Exploitation:                      
opening a low cost box quickly

• Knowing when to stop

• Learning from limited data:  
sample access to the distribution

Can solve approximately when there are few states of the world.

Can approximate hindsight optimal stopping rule without any stochastic info.



APPROXIMATION FOR THE EXPLICIT DISTRIBUTION SETTING

Explicitly-described distribution: 𝒟 is a “small support” 
distribution over 𝑚 scenarios or states of the world.

Pandora’s Box

Can we say anything interesting in the large support, sample access setting?

Min Sum Set Cover
with “feedback”

Optimal Decision Tree

Theorem: 𝑂(log𝑚 log log𝑚)-approximation where 𝑚 = number of scenarios.

[C. Gergatsouli McMahan Tzamos’22]

(log log m loss in 
approximation)

Min Sum Set Cover

“Guess” an acceptable-cost 
threshold that covers a 

constant fraction of scenarios; 
Iterate. 



COMPONENTS OF A PANDORA’S BOX ALGORITHM

Upshot: competing against the optimum is hopeless!

• Let 𝑓 be a random mapping from [𝑛] to a large domain.

• 𝐶(") = ,
𝑐# = 𝑓 𝑖
𝑐" = 0
𝑐"* = ∞ for 𝑖′ ≠ 1, 𝑖

• OPT = 2

• Alg cannot hope to invert 𝑓 and find a zero-cost box with few samples.

Probe 1

Probe 𝑖

Stop & 
select 𝑖

𝑖 ≔ 𝑓$!(𝑐!)

• Exploration:  gathering data about 
which “world” we’re in

• Exploitation:                      
opening a low cost box quickly

• Knowing when to stop

• Learning from limited data:  
sample access to the distribution

Terminology cheat-sheet:
• Alg’s loss = cost of chosen box + 

total probing penalty
• Scenario or state of the world ≡

particular realization of costs in boxes



COMPONENTS OF A PANDORA’S BOX ALGORITHM

• Exploration:  gathering data about 
which “world” we’re in

• Exploitation:                      
opening a low cost box quickly

• Knowing when to stop

• Learning from limited data:  
sample access to the distribution

Can solve approximately when there are few states of the world.

Can approximate hindsight optimal stopping rule without any stochastic info.

Cannot learn any approx. optimal strategy from few samples.



BENCHMARK REVISITED

Fully Adaptive Opt (FA-OPT)

• Probing order and stopping rule 
depend adaptively on obtained info.

Hard to approximate, and hard to 
learn from data

Non Adaptive Optimum (NA-OPT)

• Selects a subset of boxes

• Opens all simultaneously

• Chooses the best box

Hard to approximate better than Ω(log𝑚)
(captures set cover); Easy to learn from data.
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Probe S = {1, 3, 4}

Stop & select 
argmin"∈$ {𝑐"}

Partially Adaptive Opt. (PA-OPT)

• Probing order is non-adaptive 

• Stopping rule depends adaptively on 
obtained info.

Can approximate and learn from data!

Probe 1

Probe 5

Stop & 
select 1

Probe 2

Stop & select 
argmin(𝑐!, 𝑐")

- - -

Else

𝑐! < 1

𝑐! + 2𝑐" < 4Else

𝑐" 𝑐# <
7.2

Inspired by Weitzman’s solution

Approximate NA-OPT using 
a fully adaptive algorithm?

Increasing representation error

Increasing generalization error



LEARNING AND APPROXIMATING PA-OPT IN THE SAMPLES SETTING

1. Simplify stopping rule at small expense: use myopic stopping

2. Only 𝑛! different PA strategies with myopic stopping; algorithm’s total loss is bounded

⟹ 𝑝𝑜𝑙𝑦(𝑛) samples suffice to learn optimal PA strategy.

3. Draw 𝑚 = 𝑝𝑜𝑙𝑦(𝑛) samples from distribution. 

4. Use LP relaxation and rounding to find optimal PA strategy over samples.

Inspired by algorithms for MSSC.

⟹ (3 + 2√2)-approximation to the optimal PA strategy over samples.

Arbitrary distribution with sample access: given 𝑚 “samples” drawn 
from 𝒟. Each sample is a possible scenario or state of the world.

Theorem: Constant approximation to PA-OPT in polynomial time using polynomial # of samples.

[C. Gergatsouli Teng Tzamos Zhang’20]



MODELING THE UNCERTAINTY IN COSTS (REVISITED) 

Explicitly-described distribution

• 𝒟 is a “small support” distribution over 𝑚 scenarios or 
states of the world.

𝑂(log𝑚 log log𝑚)-approximation to FA-OPT

Arbitrary distribution with sample access

• 𝒟 is arbitrary; We are given 𝑚 “samples” drawn from it.

• Each sample is a possible scenario or state of the world.

𝑂(1)-approximation to PA-OPT

𝑐!, 𝑐", … , 𝑐# ~𝒟

Product distribution

• Weitzman’s algorithm gives an exact solution

FA-OPT = PA-OPT

Mixture of 𝑚 product distributions

• Again exhibits explore-exploit tradeoff. Related to “noisy” ODT.

• Challenge: aggregating weak signals about the instantiated scenario. 
Need a “gap” assumption!

• 𝑂 0123
gap -approximation in polynomial time.

• (1 + 𝜖)-approximation in time exp(poly 𝑚/gap log #
4 )

[C. Gergatsouli McMahan Tzamos’22]

[Gan Jia Li’21]



FURTHER DIRECTIONS AND OPEN QUESTIONS

• Other models of correlation or noise; better results for mixture of product distributions?

• Other benchmarks?

• Combinatorial selection, e.g., selecting k boxes or matching in a network, etc.

• Techniques generally extend to matroid-type settings [e.g. Singla’16, C. Gergatsouli Teng Tzamos Zhang’20]

• Beyond matroids?

• Pandora’s Box internalizes the cost-of-information versus optimization tradeoff 

Alternate approach to handle costly information: budgeted/constrained probing

• Can we define Pandora-style models for other models of costly information, e.g. query complexity, sample complexity, …

[e.g. Liang Mu Syrgkanis’21, Bardhi’22]



THANK YOU!

Questions?


