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Summary

• Setting: A pure exploration bandit problem

• Question: Can one algorithm achieve BOB : Perform well under
data-generating regimes either stochastic ( ) or non-stochastic (or even
against an adversary ) ?

• Contributions:

• a study of the problem against
• an impossibility result on the BOB question
• a simple algorithm p1 for BOB matching the lower bound.

Stochastic

Non-stochastic Adversarial

P1
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Fixed budget best-arm identification (BAI)

After an exploration phase of T pulls, a Learner tries to identify the arm with
highest cumulative reward out of K arms.

Bandit feedback: The learner only observes the reward/gain of the arm it
chooses to explore.

For t = 1, 2, . . . ,T ,
▶ simultaneously, Learner picks arm It ∈ [K ], (K arms)

▶ Adversary / environment picks gain gt ∈ [0, gmax ]
K .

▶ Then, the Learner observes gIt ,t .

Finally, Learner recommends an arm denoted 1T , hoping 1T = 1T ,

where 1t ≜ argmaxk∈[K ] Gk,t & Gk,t =
1
t

∑t
t′=1 gk,t′

Indices 1 2 3 K

...
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Notation ranking-index link

Indices 1 2 3 4

k is the index of the arm ranked k-th according to G·
i.e. G 1 > G 2 ≥ G 3 ≥ . . . ≥ G k ≥ . . . ≥ G K

k is the rank of the arm (of index) k according to G·
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Notation ranking-index link
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Notation ranking-index link

Indices

G

 ranks
Estimated

6$

23=

18$

11=

1= 1 2= 3

12$

23=

32=

44=

0$

44=

k is the index of the arm ranked k-th w.r.t. to an estimate of G·: Ĝ·,G̃·.
i.e. G 1 > G 2 ≥ G 3 ≥ . . . ≥ G k ≥ . . . ≥ G K

k is the rank of the arm (of index) k w.r.t. to an estimate of G·: Ĝ·,G̃·.
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Problem formulation

1 2 K=4
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Problem formulation

Products
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Problem formulation

Drugs
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Problem formulation

Experts
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Problem formulation

Experts

g1
0$ 6$ 1$

Follow

round t=1

I1

2$

information hidden
 from learner
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Problem formulation
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Problem formulation
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A measure of performance

Cumulative regret

• R(T ) = maxk(Gk)−
∑T

t=1 gIt ,t =
16$

−
(

2$ 1$ ... 7$+ + +

)
• Minimize the cumulative regret ⇔ Play 1T as often as possible

• Exploration vs Exploitation

• Classic algorithms: Thompson Sampling, UCB

Probability of misidentification — simple regret

• e(T ) = P
(
1T ̸= 1T

)
or r(T ) = G1T

−G1T
= 16$ − 15$

• Minimize the simple regret ⇔ Identify 1T
• Pure Exploration

• Classic algorithms: Hoeffding Race, Successive Rejects
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Reward generation

How are the rewards, g1, . . . , gT , generated?

Stochastic Non stochastic Adversarial

gk,t
iid∼ νk , mean µk Drop iid, non-stationary Arbitrary g = {gk,t}k∈[K ],t∈[T ]

1T = argmaxk∈[K ] µk
1T = argmaxk∈[K ] Gk

Gk = 1
T

∑T
t=1 gk,t

indifferent to e (T ) picks g maximizing e (T )

Related works:

Hoefdding race [1] [4][5][6] New in Best arm identification

Successive Rejects (sr) [2] (more on the next slide!) Similar to adversarial bandit [3]

[1]: Maron & Moore, 1993, [2]: Audibert, Bubeck & Munos, 2010, [3]: Auer, Cesa-Bianchi, Freund & Schapire, 2002,
[4]: Jamieson & Talwalkar, 2016, [5]: Allesiardo, Féraud & Maillard, 2017 , [6]: Altschuler, Brunel & Malek, 2019
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Related works in non-stochastic ( ) best arm identification

• Jamieson & Talwalkar, 2016 for hyperparameter optimization:
• gk,t are fixed by an adversary with the condition that gk,t converge as

hk = limt→+∞ gk,t exists.

