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Resource allocation with nonlinear utilities to 𝐻 projects
Given 𝑔!, … , 𝑔": 0, 𝑏 # → ℝ, find  𝑣∗ = max

%!&⋯&%"()𝟏,%#,-
𝑔! 𝑎! +⋯+ 𝑔"(𝑎")

𝑣.∗(𝑠): optimal value achievable over [ℎ, 𝐻] if resource used before this stage is   
𝑠 ∈ 0, 𝑏 #

𝑣.∗ 𝑠 = max
-(%( )/0 𝟏

𝑔. 𝑎 + 𝑣.&!∗ 𝑠 + 𝑎 1 ≤ ℎ ≤ 𝐻 − 1

𝑣"∗ 𝑠 = 𝑔" 𝑏 − 𝑠 [say,	𝑔. is	increasing]

How to compute 𝑣!∗ 0 ? .. and the optimal “policy” (𝑎.∗ 𝑠 =? )

“Represent” 𝑣.∗ somehow.. Discretization? Bad Ω(2#) scaling when  𝑎 ∈ 0, 𝑏 #

. . . . . .

𝑎! 𝑎" 𝑎# 𝑎$

𝑔! 𝑔" 𝑔# 𝑔$

𝑏

𝑠



New idea (in 1963):
Generalized polynomial approximation

𝑓 𝑠 = Σ%&'( 𝜃%𝜙% 𝑠 , 𝑠 ∈ −1,1

𝜙% 𝑠 = 𝑠%)', or cos( 𝑘 − 1 𝑠), or 
𝑃%(𝑠), or 𝑇%(𝑠)

{𝑃%} (or {𝑇%})    ⇒ orthonormal set w.r.t.
uniform measure on [-1,1]

𝜃% = ∫)'
' 𝑓𝜙%

https://en.wikipedia.org/wiki/Legendre_polynomials https://en.wikipedia.org/wiki/Chebyshev_polynomials

𝑃%(𝑠)

𝑇%(𝑠)

https://en.wikipedia.org/wiki/Legendre_polynomials
https://en.wikipedia.org/wiki/Chebyshev_polynomials


(*) 𝑣.∗ 𝑠 = max
0121 3)4 𝟏

𝑔. 𝑎 + 𝑣.6'∗ 𝑠 + 𝑎

(78123
∗ )(4)

, 1 ≤ ℎ ≤ 𝐻 − 1

Idea: 𝑣!∗ ≈ 𝑣#! ≔ Φ𝜃! for some 𝜃! ∈ ℝ$ for all ℎ.

Getting 𝜃! from 𝜃!%&:
𝑣#! = Π'()* + (𝑇 𝑣#!"#)

BKK63 used an ONB and Gaussian quadratures for 
approximating the projection

Successive
approximations

Fitted value 
iteration



Results
Benchmarks! 2 dimensional problems! Good results!

“Finally, if we combine these techniques – polynomial 
approximations and Lagrange multipliers – with that of 
successive approximations, there should be very few allocation 
processes which still resist our efforts.”

(Lagrange multipliers: Because actions may be constrained)

Why the optimism?
No discretization of the state space, just need to guess Φ

è no “curse of dimensionality” if guess is correct. Yes?



Questions
1. Approximation: How large should be the degree of polynomials used to approximate 

𝑣∗? How to choose the basis functions?

Smoothness, approximation theory, systems theory.. Someone else’s problemJ

2. Computation:  ç FOCUS
Given that we can approximate well 𝑣∗, say, 

𝑣∗ 𝑥 = Σ"#$% 𝜃"∗𝜙"(𝑥), 

how much computation is needed to get 𝜃∗ = (𝜃$∗, … , 𝜃%∗)? How many queries?

