Stochastic \& adversarial best-arm identification,

can we achieve the best of both worlds?

Victor Gabillon

joint work with Yasin Abbasi-Yadkori, Peter Bartlett, Alan Malek \& Michal Valko

Workshop on Quantifying Uncertainty: Stochastic, Adversarial, \& Beyond, Simons Institute, 13 September 2022

- Setting: A pure exploration bandit problem
- Question: Can one algorithm achieve BOB: Perform well under data-generating regimes either stochastic ($\boldsymbol{\wedge}$) or non-stochastic (or even against an adversary $(\underset{\Theta}{ })$?
- Contributions:
- a study of the problem against Θ
- an impossibility result on the BOB question
- a simple algorithm P1 for BOB matching the lower bound.

After an exploration phase of T pulls, a Learner tries to identify the arm with highest cumulative reward out of K arms.

Bandit feedback: The learner only observes the reward/gain of the arm it chooses to explore.

For $t=1,2, \ldots, T$,
\Rightarrow simultaneously, Learner picks arm $I_{t} \in[K]$, (K arms)
$>$ Adversary - environment picks gain $\boldsymbol{g}_{t} \in\left[0, g_{\max }\right]^{K}$.
\Rightarrow Then, the Learner observes $\boldsymbol{g}_{t_{t}, t}$.
Finally, Learner recommends an arm denoted $\boldsymbol{1}_{\mathrm{T}}$, hoping $\boldsymbol{1}_{\mathrm{T}}=\mathbb{1}_{\mathrm{T}}$,
where $I_{t} \triangleq \arg \max _{k \in[K]} G_{k, t} \quad \& \quad G_{k, t}=\frac{1}{t} \sum_{t^{\prime}=1}^{t} \boldsymbol{g}_{k, t^{\prime}}$

k is the index of the arm ranked k-th according to G.

$$
\text { i.e. } G_{\mathbb{1}}>G_{2} \geq G_{3} \geq \ldots \geq G_{\mathbb{k}} \geq \ldots \geq G_{\mathbb{K}}
$$

k is the index of the arm ranked k-th according to G. i.e. $G_{11}>G_{2} \geq G_{3} \geq \ldots \geq G_{\mathbb{k}} \geq \ldots \geq G_{\mathbb{K}}$is the rank of the arm (of index) k according to G.

\mathbf{k} is the index of the arm ranked k-th w.r.t. to an estimate of G : \widehat{G}., \widetilde{G}. i.e. $G_{\mathbf{1}}>G_{\mathbf{2}} \geq G_{\mathbf{B}} \geq \ldots \geq G_{\mathbf{k}} \geq \ldots \geq G_{\mathbb{K}}$
(k is the rank of the arm (of index) k w.r.t. to an estimate of G : : \widehat{G}., \widetilde{G}.

Problem formulation

Problem formulation

A measure of performance

Cumulative regret

- $\mathrm{R}(T)=\max _{k}\left(G_{k}\right)-\sum_{t=1}^{T} \boldsymbol{g}_{t, t}=16 \$-(\sqrt{25}+\sqrt{25}+\cdots+\sqrt{28})$
- Minimize the cumulative regret \Leftrightarrow Play $\mathbb{1}_{\mathrm{T}}$ as often as possible
- Exploration vs Exploitation
- Classic algorithms: Thompson Sampling, UCB

Probability of misidentification - simple regret

- $e(T)=\mathbb{P}\left(\mathbb{1}_{\mathrm{T}} \neq \mathbb{1}_{\mathrm{T}}\right) \quad$ or $\quad r(T)=G_{\mathbb{1}_{\mathrm{T}}}-G_{\mathbb{1}_{\mathrm{T}}}=165-{ }^{155}$
- Minimize the simple regret \Leftrightarrow Identify 1_{T}
- Pure Exploration
- Classic algorithms: Hoeffding Race, Successive Rejects

Reward generation

How are the rewards, $\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{T}$, generated?