• At round t for its m-th pull of arm k, their learner observe gk,m, whereas
our learner observes gk,t (less hidden information).

t t

vs

• Allesiardo, Féraud & Maillard, 2017:
gk,t are sampled from a non-stationary process with the condition that the
identity of the best arm so far does not change with time: 1t =1t' ,
∀(t, t′) ∈ [T ]2.

• Corruption/contamination, Altschuler, Brunel & Malek, 2019:
gk,t are sampled i.i.d. but the learner observes gk,t + ck,t where ck,t can
be an arbitrary corruption.
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State of the art in

• Deterministic Uniform exploration (deter-uniform).
Pull every arm deterministically T/K times.

• Successive Rejects (sr) (Audibert, Bubeck & Munos, 2010)

Pull more the arms with highest estimated average reward.

The estimated mean of arm k at time t is simply the standard average:

≜

∑t
t′=1 1{It′ = k}gk,t′∑T

t′=1 1{It′ = k}
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The estimated mean of arm k at time t is simply the standard average:

≜

∑t
t′=1 1{It′ = k}gk,t′∑T
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• UCB-Exploration (Audibert, Bubeck & Munos, 2010)

Pull argmaxk∈[K ] + gmax

√
a
Tk

, a ∈ R, Tk : # of pulls of k.

gmax

√
a
Tk

is the uncertainty on but requires knowledge of gmax .
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State of the art in

• Deterministic Uniform exploration (deter-uniform).
Pull every arm deterministically T/K times.

• Successive Rejects (sr) (Audibert, Bubeck & Munos, 2010)
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≜
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e (T ) e (T )

deter-uniform ?

sr ?
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Successive Rejects

• sr is an elimination algorithm pulling uniformly over a set of remaining
candidate arms.

• The arm k, ranked

k

-th by sr, is allocated T/

k

pulls
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1 2 3 4

T/2

T

T/3
T/4
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State of the art in

e (T ) e (T )

deter-uniform ? ? ?

sr ? ? ?

And now...

Let us precise the e (T ) for the uniform and sr algorithms.
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Gaps and complexities in hindsight

k* 2

15$

16$

1 2

15$

16$
G
µ
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Gaps and complexities in hindsight

k* 2

15$

16$

1 2

15$

16$

18$

14$

G
µ

G
µ

The number of pulls to 
distinguish two arms depends 
on the complexity H, where:

H= 1/Δ2

and the gap Δ is Δ = µ1-µ2

Stochastic caseStochastic case

µ(t) converges to µ according 
to Hoeffding concentration 
inequality

^
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Gaps and complexities in hindsight

Δ=16-15=1
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The number of pulls to 
distinguish two arms depends 
on the complexity H, where:
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Gaps and complexities in hindsight

2 3 4
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To distinguish arm k from arm 1 , the learner must have its uncertainty
on µk (or Gk) smaller than ∆ k , i.e. |µ̂k − µk | ≤ ∆ k /2.
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The (e , e ) table so far

e (T ) e (T )

deter-uniform e
−T

HUNIF ?

sr e
−T

HSR log K ?

And now...

Let us discuss sr against an adversary.
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Worst-case adversarial analysis

sr can be tricked by an adversary arranging g

• sr pulls the arm deterministically ( will
hide rewards easily)

• sr stops pulling arms (reject) during the

game ( hides rewards)

• sr uses the standard estimation of the
average (biased against )
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g

• The learner needs to use internal randomization

• The learner should be careful about rejecting arm: no rejection!

• Be careful of the bias of the reward estimates.
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The (e , e ) table so far

e (T ) e (T )
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Let us discuss the adversarial setting
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Baseline: Robustifying the uniform learner against

•deter-uniform•:
▶ Pull every arm deterministically T/K times.

