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Economics of Statistics

I Statistics, based on decision theory, does not explicitly account for:

I incentive problems
I strategic behavior

I Talk overviews game theory models of:

I data collection
I information reporting

I Implications for regulation
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Data: HARD information

1. Strategic sample selection

selective disclosure in “hard” data reporting

2. Persuasion bias

optional stopping in data collection

Predictions: SOFT information

3. Forecasting contest

competition for best record

4. Reputational forecasting

reputation for accurate information
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Impact of Sample Selection on Value of Information

Di Tillio-Ottaviani-Sørensen (EMA, 2021)

I Biased researchers in observational studies:

I select sample non randomly from larger presample
I choose specification
I omit controls

I Subversion of randomization to treatment in experiments

I When treatment is given to healthiest rather than random patients
I Favorable outcomes become more likely
I but are also less convincing that treatment is effective

I How does sample selection affect the value of information?
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Impact of ANTICIPATED Selection

I Compare information value of two experiments:

I Random : X = θ + ε with ε ∼ F [BLUE]
I Selected : max of k iid draws: Y = θ + ε (k) with ε (k) ∼ F k [RED]



Cournot (1843) on P-Hacking

“§101 ... A person not knowing how the data were analysed and whom the

experimenter told the result of that analysis concerning the system ... but

not how many attempts he made to achieve that result, is unable to judge

with a determined chance of error whether the chances ... are equal or

not...”

“... However, unsuccessful tests usually leave no traces; the public

only knows the results which the experimenter thought to be deserving

notice. It follows that a person alien to the testing is absolutely unable to

regulate bets on whether the result is, or is not attributable to

anomalies of chance.”



Illustration: Simple Hypothesis Testing

I Here we illustrate idea for simple hypothesis testing:

θ L θ H

reject R R

accept θ L θ H

θ L < R < θ H , prior p = Pr(θ H)

I Generalizing Lehmann (1988), our results are valid for general

Quah-Strulovici (2009) IDO preferences (including single crossing and

Karlin-Rubin monotone decision problems)

I Location experiment x = θ + ε, with ε ∼ F independent from θ

I Assume logconcave density f ⇔ monotone likelihood ratio property

I With a single draw, cutoff rule optimal: accept iff

f (x−θ H)

f (x−θ L)
≥ 1−p

p

R−θ L

θ H −R
⇔ x ≥ x̄
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Random v. Selected

1−F k (ȳ −θ L) = 1−F (x̄−θ L)︸ ︷︷ ︸
Using cutoff ȳ in Y that matches False Positives

⇒ ȳ = (F k )−1F (x̄−θ L)+θ L

F k (ȳ −θ H)
?
≤ F (x̄ −θ H)︸ ︷︷ ︸

Are False Negatives reduced? Yes, with F normal! More generally?
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Dispersion of Selected Experiment

When is F k steeper than F at same quantile?

I Theorem (general sample size n): Fixing sample size n, as

pre-sample size k increases, experiment becomes more (less)

informative in every monotone problem if reverse hazard rate RHR

f (x |θ )/F (x |θ ) is log-supermodular (log-submodular, w/ support

unbounded above)

f (x |θ ′)/F (x |θ ′)
f (x |θ )/F (x |θ ) increasing (decreasing) in x, for all θ

′ > θ

I For location Fθ (x) = F (x −θ ) experiment:

I Beneficial selection: logconcave RHR
f (x)
F (x)

(e.g., Normal)

I Neutral selection: loglinear RHR
f (x)
F (x)

(Gumbel)

I Harmful selection: logconvex RHR
f (x)
F (x)

(e.g., Exponential)
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NEUTRAL Selection: Loglinear f /F

Gumbel noise: F (ε) = e−e−ε

x
Θ2Θ1 x y



HARMFUL Selection: f LESS Logconcave than F

Exponential noise: F (ε) = 1−e−ε

x
Θ2Θ1 x y



BENEFICIAL Selection: f MORE Logconcave than F

Normal noise: ε ∼N
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Research and the Approval Process
Henry-Ottaviani (AER, 2019)

I Informer benefits from approval of drug with uncertain efficacy

I Evaluator = FDA regulator

θ
H
e > 0 in state H and θ

L
e < 0 in state L

I Informer = pharma company benefits from approval

vi > 0

I Informer sequentially acquires & diffuses costly information

I instantaneous trial result from state-dependent Brownian motion

I Evaluator has coarse instruments for regulation

I approve/reject, ask for additional evidence [impose liability]
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Organizational Deconstruction of Wald

TWO players:

1. Informer i

a. directly controls information acquisition & pays info cost

b. but always wants approval and does not directly value info

2. Evaluator e

a. directly controls approval decision with uncertain payoff

b. benefits from info, but can only obtain it indirectly from informer

Wald’s social planner w

a. controls all decisions (rejection/approval) & info acquisition

b. obtains total payoff vw = θ e+ vi (evaluator+informer) & pays info cost
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Wald Welfare Benchmark: Value Function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Va
lu

e

Standalone
Immediate approval



Organizational Deconstruction of Wald
I Planner (Wald) w : max

s,S
uw = ue+ui

s = bw (S) & S = Bw (s)

I Instead, our players i and e solve constrained Wald problems

I with split payoffs & decision rights

I Compare organizations = extensive forms of Wald persuasion games

1. Informer i Authority:

I informer max
s

ui |S given evaluator’s approval standard S: so s = bi (S)