- Stochastic	08 Non stochastic 08	\because Adversarial ${ }^{-}$
$\begin{aligned} & \boldsymbol{g}_{k, t} \stackrel{\text { iid }}{\sim} \nu_{k}, \operatorname{mean}^{\prime} \mu_{k} \\ & \mathbb{1}_{\mathbf{T}}=\arg \max _{k \in[k]} \mu_{k} \end{aligned}$ indifferent to $e_{\perp}(T)$	Drop iid, non-stationary	Arbitrary $\boldsymbol{g}=\left\{\boldsymbol{g}_{k, t}\right\}_{k \in[K], t \in[T]}$ $\begin{gathered} \mathbb{1}_{\mathrm{T}}=\arg \max _{k \in[K]} G_{k} \\ G_{k}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{g}_{k, t} \end{gathered}$ picks g maximizing $e_{\Theta}(T)$
Related works:		
```Hoefdding race [1] Successive Rejects (SR) [2]```	$[4][5][6]$ (more on the next slide!)	New in Best arm identification   Similar to adversarial bandit [3]

[^0]
## Related works in non-stochastic $(\Theta)$ ) best arm identification

- Jamieson \& Talwalkar, 2016 for hyperparameter optimization:
- $\boldsymbol{g}_{k, t}$ are fixed by an adversary with the condition that $\boldsymbol{g}_{k, t}$ converge as $h_{k}=\lim _{t \rightarrow+\infty} \boldsymbol{g}_{k, t}$ exists.
- At round $t$ for its $m$-th pull of arm k , their learner observe $\boldsymbol{g}_{k, m}$, whereas our learner observes $\boldsymbol{g}_{k, t}$ (less hidden information).

- Allesiardo, Féraud \& Maillard, 2017:
$\boldsymbol{g}_{k, t}$ are sampled from a non-stationary process with the condition that the identity of the best arm so far does not change with time: $\boldsymbol{1}_{\mathrm{t}}=\mathbf{1}_{\mathrm{t}^{\prime}}$, $\forall\left(t, t^{\prime}\right) \in[T]^{2}$.
- Corruption/contamination, Altschuler, Brunel \& Malek, 2019: $\boldsymbol{g}_{k, t}$ are sampled i.i.d. but the learner observes $\boldsymbol{g}_{k, t}+c_{k, t}$ where $c_{k, t}$ can be an arbitrary corruption.
- Deterministic Uniform exploration (DETER-UNIFORM).

Pull every arm deterministically $\mathrm{T} / \mathrm{K}$ times.

- Successive Rejects (SR) (Audibert, Bubeck \& Munos, 2010)

Pull more the arms with highest estimated average reward.

- Deterministic Uniform exploration (DETER-UNIFORM).

Pull every arm deterministically $\mathrm{T} / \mathrm{K}$ times.

- Successive Rejects (SR) (Audibert, Bubeck \& Munos, 2010) Pull more the arms with highest estimated average reward.

The estimated mean of arm $k$ at time $t$ is simply the standard average:

$$
\widehat{\mu}_{k, t} \triangleq \frac{\sum_{t^{\prime}=1}^{t} \mathbf{1}\left\{I_{t^{\prime}}=k\right\} \boldsymbol{g}_{k, t^{\prime}}}{\sum_{t^{\prime}=1}^{T} \mathbf{1}\left\{I_{t^{\prime}}=k\right\}}
$$

- Deterministic Uniform exploration (DETER-UNIFORM).

Pull every arm deterministically $\mathrm{T} / \mathrm{K}$ times.

- Successive Rejects (SR) (Audibert, Bubeck \& Munos, 2010)

Pull more the arms with highest estimated average reward.

The estimated mean of arm $k$ at time $t$ is simply the standard average:

$$
\widehat{\mu}_{k, t} \triangleq \frac{\sum_{t^{\prime}=1}^{t} \mathbf{1}\left\{I_{t^{\prime}}=k\right\} \boldsymbol{g}_{k, t^{\prime}}}{\sum_{t^{\prime}=1}^{T} \mathbf{1}\left\{I_{t^{\prime}}=k\right\}}
$$

- UCB-Exploration (Audibert, Bubeck \& Munos, 2010)

Pull $\arg \max _{k \in[K]} \widehat{\mu}_{k, t}+g_{\max } \sqrt{\frac{a}{T_{k}}}, a \in \mathbb{R}, T_{k}$ : \# of pulls of $k$. $g_{\max } \sqrt{\frac{a}{T_{k}}}$ is the uncertainty on $\widehat{\mu}_{k, t}$ but requires knowledge of $g_{\text {max }}$.

- Deterministic Uniform exploration (DETER-UNIFORM).

Pull every arm deterministically $\mathrm{T} / \mathrm{K}$ times.

- Successive Rejects (SR) (Audibert, Bubeck \& Munos, 2010) Pull more the arms with highest estimated average reward.

The estimated mean of arm $k$ at time $t$ is simply the standard average:

$$
\widehat{\mu}_{k, t} \triangleq \frac{\sum_{t^{\prime}=1}^{t} \mathbf{1}\left\{I_{t^{\prime}}=k\right\} \boldsymbol{g}_{k, t^{\prime}}}{\sum_{t^{\prime}=1}^{T} \mathbf{1}\left\{I_{t^{\prime}}=k\right\}}
$$

	$e_{\text {A }}(T)$	$e_{\Theta}(T)$
DETER-UNIFORM	$\boldsymbol{X}$	$?$
SR		$?$

## Successive Rejects

- SR is an elimination algorithm pulling uniformly over a set of remaining candidate arms.

```
- The arm k, ranked -th by SR, is allocated T/ pulls
```

8. 



## Successive Rejects

- SR is an elimination algorithm pulling uniformly over a set of remaining candidate arms.