Can we do it in poly(𝐴, 𝐻, 𝑑, 1/𝜀) regardless of dimension (state space size)?
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MDPs and Bellman equations

𝑣.∗ 𝑠 = max
2∈𝒜 4

𝑟 𝑠, 𝑎 + 𝔼; 𝑣.6'∗ (𝑓 𝑠, 𝑎, 𝜉 )

<1
∗ (4,2)

𝑠 ∈ 𝒮 -- States
𝑟(𝑠, 𝑎) -- Rewards and 𝑟 𝑠, 𝑎 = 𝑟2(𝑠)
𝑓(𝑠, 𝑎, 𝜉) -- Stochastic transitions to a next state, 

𝑠> ∼ 𝑃2 𝑠 . 𝔼; 𝑣 𝑓 𝑠, 𝑎, 𝜉 = ⟨𝑃2 𝑠 , 𝑣⟩
𝒜(𝑠) -- Admissible actions

For simplicity, 𝒜 𝑠 = 𝒜



Optimistic Constraint Propagation
Deterministic MDPs

𝑞5∗ 𝑠, 𝑎 = 𝜑5 𝑠, 𝑎 7𝜃∗ =: 𝑞5 𝑠, 𝑎; 𝜃∗

TD5 𝑠, 𝑎, 𝑠8, 𝜃 ≔ 𝑟5 𝑠, 𝑎 + max
9&

𝑞5:;(𝑠′, 𝑎′; 𝜃) − 𝑞5(𝑠, 𝑎; 𝜃)

(*) TD5 𝑠, 𝑎, 𝑠8, 𝜃∗ = 0 ∀ℎ, 𝑠, 𝑎, 𝑠8 = 𝑓5 𝑠, 𝑎

Start with Θ< = { 𝜃 ∶ 𝜃 ; ≤ 𝐵 }
Iteration 𝑖 = 0,1, …:

Pick any 𝜃 ∈ Θ= s.t. max
9

𝑞; 𝑠<, 𝑎; 𝜃 is maximized over Θ= (ASK ME)

Roll out with 𝜋5 𝑠 = argmax9𝑞5(𝑠, 𝑎; 𝜃) → ( 𝑠5 , 𝑎5 5)
Θ=:; = {𝜃 ∈ Θ= ∶ TD5 𝑠5 , 𝑎5 , 𝑠5:;, 𝜃 = 0 ∀ℎ }
Return 𝜋5(𝑠<) if Θ=:; = Θ=

Zheng Wen
Ben van Roy

2013



Sample Complexity

Theorem [WR13]: 
For any deterministic system, the previous algorithm stops after 

poly(𝐵, 𝑑, 𝐻, 𝐴)
interactions with the system and returns an optimal action at 𝑠0.

Further, the total computation effort is also poly in the same
quantities.



8 years later..

• Du-Kakade-Wang-Yang 2021, Lattimore-Szepesvari-Weisz 2021

• Setup: 𝑄 Π ⊂ ℱ ⊕ −𝜀, 𝜀 (

• Result: the query complexity to get a 𝛿 −optimal action at 𝑠0
is exponential in min(𝐻, 𝑑) unless 𝛿 ≥ 𝑑𝜀

• For 𝛿 ≥ 𝑑 𝜀, fitted policy iteration under global access 
returns with 𝛿 −optimal action in poly time

• Insight: Extrapolation based on finite data unavoidably inflates 
best approximation error
Note! 𝑑 is the maximum blowup. Blowup may not happen



Strong ⇒ Weak function approximation

• Strong function approximation:
𝑇∗ℱ ⊂ ℱ
or

𝑄 Π ⊂ ℱ

• Weak function approximation:
𝑣∗ ∈ ℱ

(or 𝑞∗ ∈ ℱ). 

• Why weak? The approximation space is not large enough to 
hold all kind of functions, just the optimal value function

• More ambitious
• But no misspecification
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The size of the action space

𝑂 1 poly(𝐻, 𝑑) Ω 2!∧#

“many”“few”



Many actions

*

** even under global access! 
*   only under global access!  

𝐵:  𝜃∗ ≤ 𝐵

𝑑: number of features (parameters)

𝐻: horizon

𝐴: number of actions

Norm of features ≤ 1

Source Action count MDP class Poly(.) compl?

