Corruption-Robust Contextual Search

Chara Podimata
(UC Berkeley \rightarrow MIT)

Based on joint works with

D3P Semester, Fall22
Contextual Search Realizable Version

For rounds $t = 1, \ldots, T$:

[Cohen, Lobel, Paes Leme, EC16/MS19], [Lobel, Paes Leme, Vladu, EC17/OR18], [Paes Leme, Schneider, FOCS18], [Liu, Paes Leme, Schneider, SODA21]
For rounds $t = 1, \ldots, T$:

1. Nature chooses d-dimensional context $u_t \in \mathbb{R}^d$, s.t., $||u_t|| = 1$.

[Cohen, Lobel, Paes Leme, EC16/MS19], [Lobel, Paes Leme, Vladu, EC17/OR18], [Paes Leme, Schneider, FOCS18], [Liu, Paes Leme, Schneider, SODA21]
For rounds $t = 1, \ldots, T$:

1. Nature chooses d-dimensional context $u_t \in \mathbb{R}^d$, s.t., $\|u_t\| = 1$.
2. Learner queries a scalar $y_t \in \mathbb{R}$.

[Cohen, Lobel, Paes Leme, EC16/MS19], [Lobel, Paes Leme, Vladu, EC17/OR18], [Paes Leme, Schneider, FOCS18], [Liu, Paes Leme, Schneider, SODA21]
For rounds $t = 1, ..., T$:

1. Nature chooses d-dimensional context $u_t \in \mathbb{R}^d$, s.t., $||u_t|| = 1$.

2. Learner queries a scalar $y_t \in \mathbb{R}$.

3. Nature replies $\text{sign}(y_t - \langle u_t, \theta^* \rangle) \in \{-1, +1\}$ (binary feedback).
Contextual Search Realizable Version

“Realizable” = Exists hidden $\theta^* \in \mathbb{R}^d$ same across rounds.

For rounds $t = 1, ..., T$:

1. Nature chooses d-dimensional context $u_t \in \mathbb{R}^d$, s.t., $||u_t|| = 1$.
2. Learner queries a scalar $y_t \in \mathbb{R}$.
3. Nature replies $\text{sign}(y_t - \langle u_t, \theta^* \rangle) \in \{-1, +1\}$ (binary feedback).

[Cohen, Lobel, Paes Leme, EC16/MS19], [Lobel, Paes Leme, Vladu, EC17/OR18],
[Paes Leme, Schneider, FOCS18], [Liu, Paes Leme, Schneider, SODA21]
"Realizable" = Exists hidden $\theta^* \in \mathbb{R}^d$ same across rounds.

For rounds $t = 1, ..., T$:

1. Nature chooses d-dimensional context $u_t \in \mathbb{R}^d$, s.t., $||u_t|| = 1$.
2. Learner queries a scalar $y_t \in \mathbb{R}$.
3. Nature replies $\text{sign}(y_t - \langle u_t, \theta^* \rangle) \in \{-1, +1\}$ (binary feedback).
4. Learner incurs (but does not observe) loss $\ell(y_t, \langle u_t, \theta^* \rangle) \in [0,1]$.
Contextual Search Realizable Version

“Realizable” = Exists hidden $\theta^* \in \mathbb{R}^d$ same across rounds.

For rounds $t = 1, \ldots, T$:

1. Nature chooses d-dimensional context $u_t \in \mathbb{R}^d$, s.t., $||u_t|| = 1$.

2. Learner queries a scalar $y_t \in \mathbb{R}$.

3. Nature replies $\text{sign}(y_t - \langle u_t, \theta^*\rangle) \in \{-1, +1\}$ (binary feedback).

4. Learner incurs (but does not observe) loss $\ell(y_t, \langle u_t, \theta^*\rangle) \in [0,1]$.

 - ϵ-ball loss: $\ell(y_t, y_t^*) = 1 \cdot 1\{|y_t - y_t^*| \geq \epsilon\}$
 - symmetric loss: $\ell(y_t, y_t^*) = |y_t - y_t^*|$
 - pricing loss: $\ell(y_t, y_t^*) = y_t^* - y_t \cdot 1\{y_t \leq y_t^*\}$

[Cohen, Lobel, Paes Leme, EC16/MS19], [Lobel, Paes Leme, Vladu, EC17/OR18], [Paes Leme, Schneider, FOCS18], [Liu, Paes Leme, Schneider, SODA21]
Contextual Search Realizable Version

“Realizable” = Exists hidden $\theta^* \in \mathbb{R}^d$ same across rounds.

For rounds $t = 1, ..., T$:

1. Nature chooses d-dimensional context $u_t \in \mathbb{R}^d$, s.t., $||u_t|| = 1$.

2. Learner queries a scalar $y_t \in \mathbb{R}$.

3. Nature replies $\text{sign}(y_t - \langle u_t, \theta^* \rangle) \in \{-1, +1\}$ (binary feedback).

4. Learner incurs (but does not observe) loss $\ell(y_t, \langle u_t, \theta^* \rangle) \in [0,1]$.

 - ε-ball loss: $\ell(y_t, y_t^*) = 1 \cdot 1\{y_t - y_t^* \geq \varepsilon\}$
 - Symmetric loss: $\ell(y_t, y_t^*) = |y_t - y_t^*|$
 - Pricing loss: $\ell(y_t, y_t^*) = y_t^* - y_t \cdot 1\{y_t \leq y_t^*\}$

$\text{Regret} = \text{total loss incurred} - \text{total loss for benchmark querying policy}$