```
- The arm k, ranked -th by SR, is allocated T/ pulls
```



## Successive Rejects

- SR is an elimination algorithm pulling uniformly over a set of remaining candidate arms.


## - The arm k, ranked -th by SR, is allocated $T /$



The estimated mean of arm $k$ at time $t$ is simply the standard average:
$\widehat{\mu}_{k, t} \triangleq \frac{\sum_{t^{\prime}=1}^{t} \mathbf{1}\left\{I_{t^{\prime}}=k\right\} \boldsymbol{g}_{k, t^{\prime}}}{\sum_{t^{\prime}=1}^{T} \mathbf{1}\left\{t_{t^{\prime}}=k\right\}}$

## Successive Rejects

- SR is an elimination algorithm pulling uniformly over a set of remaining candidate arms.
- The arm k, ranked -th by SR, is allocated T/ pulls



## Successive Rejects

- SR is an elimination algorithm pulling uniformly over a set of remaining candidate arms.
- The arm $k$, ranked $\mathbf{k}$-th by SR , is allocated $\mathrm{T} / \mathbf{k}$ pulls



## Successive Rejects

- SR is an elimination algorithm pulling uniformly over a set of remaining candidate arms.
- The arm $k$, ranked $\mathbf{k}$-th by SR , is allocated $T / \mathbf{k}$ pulls


	$e_{\wedge}(T)$	$e_{\Theta}(T)$
DETER-UNIFORM	$\times ? ?$	$?$
SR	$? ?$	$?$

And now...
Let us precise the $e_{\perp}(T)$ for the uniform and SR algorithms.

## Gaps and complexities in hindsight



To distinguish arm $k$ from arm 1, the learner must have its uncertainty on $\mu_{k}\left(\right.$ or $\left.G_{k}\right)$ smaller than $\Delta_{\mathbf{k}^{\prime}}$, i.e. $\left|\widehat{\mu}_{k}-\mu_{k}\right| \leq \Delta_{\mathbf{k}} / 2$.



$$
H_{\mathrm{UNIF}} \triangleq \frac{K}{\Delta_{〔}^{2}} \quad \& \quad H_{\mathrm{SR}} \triangleq \max _{k \in[K]} \frac{k}{\Delta_{[\mathrm{k}}^{2}}
$$



$$
H_{\mathrm{UNIF}} \triangleq \frac{K}{\Delta_{[1}^{2}} \quad \geq \quad H_{\mathrm{SR}} \triangleq \max _{k \in[K]} \frac{k}{\Delta_{[\mathfrak{k}}^{2}}=\widetilde{\mathcal{O}}\left(\sum_{k \in[K]} \frac{1}{\Delta_{[\mathbb{k}}^{2}}\right)
$$

## The ( $e_{\underline{\underline{\underline{n}}}, e_{\text {©정 }}}$ ) table so far

		$e_{\wedge}(T)$	$e_{\Theta}(T)$
DETER-UNIFORM	$\boldsymbol{X}$	$e^{\frac{-T}{H_{\mathrm{UNIF}}}}$	$?$
SR	$e^{\frac{-T}{H_{\mathrm{SR}} \log K}}$	$?$	

## And now...

Let us discuss SR against an adversary.

## Worst-case adversarial analysis

SR can be tricked by an adversary $\because$ arranging $\boldsymbol{g}$

- SR pulls the arm deterministically ( - will hide rewards easily)
- SR stops pulling arms (reject) during the game ( - hides rewards)
- SR uses the standard estimation of the average $\widehat{\mu}_{k, t}$ (biased against $\because$ )

- The learner needs to use internal randomization
- The learner should be careful about rejecting arm: no rejection!
- Be careful of the bias of the reward estimates.

	$e_{\wedge}(T)$		$e_{*}(T)$
DETER-UNIFORM	$X$	$e^{\frac{-T}{H_{\text {UNIF }}}}$	$\times 1$
SR	$\checkmark$	$e^{\frac{-T}{H_{S R} \log K}}$	$\times 1$
? ? ?			$\checkmark$

## The ( $e_{\underline{\underline{\underline{n}}}, e_{\text {©정 }}}$ ) table so far

	$e_{\text {A }}(T)$		$e_{\Theta}(T)$
DETER-UNIFORM	$X$	$e^{\frac{-T}{H_{\text {UNIF }}}}$	$\times 1$
SR		$e^{\frac{-T}{H_{\mathrm{SR}} \log K}}$	$\times 1$
$323 ?$			$\checkmark$

## And now...

Let us discuss the adversarial setting

## Baseline: Robustifying the uniform learner against

- DETER-UNIFORM•:
- Pull every arm deterministically $\mathrm{T} / \mathrm{K}$ times.
$>$ Recommend the arm with highest $\widehat{\mu}_{k, t}$


## Robutifying

- Internal randomization: pull arm $k$ at time $t$ with proba $p_{k, t}=\mathbb{P}\left(I_{t}=k\right)$
- Replace $\widehat{\mu}_{k, t}$ by $\widetilde{G}_{k, t}$ as $\mathrm{E}\left[\widetilde{G}_{k, t}\right]=G_{k, t}$ (unbiased)

$$
\widehat{\mu}_{k, t} \triangleq \frac{\sum_{t^{\prime}=1}^{t} \mathbf{1}\left\{I_{t^{\prime}}=k\right\} \boldsymbol{g}_{k, t^{\prime}}}{\sum_{t^{\prime}=1}^{T} \mathbf{1}\left\{I_{t^{\prime}}=k\right\}} \quad \widetilde{G}_{k, t}=\frac{1}{t} \sum_{t^{\prime}=1}^{t} \frac{\boldsymbol{g}_{k, t^{\prime}}}{p_{k, t^{\prime}}} \mathbf{1}\left\{I_{t^{\prime}}=k\right\}
$$

-Rule $\cdot$

- At time $t$, pull arm $k$ with probability $p_{k, t}=1 / K$.
$\Rightarrow$ Recommend the arm with highest $\widetilde{G}_{k, t}$


## Upper bound for Rule against

Theorem (Rule vs. (-))
For any $T$ and adversarial $\boldsymbol{g}$, Rule satisfies

$$
e_{\circledast}(T)=\mathcal{O}\left(\exp \left(-\frac{T}{H_{\mathrm{UNIF}(g)}}\right)\right)
$$

The proof uses a Bernstein bound.

## Upper bound for Rule against

## Theorem (Rule vs. ©)

For any $T$ and adversarial $\boldsymbol{g}$, Rule satisfies

$$
e_{\circledast}(T)=\mathcal{O}\left(\exp \left(-\frac{T}{H_{\mathrm{UNIF}(g)}}\right)\right)
$$

The proof uses a Bernstein bound.

## Theorem (-) Lower bound)

For any learner, a $g$ of complexity $H_{\mathrm{UNIF}}$,