▶ Recommend the arm with highest

Robutifying

• Internal randomization: pull arm k at time t with proba pk,t = P (It = k)

• Replace by as E[G̃k,t ] = Gk,t (unbiased)

≜

∑t
t′=1 1{It′ = k}gk,t′∑T

t′=1 1{It′ = k}
= 1

t

∑t
t′=1

gk,t′
pk,t′

1{It′ = k}
(importance weights)

•Rule•:
▶ At time t, pull arm k with probability pk,t = 1/K .

▶ Recommend the arm with highest
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Upper bound for Rule against

Theorem (Rule vs. )

For any T and adversarial g, Rule satisfies

e (T ) = O
(
exp

(
− T

HUNIF(g)

))
·

The proof uses a Bernstein bound.

Theorem ( Lower bound)

For any learner, a g of complexity Hunif,

e (T ) = Ω

(
exp

(
− T

HUNIF(g)

))
·

Rule: optimal gap-dependent rates against .
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Proof sketch of the lower bound against

Idea: The can force the learner to have, at t = T/2, an uncertainty on

of order ∆ 1 , ∀k ∈ [K ] (instead of the usual ∆ k in ).

Our proof of the lower bound uses some arguments of Audibert & Bubeck
(2010), Carpentier and Locatelli (2016) and Auer and Chiang (2016)
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Given a Learner and a bandit problem I defined for the first half of the game
(until t = T/2)
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At least one arm is pulled less than T/(2K) by the Learner (not pulled enough to

detect small variations of size ∆ 1 , of its mean ←− prone to error). Here its arm

18/34



Proof sketch of the lower bound against

Idea: The can force the learner to have, at t = T/2, an uncertainty on

of order ∆ 1 , ∀k ∈ [K ] (instead of the usual ∆ k in ).

Our proof of the lower bound uses some arguments of Audibert & Bubeck
(2010), Carpentier and Locatelli (2016) and Auer and Chiang (2016)

3 4

11$ 11$

15$

16$

Δ1

Δ 4=4

1

1

22

15$

16$
G
µ

4

Then, an alternative/similar problem II is created, by modifying by ∆ 1 .

problem II is defined for t = 1 to t = T/2.
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This is the superposition of problem I & II.

problem I & II are indistinguishable with proba e−
T∆2
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Between t = T/2 and t = T , the arm get enough reward so that:

= 1 in problem II while = 1 in problem I
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The lower bound comes from the fact that problem I & II
• have different best arms

• are indistinguishable w.p. e
−T∆2

1

K , i.e. PII

(
1 =

)
︸ ︷︷ ︸

error in II

≥PI

(
1 =

)
︸ ︷︷ ︸

success in I

e
−T∆2

1

K
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Current status

• Best arm identification against is too hard: uniform exploration
(Rule) is optimal.

• However Rule is suboptimal in .

• sr, optimal in fails against

e (T ) e (T )

sr e
−T

HSR log K 1

Rule e
−T

HUNIF e
−T

HUNIF

The

BOB

question:

?

Is there a learner performing optimally in both the stochastic and

adversarial cases while not being aware of the nature of the rewards

?

e (T ) e (T )

? ? ? ?

e
−T

HSR log K e
−T

HUNIF
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¿Best of both worlds? (BOB)

• Best arm identification against is too hard: uniform exploration
(Rule) is optimal.
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• Best arm identification against is too hard: uniform exploration
(Rule) is optimal.

• However Rule is suboptimal in .

• sr, optimal in fails against

e (T ) e (T )

sr e
−T

HSR log K 1

Rule e
−T

HUNIF e
−T

HUNIF

The BOB question:

?

Is there a learner performing optimally in both the stochastic and

adversarial cases while not being aware of the nature of the rewards ?