I evaluator approves for q ≥ q̂e =
−θ

L
e

θ
H
e −θ

L
e

= Neg Ext
Pos Ext + Neg Ext

⇒ S = q̂e

2. No Commitment: informer max
s

ui |S & evaluator max
S

ue|s

s = bi (S) & S = Be (s)

3. Evaluator e Commitment: max
S

ue|s=bi (S)
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1. Informer Authority Game
Informer Best Reply [RED]

I i ’s best reply RED s = bi (S) given S [s on horizontal axis]

I locus of horizontal tangencies of iso-payoff curves PINK
I bi (S)↗ S: LOSS OF CONTROL

I i expects e to adopt for q ≥ S [S on vertical axis]

I TOP: Informer stops as soon as evaluator persuaded: Si = q̂e =
−θ

L
e

θ
H
e −θ

L
e

I BOTTOM: Informer withdraws when pessimistic enough: si = bi (q̂e)
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Sequential Foundation of Bayesian Persuasion

I Comparison to Kamenica-Gentzkow’s (2011) commitment solution?

I We recover KG without info frictions if (1) c→ 0 & (2) r → 0, so:

I KG solution becomes sequentially optimal without commitment
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2. No-Commitment “Nash” Outcome

I Evaluator e gains commitment power: precursor of FDA in 1905

I EQUILIBRIUM: Stationary Markov Perfect Equilibrium solving

I i controls withdrawal standard: sN = bi

(
SN
)
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I e controls adoption standard: SN = Be
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)

BLUE

I e sets more stringent approval standard: SN > Si

I i withdraws earlier: sN > si
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3. Evaluator Commitment Solution

I Evaluator commits ex ante to approval when belief reaches Se

I approve iff q ≥ Se

I Stackelberg tangency with e’s BLUE iso-payoffs

I Evaluator benefits to be more lenient Se < SN

I commits to free-ride less to encourage more info collection

I Compared to Nash, FALSE POSITIVES ↑ & FALSE NEGATIVES ↓
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Plan

Data: HARD information

1. Hypothesis testing with selected data

I anticipated selection benefits/harms if data has thinner/thicker tail than

Gumbel

2. Wald persuasion games with costly information collection

I equilibrium persuasion: bias from optional stopping
I tolerate false positives to encourage info collection

Predictions: SOFT information

1. Forecasting contest

I excessive differentiation

2. Reputational forecasting

I conformism with naive audience
I information loss with rational audience
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Honest Forecasting: Benchmark Statistical Model

I Unknown state with prior x ∼ N
(
µ, 1

v

)
I Single forecaster with private signal s about state x

I Honest forecaster (naive statistician) minimizes forecast error

min
m

E
[
(m−x)2 |s

]

I Best statistical forecast is posterior expectation

m = E [x |s]

I Forecasts are orthogonal to the forecast error
I Forecasts are dispersed, but less than the state
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Forecasting Contest

Ottaviani-Sørensen (2006, J of Financial Economics)

Francis Galton’s (1907) ox weight competition:

1. Large number of forecasters, each observes signal si

2. Forecasters simultaneously submit forecasts mi

3. True state is publicly observed x

4. Forecaster whose forecast is closest to the state wins
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Forecasting Contest

I At the posterior expectation

mi = E [x |si ]

a small deviation away from the prior mean µ results in

I a second-order loss due to lower chance of winning, but
I a first-order gain due to reduced competition



Excessive Differentiation in Forecasting Contest

Figure: Equilibrium forecasts are more variable than posterior expectation



Reputational Cheap Talk

Ottaviani-Sørensen (2006, RAND J Economics)

1. Single forecaster observes signal s with accuracy t

2. Forecaster issues forecast m

3. Market observes state x & evaluates accuracy

E [t |m,x ]

I Objective of forecaster is to obtain favorable evaluation E [t |m,x ]
I Forecast m is a (cheap talk) signal
I Is honest m = E [x |s] an equilibrium?
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Misreporting Incentives

I If evaluator (naïvely) expects honest forecasting m = E [x |s]
I Will forecaster want to report honestly?

I With location signal, forecaster has incentive to lie reporting

E [x |ŝ = E [x |s]] ,
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Reputational Cheap Talk Equilibrium

I Equilibrium communication is coarse (as in Crawford and Sobel, 1982)

I Forecasters with signals in an interval send identical message
I Loss of forecast accuracy!

I E.g., there exists a two-message equilibrium:

I Report whether s is above or below prior mean E [x ]



Reputational Cheap Talk Equilibrium

I Equilibrium communication is coarse (as in Crawford and Sobel, 1982)

I Forecasters with signals in an interval send identical message
I Loss of forecast accuracy!

I E.g., there exists a two-message equilibrium:

I Report whether s is above or below prior mean E [x ]



Forecasting Summary

I Concern for accuracy leads to:

I excessive conformity if the market is naïve
I loss of information if the market is rational

I Competition for best accuracy record leads to excessive differentiation
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Game Theory of Data Collection & Reporting

Data: HARD information

1. Hypothesis testing with selected data

I anticipated selection benefits/harms if data has thinner/thicker tail than

Gumbel

2. Wald persuasion games with costly information collection

I equilibrium persuasion: bias from optional stopping
I tolerate false positives to encourage info collection

Predictions: SOFT information

1. Forecasting contest

I excessive differentiation

2. Reputational forecasting

I conformism with naive audience
I information loss with rational audience
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