$$
e_{\overparen{G}}(T)=\Omega\left(\exp \left(-\frac{T}{H_{\mathrm{UNIF}(\mathrm{~g})}}\right)\right)
$$

RULE: optimal gap-dependent rates against $\Theta$.

## Proof sketch of the lower bound against

Idea: The $\Theta$ can force the learner to have, at $t=T / 2$, an uncertainty on $\widetilde{G}_{k, T / 2}$ of order $\Delta_{\mathbb{1}}, \forall k \in[K]$ (instead of the usual $\Delta_{\mathbb{K}}$ in $\Lambda$ ).

Our proof of the lower bound uses some arguments of Audibert \& Bubeck (2010), Carpentier and Locatelli (2016) and Auer and Chiang (2016)

## Proof sketch of the lower bound against

Idea: The can force the learner to have, at $t=T / 2$, an uncertainty on $\widetilde{G}_{k, T / 2}$ of order $\Delta_{1}, \forall k \in[K]$ (instead of the usual $\Delta_{[k}$ in $\boldsymbol{\Lambda}$ ).


Given a Learner and a bandit problem I defined for the first half of the game (until $t=T / 2$ )

## Proof sketch of the lower bound against

Idea: The $\Theta$ can force the learner to have, at $t=T / 2$, an uncertainty on $\widetilde{G}_{k, T / 2}$ of order $\Delta_{\mathbb{1}}, \forall k \in[K]$ (instead of the usual $\Delta_{\mathbb{K}}$ in $\Lambda$ ).


At least one arm is pulled less than $T /(2 K)$ by the Learner (not pulled enough to detect small variations of size $\Delta_{\mathbb{1}}$, of its mean $\leftarrow$ prone to error). Here its arm

## Proof sketch of the lower bound against

Idea: The $e$ can force the learner to have, at $t=T / 2$, an uncertainty on $\widetilde{G}_{k, T / 2}$ of order $\Delta_{1}, \forall k \in[K]$ (instead of the usual $\Delta_{[k}$ in $\boldsymbol{\Lambda}$ ).


Then, an alternative/similar PROBLEM II is created, by modifying $\square$ by $\Delta_{1}$. PROBLEM II is defined for $t=1$ to $t=T / 2$.

## Proof sketch of the lower bound against

Idea: The can force the learner to have, at $t=T / 2$, an uncertainty on $\widetilde{G}_{k, T / 2}$ of order $\Delta_{1}, \forall k \in[K]$ (instead of the usual $\Delta_{\mathbb{k}^{( }}$in $\boldsymbol{\Lambda}$ ).


This is the superposition of Problem I \& II.
PROBLEM I \& II are indistinguishable with proba $e^{-\frac{T \Delta_{\text {al }}^{2}}{K}}$

## Proof sketch of the lower bound against

Idea: The can force the learner to have, at $t=T / 2$, an uncertainty on $\widetilde{G}_{k, T / 2}$ of order $\Delta_{1}, \forall k \in[K]$ (instead of the usual $\Delta_{[k}$ in $\boldsymbol{\Lambda}$ ).


Between $t=T / 2$ and $t=T$, the arm

$$
\text { (ब) }=1 \text { in PROBLEM II while }=1 \text { in PROBLEM I }
$$

## Proof sketch of the lower bound against

Idea: The can force the learner to have, at $t=T / 2$, an uncertainty on $\widetilde{G}_{k, T / 2}$ of order $\Delta_{1}, \forall k \in[K]$ (instead of the usual $\Delta_{[k}$ in $\boldsymbol{\Lambda}$ ).


The lower bound comes from the fact that problem I \& II

- have different best arms
- are indistinguishable w.p. $e^{\frac{-T \Delta_{\text {al }}^{2}}{K}}$, i.e. $\underbrace{P_{I I}(\boldsymbol{1}=\square)}_{\boldsymbol{X} \text { error in II }} \geq \underbrace{P_{I}(\boldsymbol{1}=\nabla)}_{\text {success in I }} e^{\frac{-T \Delta_{\text {Q }}^{2}}{K}}$


## Current status

- Best arm identification against $\mathcal{O}$ is too hard: uniform exploration (Rule) is optimal.
- However Rule is suboptimal in A.
- SR, optimal in fails against $\Theta$

	$e_{\text {A }}(T)$	$e_{\text {© }}(T)$	
SR	$\checkmark e^{\frac{-T}{H_{\text {SR }} \log K}}$	X	1
Rule	$\times \quad e^{\frac{-T}{\text { UUNIF }}}$		$e^{\frac{-T}{\text { UuNIF }}}$

Is there a learner performing optimally in both the stochastic and adversarial cases while not being aware of the nature of the rewards
$\square$

- Best arm identification against $\because$ is too hard: uniform exploration (Rule) is optimal.
- However Rule is suboptimal in $\boldsymbol{A}$.
- sR, optimal in fails against $\because$

	$e_{\wedge}(T)$		$e_{\text {© }}(T)$	
SR		$e^{\frac{-T}{H_{\text {SR }} \log K}}$	X	1
Rule		$e^{\frac{-T}{H_{\text {UNIF }}}}$		$e^{\frac{-T}{\text { HUNIF }}}$

## The 308 question:

(2) Is there a learner performing optimally in both the stochastic and adversarial cases while not being aware of the nature of the rewards?

	$e_{\text {A }}(T)$	$e_{\text {© }}(T)$
$? ? ? ? ~$	$e^{\frac{-T}{H_{S R} \log K^{2}}}$	$e^{\frac{-T}{H_{U N I F}}}$

- Best arm identification against $\Theta$ is too hard: uniform exploration (Rule) is optimal.
- However Rule is suboptimal in
- SR, optimal in fails against

	$e_{\wedge}(T)$		$e_{\text {© }}(T)$	
SR	$\checkmark$	$e^{\frac{-T}{H_{\text {SR }} \log K}}$	$X$	1
Rule		$e^{\frac{-T}{H_{\text {UNIF }}}}$		$e^{\frac{-T}{\text { HUNIF }}}$

## The 308 question:

2 Is there a learner performing optimally in both the stochastic and adversarial cases while not being aware of the nature of the rewards?