The BOB question was studied in the cumulative regret setting in Bubeck &
Slivkins, 2012, Seldin & Slivkins, 2014, Auer & Chiang, 2016, Zimmert &
Seldin, 2018...
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¡IMPOSSIBLE BOB !

New notion of complexity

HBOB ≜
1

∆ 1
max
k∈[K ]

k

∆ k
·

Theorem (Lower bound for the BOB challenge)

For any learner,

if for all adversarial problem g,

e (T ) ≤ 1

16
,

then there exists a stochastic problem with complexity HBOB such that

e (T ) ≥ 1

64
exp

(
−2048T

HBOB

)
sometimes

=
1

64
exp

(
− 2048T

HSR

√
K

)
·
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Proof sketch of the BOB lower bound

Idea: The can force the learner to have, ∀k ∈ [K ], at t = T
∆ 1

∆ k
(instead of

t = T in ), an uncertainty on of order ∆ k .
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Proof sketch of the BOB lower bound

Idea: The can force the learner to have, ∀k ∈ [K ], at t = T
∆ 1

∆ k
(instead of

t = T in ), an uncertainty on of order ∆ k .
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G
µ

4

16.5$

A similar problem STO is created, , by modifying by ∆
4

+∆ 1 /2.

problem STO is defined for t = 1 to t = T .
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Proof sketch of the BOB lower bound

Idea: The can force the learner to have, ∀k ∈ [K ], at t = T
∆ 1
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(instead of

t = T in ), an uncertainty on of order ∆ k .
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First period
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1

2

problem ADV : 1 follows base from t = 1 to t = T
∆ 1

∆ k
,

2 follows STO afterwards .

Modifying of ∆ k during T
∆ 1

∆ k
changes the means of ∆ 1 w.r.t STO.
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Proof sketch of the BOB lower bound

Idea: The can force the learner to have, ∀k ∈ [K ], at t = T
∆ 1
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(instead of
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max
k∈[K ]
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·

Theorem (Lower bound for the BOB challenge)

For any learner,

if for all adversarial problems g,

e (T ) ≤ 1
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,

then there exists a stochastic problem with complexity HBOB such that
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H BOB

HSR ≤ HBOB ≤ HUNIF. max
k∈[K ]

k

∆2

k︸ ︷︷ ︸
HSR

≤ 1

∆ 1
max
k∈[K ]

k

∆ k︸ ︷︷ ︸
HBOB

≤ 1

∆2

1︸ ︷︷ ︸
HUNIF

.

▶ Flat regime

μ

1 2 3 4 5 6

Hsr = HBOB = HUNIF

BOB is achieved by
Rule.

▶ Linear regime

μ

1 2 3 4 5 6

Hsr = HBOB =
HUNIF

K

BOB can be achieved
but not by Rule.

Need a new learner!

▶ Square-root regime

μ

1 2 3 4 5 6

Hsr =
HBOB√
2K

=
HUNIF

K

No learner can do BOB!

There is still an open question!
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New BOB and challenge

The new BOB question:

?

Can an algorithm achieve the following ?

e (T ) e (T )

? ? ? ? e
−T

HBOB log K e
−T

HUNIF

Why is the BOB question challenging?

▶ Bias of estimator =
∑t

t′=1
1{It′=k}gk,t′∑T

t′=1
1{It′=k} (simple average)

▶ Variance of =
∑t

t′=1

gk,t′
pk,t′

1{It′ = k} (importance weights)

We use :

• Pulling uniformly for too long with pk,t =
1
K

leads to a large variance, up

to being of order K , in G̃k,t .

• Objective: reduce the variance (uncertainty) of the estimators of the best
arms ≈ find the best arm
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Designing the new algorithm

Idea: Robustify the sr algorithm.

• We use

• Cannot pull uniformly, as in sr, for almost half of the game.

• Need to pull the estimated best arms earlier.

• Need to remove the rejections

• Reuse the proportions of sr (arm k, ranked k -th by sr, is allocated

T/ k pulls)

...