WR13 any ℳ(,*,$,+
,∗ ∩ℳ-./ ✓

DKLLMSW21* any ℳ(,*,$,+
0∗/,∗ ✓

WASz21** 22(*∧$) ℳ(,*,$,+
,∗ ∩ℳ6-./ ⨯



Simulator access models

• Global access:
– Gets the description of the full state space
– Gets all features at all states (state-action pairs) upfront
– Can ask for a transition at any state-action pair

• Local access:
– Does not get the description of the full state space
– Only gets features associated with states visited
– Simulation starts at some initial state
– Simulator can be reset to a a previously visited state

• Online access:
– Like local access, except that resetting to previously visited states is 

not possible

WSzGy’21



Few actions

Action count MDP class Poly(.) compl?

𝑂(1) *, ** ℳ(,*,$,+
0∗ ✓

𝑂(1) ** ℳ(,*,$,+
,∗ ∩ℳ6-./ ✓

𝑂(1) ** ℳ(,*,$,+
0∗/,∗7.89: ✓

Ω(𝑑!/; ∧ 𝐻!/") *** ℳ(,*,$,+
0∗ ∩ℳ6-./ ⨯

Ω(𝑑!/; ∧ 𝐻!/") *** ℳ(,*,$,+
,∗ ∩ℳ6-./ ⨯

Ω(𝑑!/; ∧ 𝐻!/") *** ℳ(,*,$,+
0∗/,∗7.89: ∩ℳ6-./ ⨯

*   result by WAJAYJSz21
** even under local access
*** even under global access

Why not hard?

WSzGy21



Stochastic transitions
𝑣∗ realizability
local access

TensorPlan

WAJAYJSz21

𝑂 1 actions: Why not hard?



TensorPlan
𝑣!∗ 𝑠 = 𝜑! 𝑠 #𝜃∗ =: 𝑣! 𝑠; 𝜃∗

TD! 𝑠, 𝑎, 𝜃 ≔ 𝑟! 𝑠, 𝑎 + ⟨𝑃$(𝑠), 𝑣!%&(⋅; 𝜃)⟩ − 𝑣!(𝑠; 𝜃)

(*) Π$ TD! 𝑠, 𝑎, 𝜃∗ = 0 ∀𝑠, ℎ Algebraic	Bellman!

Start with Θ' = { 𝜃 ∶ 𝜃 ≤ 𝐵 }
Iteration 𝑖 = 0,1, …:

Pick 𝜃 = argmax(&∈*<𝑣'(𝑠'; 𝜃′) # optimism

Roll out/test with 𝜋! 𝑠 = argmax$𝑞!(𝑠, 𝑎; 𝜃) → ( 𝑠+,! , 𝑎+,! +,!
)

Θ-%& = {𝜃 ∈ Θ- ∶ Π$XTD! 𝑠+,! , 𝑎+,! , 𝜃 ≈ 0 ∀𝑗, ℎ }
Return 𝜋!(𝑠') if Θ-%& = Θ-

𝑞# 𝑠, 𝑎; 𝜃 ≔ 𝑟# 𝑠, 𝑎 + ⟨𝑃=(𝑠), 𝑣#>!(⋅; 𝜃)⟩



Why will TensorPlan stop changing Θ?

Π)TD! 𝑠, 𝑎, 𝜃 = 0

⇔

⊗) 𝑟) 𝑠 𝑃) 𝑠 0𝜙!%& − 𝜙! 𝑠 ,⊗) 1 𝜃 = 0

⊗2 1 𝜃 ∈ ℝ (6' 4

⇒ must stop after 𝑑 + 1 W constraint violations



What’s the role of optimism?
Consider the TensorPlan that in state 𝑠 at stage ℎ chooses the first 
action 𝑎 s.t. TD. 𝑠, 𝑎, 𝜃 = 0
..not necessarily a maximizing action

Let 𝜋 be the corresponding policy

If 𝑣.X 𝑠 = 𝜙. 𝑠 Y𝜃 ∀ℎ, 𝑠, TensorPlan could return 𝜋 𝑠0 !

..Problem? Not if 𝑣0X 𝑠0 ≥ 𝑣0∗(𝑠0)!

Since 𝜃∗ ∈ ΘZ, 𝑣0X 𝑠0 = max
[∈\5

𝑣0 𝑠0; 𝜃 ≥ 𝑣0 𝑠0; 𝜃∗ = 𝑣0∗ 𝑠0



Theorem: 
The number of simulator calls 𝐶 performed by TensorPlan
satisfies

𝐶 = 𝑂 poly
𝑑𝐻
𝛿

W
, 𝐵

while TensorPlan induces a 𝛿-optimal policy.