The BOB question was studied in the cumulative regret setting in Bubeck \& Slivkins, 2012, Seldin \& Slivkins, 2014, Auer \& Chiang, 2016, Zimmert \& Seldin, 2018...

## New notion of complexity

$$
H_{\mathrm{BOB}} \triangleq \frac{1}{\Delta_{1}} \max _{k \in[k]} \frac{k}{\Delta_{\mathrm{K}}} .
$$

## Theorem (Lower bound for the BOB challenge)

For any learner,
if for all adversarial problem $\boldsymbol{g}$,

$$
e_{\circledast}(T) \leq \frac{1}{16}
$$

then there exists a stochastic problem with complexity $H_{\text {вов }}$ such that

$$
e_{A}(T) \geq \frac{1}{64} \exp \left(-\frac{2048 T}{H_{\mathrm{BOB}}}\right) \text { sometimes } \frac{1}{64} \exp \left(-\frac{2048 T}{H_{\mathrm{SR}} \sqrt{K}}\right) .
$$

## New notion of complexity

$$
H_{\mathrm{BOB}} \triangleq \frac{1}{\Delta_{1}} \max _{k \in[k]} \frac{k}{\Delta_{\mathrm{K}}} .
$$

## Theorem (Lower bound for the BOB challenge)

For any learner,
if for all adversarial problem $\boldsymbol{g}$,

$$
e_{\circledast}(T) \leq \frac{1}{16}
$$

then there exists a stochastic problem with complexity $H_{\text {вов }}$ such that

$$
e_{\wedge}(T) \geq \frac{1}{64} \exp \left(-\frac{2048 T}{H_{\mathrm{BOB}}}\right) \stackrel{\text { sometimes }}{=} \frac{1}{64} \exp \left(-\frac{2048 T}{H_{\mathrm{SR}} \sqrt{K}}\right) .
$$

## Proof sketch of the BOB lower bound

Idea: The $\Theta$ can force the learner to have, $\forall k \in[K]$, at $t=T \frac{\Delta_{\text {al }}}{\Delta_{\text {ag }}}$ (instead of $t=T$ in $\Lambda$ ), an uncertainty on $\widetilde{G}_{k, t}$ of order $\Delta_{[\mathbb{k}}$.

## Proof sketch of the BOB lower bound

Idea: The $\because$ can force the learner to have, $\forall k \in[K]$, at $t=T \frac{\Delta_{\mathbb{1}}}{\Delta_{[k}}$ (instead of $t=T$ in $\wedge$ ), an uncertainty on $\widetilde{G}_{k, t}$ of order $\Delta_{\underline{k}}$.


Given a Learner, a rank k , and a BASE PROBLEM defined until $t=T \frac{\Delta_{\boxed{Z}}}{\Delta_{\mathbb{k}}}$

## Proof sketch of the BOB lower bound

Idea: The $\because$ can force the learner to have, $\forall k \in[K]$, at $t=T \frac{\Delta_{\mathrm{a}}}{\Delta_{[k}}$ (instead of $t=T$ in $\wedge$ ), an uncertainty on $\widetilde{G}_{k, t}$ of order $\Delta_{\underline{k}}$.


At least one arm, $\mathrm{k}^{\prime}$, with $\Delta_{k^{\prime}} \leq \Delta_{\mathrm{k}}$, is pulled less than $\frac{T}{k} \frac{\Delta_{\underline{\mathbb{Z}}}}{\Delta_{[k}}$ (not pulled enough). Let us illustrate $k=4$ and assume for simplicity $k^{\prime}=4=$ (8)

## Proof sketch of the BOB lower bound

Idea: The $\because$ can force the learner to have, $\forall k \in[K]$, at $t=T \frac{\Delta_{\text {al }}}{\Delta_{[k}}$ (instead of $t=T$ in $\wedge$ ), an uncertainty on $\widetilde{G}_{k, t}$ of order $\Delta_{\underline{k}}$.


A similar PROBLEM STO © © is created, $\Delta$, by modifying by $\Delta_{4}+\Delta_{1} / 2$. PROBLEM STO is defined for $t=1$ to $t=T$.

## Proof sketch of the BOB lower bound

Idea: The $\because$ can force the learner to have, $\forall k \in[K]$, at $t=T \frac{\Delta_{\text {al }}}{\Delta_{[k}}$ (instead of $t=T$ in $\wedge$ ), an uncertainty on $\widetilde{G}_{k, t}$ of order $\Delta_{\mathrm{k}}$.

problem Adv $\because$ :
(1) follows BASE from $t=1$ to $t=T \frac{\Delta_{[]}}{\Delta_{[\mathbb{E}}}$,
(2) follows STO afterwards .

Modifying of $\Delta_{k}$
during $T \frac{\Delta_{\mathbb{1}}}{\Delta_{\mathbb{E}}}$ changes the means of $\Delta_{\mathbb{I}}$ w.r.t STO.

## Proof sketch of the BOB lower bound

Idea: The $\because$ can force the learner to have, $\forall k \in[K]$, at $t=T \frac{\Delta_{\text {al }}}{\Delta_{[k}}$ (instead of $t=T$ in $\wedge$ ), an uncertainty on $\widetilde{G}_{k, t}$ of order $\Delta_{\underline{k}}$.


Superposition of ADV \& STO:
Q) 1 in sTO and $9=1$ in ADV,

ADV \& STO are indistinguishable w. p. $e^{-\frac{\left(T \frac{\Delta_{\mathbb{Z}}}{\Delta_{\mathbb{K}}}\right) \Delta_{\mathbb{Z}}^{2}}{k}}=e^{-\frac{T \Delta_{\mathbb{Q}} \Delta_{\mathbb{W}}}{k}}$

## Proof sketch of the BOB lower bound

Idea: The $\because$ can force the learner to have, $\forall k \in[K]$, at $t=T \frac{\Delta_{\text {al }}}{\Delta_{[k}}$ (instead of $t=T$ in $\wedge$ ), an uncertainty on $\widetilde{G}_{k, t}$ of order $\Delta_{\underline{k}}$.


The lower bound comes from, a max over $k \in[K]$, and the fact that ADV \& STO

- have different best arms,



## New notion of complexity

$$
H_{\mathrm{BOB}} \triangleq \frac{1}{\Delta_{1}} \max _{k \in[K]} \frac{k}{\Delta_{\mathrm{k}}} .
$$

## Theorem (Lower bound for the BOB challenge)

For any learner,
if for all adversarial problems $\boldsymbol{g}$,

$$
e_{\circledast}(T) \leq \frac{1}{16}
$$

then there exists a stochastic problem with complexity $H_{\text {ВОв }}$ such that