...

...

u
n
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e
s
t 

2

Reject the arm: argmink µk =^

Reject the arm: argmink µk =^

1 2 3 4

T/2

T

T/3
T/4
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The P1 algorithm

At any time t, p1 pulls • arm 1 with ‘probability’ 1

• arm

2

with ‘probability’ 1
2

• arm

3

with ‘probability’ 1
3

• and so on...

• arm

k

with ‘probability’ 1
k

• and

K

with ‘probability’ 1
K

• (and normalize)

logK =
∑K

k=1(1/k), with |logK − logK | ≤ 1

p1 early bets are almost costless! (and necessary):

• The estimated best arms are prioritized since the first pull to reduce
variance.

• Up to a logK factor, all arms are pulled uniformly.

• p1 implicitly control the uncertainty of the estimates.
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Pseudo-code of P1

For t = 1, 2, . . .

▶ Rank the arms according to : Rank arm k as kt .

▶ Select arm It ∈ [K ] with

pk,t ≜ P (It = k) ≜
1

kt logK

for all k ∈ [K ].

Recommend, at any round t, 1t ≜ argmaxk∈[K ] .

The algorithm is anytime and parameter-free.
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P1 achieves the best you can wish for

Theorem (Upper bounds for p1)

For any problems:

▶ e (T ) = O
(
exp

(
− T

HBOB log2(K)

))
▶ e (T ) = O

(
exp

(
− T

HUNIF(g) log(K)

))

e (T ) e (T )

sr e
−T

HSR log K 1

Rule e
−T

HUNIF e
−T

HUNIF

P1 e
−T

HBOB log K e
−T

HUNIF
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Ideas for the proof

Early bets are costless / Early bets are necessary

• pk,t ≥ 1/(K logK) is enough to obtain the same complexity Hunif as
Rule, up to a factor logK .

• , K − 1 arbitrary ‘virtual’ phases that each ends at round Ti = Tai .
Chosen in hindsight to minimize the upper bound (p1 is oblivious to ai ).

Intuitively, after Ti the event ξi happens with high probability:

ξi ≜

{
∀t > Ti , ∀k ∈ [K ] : µ 1 − µk <

∆i

2
=⇒ kt < i

}
·

⇒ for any such arm k, for t > Ti , pk,t ≥ 1/(i − 1).
⇒ smaller variance (of order i − 1) in their estimates g̃k,t

⇒ better estimates in the rest of the game.
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Ideas for the proof

The proof works iteratively over the phases.

Error = ξi does not hold.

Trade off in setting the length of the phases with ai :
Trade off between event ξi happening fast and ξi happening with high
probability
Short phases = not enough samples to discriminate the suboptimal arms.
Long phases = the variance of the mean estimators of good arms is increasing
with the length of the early phases
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Ideas for the proof

Hp1(a) ≜ max
k∈[K ]

∑K
i=⟨k⟩(ai − ai+1)i +

1
24
Ka⟨k⟩∆k

a2⟨k⟩∆
2
k

logK

Hp1 ≜ min
a∈A

Hp1(a).

Solution: Set Ti = T ∆1
∆i

as in the lower bound.

Corollary The complexity Hp1 of p1 matches the complexity Hbob from the
lower bound of Theorem 4 of up to log factors,

Hp1 = O
(
Hbob

2

logK

)
.
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Experiments in

Experimental setup Hsr Hbob Hunif

1. 1 group of bad arms 2000 2000 2000
2. 2 groups of bad arms 1389 2083 3125
3. Geometric progression 5540 5540 11080
4. 3 groups of bad arms 400 500 938
5. Arithmetic progression 3200 3200 24000
6. 2 good, many bad arms 5000 7692 50000
7. 3 groups of bad arms 4082 5714 12000
8. Square-root gaps 3200 22627 160000

Empirical behavior above mimics the behavior of the complexities in the table.
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Thank you!
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