Hardness with poly actions
𝑤∗

𝑤? = 𝟏

Challenges:
1. Algorithms can measure local consistency (w.r.t. TD error)
2. Large reward at stage 𝐻 gives away 𝜃∗ (bandits!)
3. Need large total reward to keep action-gap large at 𝑠0

Two-step approach:
1. Structured combinatorial semi-bandit where reward is the 

product of low-order polynomials with values in (0.1,0.9)
action is chosen in K stages, need to “hit” nbh of 𝑤∗ ∈
−1,1 _

2. Realize the semi-bandit with MDP with linear 𝑣∗



Summary

Source Action count MDP class Poly(.) compl?

WAJAYJSz21 𝑂(1) ℳ(,*,$,+
0∗ ✓

WSzGy21 𝑂(1) ℳ(,*,$,+
,∗ ∩ℳ6-./ ✓

WSzGy21 𝑂(1) ℳ(,*,$,+
0∗/,∗7.89: ✓

WSzGy21 Ω(𝑑!/; ∧ 𝐻!/") ℳ(,*,$,+
,∗ ∩ℳ6-./ ⨯

WSzGy21 Ω(𝑑!/; ∧ 𝐻!/") ℳ(,*,$,+
0∗ ∩ℳ6-./ ⨯

WSzGy21 Ω(𝑑!/; ∧ 𝐻!/") ℳ(,*,$,+
0∗/,∗7.89: ∩ℳ6-./ ⨯

WASz21 22(*∧$) ℳ(,*,$,+
,∗ ∩ℳ6-./ ⨯

WR13 any ℳ(,*,$,+
,∗ ∩ℳ-./ ✓

DKLLMSW21 any ℳ(,*,$,+
0∗/,∗ ✓

poly compute for green lines? LLL (KLLM’22)



• Successive approximations?
..only for strong FA,
..for weak FA: constraint propagation/version space pruning
and in stochastic systems, optimism

• Even with strong FA, we need to live with approximation error 
blowup due to extrapolation!

• Unlike in bandits, large action spaces cause hardness!

“Finally, if we combine these techniques – polynomial 
approximations and Lagrange multipliers – with that of 
successive approximations, there should be very few allocation 
processes which still resist our efforts.” [BKK63]



Some open problems

• Query complexity when
ℳ`,(,a,W

<∗ , 𝐴 = 𝑂 1 AND transitions are stochastic

• Computational complexity when

𝐴 = 𝑂(1), ℳ`,(,a,W
8∗/<∗ ? 

• Online access under 𝑄 Π ⊂ ℱ?

• Nonlinear fapp?

• Models that work for continuous action spaces? 



Specializing the MDP class

• Deterministic dynamics is helpful

• Factored linear dynamics? Yes, eg, 
𝑠.6' = 𝑓 𝑠., 𝑎. + 𝜂, 𝜂 ∼ 𝑁 0, Σ

– Or just 𝑇∗ℱ ⊂ ℱ or some variant of this

• Other special structure?
– “Allocation processes”?
– Linear dynamics, linear cost/reward, feasible action set is a polytope
– …

• General characterization of query complexity 
(Foster, Kakade, Qian, Rakhlin)
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Online planning (R97, KMS02)

MDP M

𝑠: current state

𝐴 ∈ 𝒜

MDP 
Simulator

𝑠, 𝑎 ∈ 𝒮×𝒜

𝑠! ∼ 𝑃" 𝑠
𝑟 = 𝑟" 𝑠

getaction(s)

A:=getaction( 𝑠, 𝛿, 𝜉, .. ) 

Objective: 𝑣3 ≥ 𝑣∗ − 𝛿𝟏 w.p. 1−ξ



The semi-bandit
𝑤∗

𝑤? = 𝟏

𝑓@∗ 𝑤!:% = 𝑔 ℎ 𝑤!, 𝑤" ⋯𝑔 ℎ 𝑤%B!, 𝑤% 𝑔 ℎ 𝑤% , 𝑤∗

ℎ 𝑤CB!, 𝑤C ≥
𝑝
4 , 1 ≤ 𝑖 ≤ 𝑘, 𝑤? = 𝟏

𝑝/4 ≤ ℎ(𝑤∗, 𝟏) ≤ 3𝑝/4

𝑔 𝑥 = 1 −
𝑥
𝑝 +

𝑥 − 1 𝑥
2𝑝"

stop as early as possible

𝑤"

𝑤!