$$
e_{\mathrm{A}}(T) \geq \frac{1}{64} \exp \left(-\frac{2048 T}{H_{\mathrm{BOB}}}\right) \stackrel{\text { sometimes }}{=} \frac{1}{64} \exp \left(-\frac{2048 T}{H_{\mathrm{SR}} \sqrt{K}}\right)
$$

$$
H_{\mathrm{SR}} \leq H_{\mathrm{BOB}} \leq H_{\mathrm{UNIF}} . \quad \underbrace{\max _{k \in[K]} \frac{k}{\Delta_{[k}^{2}}}_{H_{\mathrm{SR}}} \leq \underbrace{\frac{1}{\Delta_{1}} \max _{k \in[K]} \frac{k}{\Delta_{\mathrm{k}}}}_{H_{\mathrm{BOB}}} \leq \underbrace{\frac{1}{\Delta^{2}}}_{H_{\mathrm{UNIF}}} .
$$


$H_{\mathrm{SR}}=H_{\mathrm{BOB}}=H_{\mathrm{UNIF}}$
BOB is achieved by Rule.

Linear regime

$H_{\mathrm{SR}}=H_{\mathrm{BOB}}=\frac{H_{\mathrm{UNIF}}}{K}$
BOB can be achieved but not by Rule.
Need a new learner!
$>$ Square-root regime

$H_{\mathrm{SR}}=\frac{\boldsymbol{H}_{\mathrm{BOB}}}{\sqrt{2 K}}=\frac{\boldsymbol{H}_{\mathrm{UNIF}}}{K}$
No learner can do BOB!

There is still an open question!

## New <br> BOB <br> and challenge

## The new BOB question:

(2) Can an algorithm achieve the following ?

	$e_{\text {A }}(T)$	$e_{*}(T)$
?? ? ?	$\checkmark e^{\frac{-T}{H_{B O B} \log K}}$	$\checkmark e^{\frac{-T}{H_{U N I F}}}$

## Why is the BOB question challenging?

$\triangleright$ Bias of estimator $\widehat{\mu}_{k, t}=\frac{\sum_{t^{\prime}=1}^{t} 1\left\{t_{t^{\prime}}=k\right\} g_{k, t^{\prime}}}{\sum_{t^{\prime}=1}^{T} 1\left\{t_{t^{\prime}}=k\right\}}$ (simple average)
$\Rightarrow$ Variance of $\widetilde{G}_{k, t}=\sum_{t^{\prime}=1}^{t} \frac{\boldsymbol{g}_{k, t^{\prime}}}{p_{k, t^{\prime}}} \mathbf{1}\left\{I_{t^{\prime}}=k\right\}$ (importance weights)

## We use

- Pulling uniformly for too long with $p_{k, t}=\frac{1}{K}$ leads to a large variance, up to being of order $K$, in $\widetilde{G}_{k, t}$.
- Objective: reduce the variance (uncertainty) of the estimators of the best arms $\approx$ find the best arm


## New BOB <br> and challenge

## The new BOB question:

(2) Can an algorithm achieve the following?

	$e_{\text {A }}(T)$	$e_{\text {© }}(T)$
? ? ? ?	$e^{\frac{-T}{H_{B O B} \log K}}$	$e^{\frac{-T}{\text { UUNIF }^{2}}}$

## Why is the BOB question challenging?

$\Rightarrow$ Bias of estimator $\widehat{\mu}_{k, t}=\frac{\sum_{t^{\prime}=1}^{t} \mathbf{1}\left\{t_{t^{\prime}}=k\right\} \boldsymbol{g}_{k, t^{\prime}}}{\sum_{t^{\prime}=1}^{T} \mathbf{1}\left\{I_{t^{\prime}}=k\right\}}$ (simple average)
$>$ Variance of $\widetilde{G}_{k, t}=\sum_{t^{\prime}=1}^{t} \frac{\boldsymbol{g}_{k, t^{\prime}}}{p_{k, t^{\prime}}} \mathbf{1}\left\{I_{t^{\prime}}=k\right\}$ (importance weights)
We use $\widetilde{G}_{k, t}$ :

- Pulling uniformly for too long with $\boldsymbol{p}_{k, t}=\frac{1}{K}$ leads to a large variance, up to being of order $K$, in $\widetilde{G}_{k, t}$.
- Objective: reduce the variance (uncertainty) of the estimators of the best arms $\approx$ find the best arm

Idea: Robustify the SR algorithm.

- We use $\widetilde{G}_{k, t}$
- Cannot pull uniformly, as in SR, for almost half of the game.
- Need to pull the estimated best arms earlier.
- Need to remove the rejections
- Reuse the proportions of SR (arm k, ranked $\mathbf{k}$-th by SR, is allocated T/k pulls)


At any time $t$, P1 pulls

- arm 1 with 'probability' 1
- arm with 'probability'- arm with 'probability'$\frac{1}{3}$- arm with 'probability'$\frac{1}{k}$
- and with 'probability' ..... 11
- (and normalize)
$\overline{\log } K=\sum_{k=1}^{K}(1 / K)$, with $|\overline{\log } K-\log K| \leq 1$
P1 early bets are almost costless! (and necessary):
    - The estimated best arms are prioritized since the first pull to reduce
variance.
    - Up to a $\log K$ factor, all arms are pulled uniformly.
    - p1 implicitly control the uncertainty of the estimates.

At any time $t$, P1 pulls

- arm 1 with 'probability' 1
- arm 2 with 'probability' $\frac{1}{2}$
- arm with 'probability' $\frac{1}{3}$
- and so on...
- arm with 'probability
- and with 'probability' $\frac{1}{K}$
- (and normalize)
$\overline{\log } K=\sum_{k=1}^{K}(1 / k)$, with $|\overline{\log } K-\log K| \leq 1$

P1 early bets are almost costless! (and necessary):

- The estimated best arms are prioritized since the first pull to reduce variance.
- Up to a $\log K$ factor, all arms are pulled uniformly.
- P1 implicitly control the uncertainty of the estimates.

At any time $t$, P1 pulls

- arm 1 with 'probability' 1
- arm 2 with 'probability' $\frac{1}{2}$
- arm 3 with 'probability' $\frac{1}{3}$
- and so on...
- arm with 'probability'
- and with 'probability' $\frac{1}{K}$
$\overline{\log } K=\sum_{k=1}^{K}(1 / K)$, with $|\overline{\log } K-\log K| \leq 1$

P1 early bets are almost costless! (and necessary):

- The estimated best arms are prioritized since the first pull to reduce variance.
- Up to a $\log K$ factor, all arms are pulled uniformly.
- P1 implicitly control the uncertainty of the estimates.


## The P1 algorithm

At any time $t$, P1 pulls - arm 1 with 'probability' ..... 1

- arm 2 with 'probability' ..... $\frac{1}{2}$
- arm 3 with 'probability' ..... $\frac{1}{3}$
- and so on...
- arm K with 'probability' $\frac{1}{k}$
- and K with 'probability' $\frac{1}{K}$
- (and normalize)
$\overline{\log } K=\sum_{k=1}^{K}(1 / k)$, with $|\overline{\log } K-\log K| \leq 1$
p1 early bets are almost costless! (and necessary):
- The estimated best arms are prioritized since the first pull to reduce variance.
- Up to a $\log K$ factor, all arms are pulled uniformly.
- P1 implicitly control the uncertainty of the estimates.


## The P1 algorithm

At any time $t$, P1 pulls

- arm 1 with 'probability' 1
- arm 2 with 'probability' $\frac{1}{2}$
- arm 3 with 'probability' $\frac{1}{3}$
- and so on...
- $\operatorname{arm} \mathbf{k}$ with 'probability' $\frac{1}{k}$
- and K with 'probability' $\frac{1}{K}$
- (and normalize)
$\overline{\log } K=\sum_{k=1}^{K}(1 / K)$, with $|\overline{\log } K-\log K| \leq 1$

P1 early bets are almost costless! (and necessary):

- The estimated best arms are prioritized since the first pull to reduce variance.
- Up to a $\log K$ factor, all arms are pulled uniformly.
- P1 implicitly control the uncertainty of the estimates.

At any time $t$, P1 pulls

- arm 1 with probability
$1 / \overline{\log } K$
- arm 2 with probability
$\frac{1}{2 \log K}$
- arm 3 with probability
- and so on...
- $\operatorname{arm} \mathbf{k}$ with probability $\frac{1}{3 \log K}$
- and $\mathbf{K}$ with probability
$\frac{1}{k \log K}$
- (and normalize)
$\overline{\log } K=\sum_{k=1}^{K}(1 / k)$, with $|\overline{\log } K-\log K| \leq 1$

P1 early bets are almost costless! (and necessary):

- The estimated best arms are prioritized since the first pull to reduce variance.
- Up to a $\log K$ factor, all arms are pulled uniformly.
- P1 implicitly control the uncertainty of the estimates.

At any time $t$, P1 pulls

- arm 1 with probability
$1 / \overline{\log } K$
- arm 2 with probability

$$
\frac{1}{2 \log K}
$$

- arm 3 with probability $\frac{1}{3 \log K}$
- and so on...
- $\operatorname{arm} \mathbf{k}$ with probability $\frac{1}{k \log K}$
- and $\mathbf{K}$ with probability $\frac{1}{K \log K}$
- (and normalize)
$\overline{\log } K=\sum_{k=1}^{K}(1 / k)$, with $|\overline{\log } K-\log K| \leq 1$

P1 early bets are almost costless! (and necessary):

- The estimated best arms are prioritized since the first pull to reduce variance.
- Up to a $\log K$ factor, all arms are pulled uniformly.
- P1 implicitly control the uncertainty of the estimates.

For $t=1,2, \ldots$
$\triangleright$ Rank the arms according to $\widetilde{G}_{k, t}$ : Rank arm $k$ as $\mathbf{K}_{t}$.
$\Rightarrow$ Select arm $I_{t} \in[K]$ with

$$
\boldsymbol{p}_{k, t} \triangleq \mathbb{P}\left(I_{t}=k\right) \triangleq \frac{1}{\mathbf{k}_{\mathbf{t}} \overline{\log K}} \quad \text { for all } k \in[K]
$$

Recommend, at any round $t, \boldsymbol{I}_{\mathbf{t}} \triangleq \arg \max _{k \in[K]} \widetilde{G}_{k, t}$.

The algorithm is anytime and parameter-free.

## For $t=1,2, \ldots$

> Rank the arms according to $\widetilde{G}_{k, t}$ : Rank arm $k$ as $\mathbf{K}_{t}$.
$\Rightarrow$ Select arm $I_{t} \in[K]$ with

$$
\boldsymbol{p}_{k, t} \triangleq \mathbb{P}\left(I_{t}=k\right) \triangleq \frac{1}{\mathbf{K}_{t} \overline{\log K}} \quad \text { for all } k \in[K]
$$

Recommend, at any round $t, \boldsymbol{I}_{\mathbf{t}} \triangleq \arg \max _{k \in[K]} \widetilde{G}_{k, t}$.

The algorithm is anytime and parameter-free.


For $t=1,2, \ldots$
$>$ Rank the arms according to $\widetilde{G}_{k, t}$ : Rank arm $k$ as $\mathbf{K}_{t}$.
$\Rightarrow$ Select arm $I_{t} \in[K]$ with

$$
\boldsymbol{p}_{k, t} \triangleq \mathbb{P}\left(I_{t}=k\right) \triangleq \frac{1}{\mathbf{k}_{\mathbf{t}} \overline{\log K}} \quad \text { for all } k \in[K]
$$

Recommend, at any round $t, \boldsymbol{I}_{\mathbf{t}} \triangleq \arg \max _{k \in[K]} \widetilde{G}_{k, t}$.

The algorithm is anytime and parameter-free.


For $t=1,2, \ldots$
$>$ Rank the arms according to $\widetilde{G}_{k, t}$ : Rank arm $k$ as $\mathbf{K}_{t}$.
$\Rightarrow$ Select arm $I_{t} \in[K]$ with

$$
\boldsymbol{p}_{k, t} \triangleq \mathbb{P}\left(I_{t}=k\right) \triangleq \frac{1}{\mathbf{k}_{\mathbf{t}} \overline{\log K}} \quad \text { for all } k \in[K]
$$

Recommend, at any round $t, \boldsymbol{I}_{\mathbf{t}} \triangleq \arg \max _{k \in[K]} \widetilde{G}_{k, t}$.

The algorithm is anytime and parameter-free.


## Theorem (Upper bounds for P1)

For any problems:

$$
\begin{aligned}
& e_{A}(T)=\mathcal{O}\left(\exp \left(-\frac{T}{H_{B O B} \log ^{2}(K)}\right)\right) \\