𝑘 ≤ 𝐾 rounds, maximize 𝑓@∗

𝑤∗

𝑤? = 𝟏

𝑝: dimension
𝐾: #steps
Want: if both large, game is hard!
𝑤∗, 𝑤C ∈ −1,1 D



Interaction

• Choose 𝑤':% with some 1 ≤ 𝑘 ≤ 𝐾 (# rounds)
• Done? If yes, 𝑘 ≔ 8, payoff is 𝑅 = 𝑓r∗(𝑤':Z) with smallest 
𝑖 such that ℎ 𝑤Z, 𝑤∗ < 𝑝/4, 𝑁: # queries before this round

• If not done then receive feedback:
1. ℎ 𝑤"#$, 𝑤∗ < 𝑝/4?  (𝑤% ≔ 𝟏)
2. ℎ 𝑤", 𝑤∗ < 𝑝/4?
3. 𝑍 ∼ Ber(𝑓&∗(𝑤$:")) if (𝑘 = 𝐾 or ℎ 𝑤", 𝑤∗ < 𝑝/4) else

𝑍 = 0

ℎ 𝑤,𝑤E = 0.5 (𝑝 − ⟨𝑤,𝑤E⟩)
ℎ 𝑤,𝑤∗ < 𝑝/4 ⇔ 𝑤,𝑤∗ > 𝑝/4

𝑤

𝑤∗



The lower bound

𝒜 is sound if for any 𝑤∗ ∈ 𝑊∗,  
𝔼r∗
𝒜 𝑅 ≥ max

r3:7 yz{.
𝑓r∗ 𝑤':Z∗ r3:7 − 0.01

Theorem: If 𝒜 is sound then max
r∗∈|∗

𝔼r∗
𝒜 𝑁 = 2} _∧~

Idea: Planner only gets info only when hits 𝐵(𝑤∗, _�). Chance of 

hitting this is exp − _
� ⇒ many queries are needed

Why this 𝑓r∗? Helps with MDP realizability + large gap



MDP definition

• 𝐻 ≈ 𝐾𝑝, 𝐴 = 𝑝 ≈ 𝑑'/� ∧ 𝐻'/�.
• Actions: flipping components



Robert Kalaba
Robert E. Kalaba, an applied 
mathematician associated with USC for 
almost half a century and internationally 
renowned for his analytical and 
computational solutions to problems in 
physics, engineering, operations analysis 
and biology.
A professor of biomedical engineering, 
electrical engineering and economics, 
Kalaba was an engineering lecturer at USC 
from 1956 to 1971.
He became a research associate in 
biomathematics in 1966 and a visiting 
professor of electrical engineering in the 
biomedical engineering program of the 
USC Viterbi School of Engineering in 1969. 
In 1974, he became a full professor at USC 
with appointments in biomedical 
engineering, electrical engineering and 
economics.

https://news.usc.edu/24478/USC-
Professor-of-Biomedical-
Engineering-Dies/

1926—2004 

https://news.usc.edu/24478/USC-Professor-of-Biomedical-Engineering-Dies/


Bella Kotkin à Bella Manel Greenfield

Bella Manel was born in New York City. A 
pioneering woman in mathematics, she 
earned her PhD in 1939 from New York 
University under the supervision of 
Richard Courant. She worked for Ramo-
Wooldridge (now TRW) and at the Rand 
Corporation with Richard Bellman. Later, 
she taught mathematics at the College of 
Notre Dame (now Notre Dame de Namur 
University) in Belmont, California, and at 
UCLA. The Bella Manel Prize for 
outstanding graduate work by a woman or 
minority was established at NYU’s Courant 
Institute in 1995.

October 13, 1915-
April 03, 2010

Spoke Hungarian?

https://www.wikid
ata.org/wiki/Q102
188233

https://www.wikidata.org/wiki/Q102188233