& e_{\Theta}(T)=\mathcal{O}\left(\exp \left(-\frac{T}{H_{\mathrm{UNIF}(g)} \overline{\log }(K)}\right)\right)
\end{aligned}
$$

	$e_{\wedge}(T)$		$e_{\text {© }}(T)$	
SR		$e^{\frac{-T}{H_{\mathrm{SR}} \log K}}$	X	1
Rule	$X$	$e^{\frac{-T}{H_{\text {UNIF }}}}$	$\checkmark$	$e^{\frac{-T}{\text { UUNIF }}}$
P1	$\checkmark$	$e^{\frac{-T}{H_{\text {BOB }} \log K}}$	$\checkmark$	$e^{\frac{-T}{H_{\text {UNIF }}}}$

Early bets are costless / Early bets are necessary

. $(3$$\boldsymbol{p}_{k, t} \geq 1 /(K \overline{\log } K)$ is enough to obtain the same complexity $H_{\text {UNIF }}$ as Rule, up to a factor $\log K$.

- , $K-1$ arbitrary 'virtual' phases that each ends at round $T_{i}=T a_{i}$. Chosen in hindsight to minimize the upper bound (P1 is oblivious to $a_{i}$ ).

Intuitively, after $T_{i}$ the event $\xi_{i}$ happens with high probability:

$$
\xi_{i} \triangleq\left\{\forall t>T_{i}, \forall k \in[K]: \mu_{\mathbb{1}}-\mu_{k}<\frac{\Delta_{i}}{2} \Longrightarrow \mathbf{k}_{t}<i\right\}
$$

$\Rightarrow$ for any such arm $k$, for $t>T_{i}, \boldsymbol{p}_{k, t} \geq 1 /(i-1)$.
$\Rightarrow$ smaller variance (of order $i-1$ ) in their estimates $\widetilde{\boldsymbol{g}}_{k, t}$
$\Rightarrow$ better estimates in the rest of the game.

The proof works iteratively over the phases.

Error $=\xi_{i}$ does not hold.

Trade off in setting the length of the phases with $a_{i}$ :
Trade off between event $\xi_{i}$ happening fast and $\xi_{i}$ happening with high probability
Short phases $=$ not enough samples to discriminate the suboptimal arms.
Long phases $=$ the variance of the mean estimators of good arms is increasing with the length of the early phases

$$
\begin{gathered}
H_{\mathrm{P} 1}(\boldsymbol{a}) \triangleq \max _{k \in[K]} \frac{\sum_{i=\langle k\rangle}^{K}\left(a_{i}-a_{i+1}\right) i+\frac{1}{24} K a_{\langle k\rangle} \Delta_{k}}{a_{\langle k\rangle}^{2} \Delta_{k}^{2}} \log K \\
H_{\mathrm{P} 1} \triangleq \min _{\boldsymbol{a} \in \boldsymbol{A}} H_{\mathrm{P} 1}(\boldsymbol{a})
\end{gathered}
$$

Solution: Set $T_{i}=T \frac{\Delta_{1}}{\Delta_{i}}$ as in the lower bound.

Corollary The complexity $H_{\text {P1 }}$ of P1 matches the complexity $H_{\text {BOB }}$ from the lower bound of Theorem 4 of up to $\log$ factors,

$$
H_{\mathrm{P} 1}=\mathcal{O}\left(H_{\mathrm{BOB}} \log ^{2} K\right)
$$

## Experiments in

Experimental setup	$H_{\text {SR }}$	$H$	$H_{\text {UNF }}$
1. 1 group of bad arms	2000	2000	2000
2. 2 groups of bad arms	1389	2083	3125
3. Geometric progression	5540	5540	11080
4. 3 groups of bad arms	400	500	938
5. Arithmetic progression	3200	3200	24000
6. 2 good, many bad arms	5000	7692	50000
7. 3 groups of bad arms	4082	5714	12000
8. Square-root gaps	3200	22627	160000










Empirical behavior above mimics the behavior of the complexities in the table.

Thank you!

## Bibliography

Robin Allesiardo, Raphael Féraud, and Odalric-Ambrym Maillard. The non-stationary stochastic multi-armed bandit problem. International Journal of Data Science and Analytics, 2017.

Jason Altschuler, Victor-Emmanuel Brunel, and Alan Malek. Best-arm identification for contaminated bandits. arXiv preprint arXiv:1802.09514, 2018.

Jean-Yves Audibert, Sebastien Bubeck, and Rémi Munos. Best-arm identification in multi-armed bandits. In Conference on Learning Theory, 2010.

Peter Auer and Chao-Kai Chiang. An algorithm with nearly optimal pseudo-regret for both stochastic and adversarial bandits. In Conference on Learning Theory 2016

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1), 2002.

Sebastien Bubeck and Aleksandrs Slivkins. The best of both worlds: stochastic and adversarial bandits. In Conference on Learning Theory, 2012.

Alexandra Carpentier and Andrea Locatelli. Tight (lower) bounds for the fixed budget best-arm identification bandit problem. In Conference on Learning Theory, 2016.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best-arm identification and hyperparameter optimization. In International Conference on Artificial Intelligence and Statistics, 2016.

Oded Maron and Andrew Moore. Hoeffding Races: Accelerating model-selection search for classification and function approximation. In Neural Information Processing Systems, 1993.

Yevgeny Seldin and Aleksandrs Slivkins. One practical algorithm for both stochastic and adversarial bandits. In International Conference on Machine Learning, 2014.

Julian Zimmert, Yevgeny Seldin. Tsallis-INF: An Optimal Algorithm for Stochastic and Adversarial Bandits, JMLR 2021.


[^0]:    [1]: Maron \& Moore, 1993, [2]: Audibert, Bubeck \& Munos, 2010, [3]: Auer, Cesa-Bianchi, Freund \& Schapire, 2002,
    [4]: Jamieson \& Talwalkar, 2016, [5]: Allesiardo, Féraud \& Maillard, 2017, [6]: Altschuler, Brunel \& Malek, 2019