[Cohen, Lobel, Paes Leme, EC16/MS19], [Lobel, Paes Leme, Vladu, EC17/OR18], [Paes Leme, Schneider, FOCS18], [Liu, Paes Leme, Schneider, SODA21]
Contextual Search Realizable Version

“Realizable” = Exists hidden $\theta^* \in \mathbb{R}^d$ same across rounds.
For rounds $t = 1, \ldots, T$:

1. Nature chooses d-dimensional context $u_t \in \mathbb{R}^d$, s.t., $||u_t|| = 1$.
2. Learner queries a scalar $y_t \in \mathbb{R}$.
3. Nature replies $\text{sign}(y_t - \langle u_t, \theta^* \rangle) \in \{-1, +1\}$ (binary feedback).
4. Learner incurs \textbf{(but does not observe)} loss $\ell(y_t, \langle u_t, \theta^* \rangle) \in [0,1]$.

- ε – ball loss: $\ell(y_t, y_t^*) = 1 \cdot 1\{y_t - y_t^* \geq \varepsilon\}$
- symmetric loss: $\ell(y_t, y_t^*) = |y_t - y_t^*|$
- pricing loss: $\ell(y_t, y_t^*) = y_t^* - y_t \cdot 1\{y_t \leq y_t^*\}$

\textbf{Regret} = total loss incurred – total loss for benchmark querying policy

[Cohen, Lobel, Paes Leme, EC16/MS19], [Lobel, Paes Leme, Vladu, EC17/OR18], [Paes Leme, Schneider, FOCS18], [Liu, Paes Leme, Schneider, SODA21]
Known Results

<table>
<thead>
<tr>
<th>Loss</th>
<th>$\ell(y_t, y_t^*)$</th>
<th>Lower Bound [R]</th>
<th>Upper Bound [R]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Cohen, Lobel, Paes Leme, EC16/MS19], [Lobel, Paes Leme, Vladu, EC17/OR18], [Paes Leme, Schneider, FOCS18], [Liu, Paes Leme, Schneider, SODA21]
Known Results

<table>
<thead>
<tr>
<th>Loss</th>
<th>$\ell(y_t, y_t^*)$</th>
<th>Lower Bound [R]</th>
<th>Upper Bound [R]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε -ball</td>
<td>$1{</td>
<td>y_t - y_t^*</td>
<td>\geq \varepsilon}$</td>
</tr>
</tbody>
</table>

[Cohen, Lobel, Paes Leme, EC16/MS19], [Lobel, Paes Leme, Vladu, EC17/OR18], [Paes Leme, Schneider, FOCS18], [Liu, Paes Leme, Schneider, SODA21]
Known Results

<table>
<thead>
<tr>
<th>Loss</th>
<th>$\ell(y_t, y_t^*)$</th>
<th>Lower Bound [R]</th>
<th>Upper Bound [R]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε-ball</td>
<td>$1 {</td>
<td>y_t - y_t^*</td>
<td>\geq \varepsilon}$</td>
</tr>
<tr>
<td>symmetric</td>
<td>$</td>
<td>y_t - y_t^*</td>
<td>$</td>
</tr>
</tbody>
</table>

[Cohen, Lobel, Paes Leme, EC16/MS19], [Lobel, Paes Leme, Vladu, EC17/OR18], [Paes Leme, Schneider, FOCS18], [Liu, Paes Leme, Schneider, SODA21]
Known Results

<table>
<thead>
<tr>
<th>Loss</th>
<th>Loss Function</th>
<th>Lower Bound [R]</th>
<th>Upper Bound [R]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)-ball</td>
<td>(1{</td>
<td>y_t - y_t^*</td>
<td>\geq \varepsilon})</td>
</tr>
<tr>
<td>symmetric</td>
<td>(</td>
<td>y_t - y_t^*</td>
<td>)</td>
</tr>
<tr>
<td>pricing</td>
<td>(y_t^* - y_t \cdot 1{y_t \leq y_t^*})</td>
<td>(\Omega(d \log \log T))</td>
<td>(O(d \log \log T + d \log d)) [LLS21]</td>
</tr>
</tbody>
</table>

[Cohen, Lobel, Paes Leme, EC16/MS19], [Lobel, Paes Leme, Vladu, EC17/OR18], [Paes Leme, Schneider, FOCS18], [Liu, Paes Leme, Schneider, SODA21]
Contextual Search with Adversarial Noise

Exists hidden $\theta^* \in \mathbb{R}^d$ same across rounds.

For rounds $t = 1, \ldots, T$:

1. Nature chooses d-dimensional context $u_t \in \mathbb{R}^d$, s.t., $|u_t| = 1$.

2. Learner queries a scalar $y_t \in \mathbb{R}$.

3. Nature replies $\sigma_t = \text{sign}(y_t - y_t^*) \in \{-1, +1\}$ (binary feedback).

4. Learner incurs (but does not observe) loss $\ell(y_t, y_t^*) \in [0,1]$.
Contextual Search with Adversarial Noise

Exists hidden $\theta^* \in \mathbb{R}^d$ same across rounds.

For rounds $t = 1, \ldots, T$:

1. Nature chooses d-dimensional context $u_t \in \mathbb{R}^d$, s.t., $||u_t|| = 1$.

2. Learner queries a scalar $y_t \in \mathbb{R}$.

3. Nature replies $\sigma_t = \text{sign}(y_t - y_t^*) \in \{-1, +1\}$ (binary feedback).

4. Learner incurs (but does not observe) loss $\ell(y_t, y_t^*) \in [0,1]$.

\[y_t^* = \langle u_t, \theta^* \rangle + z_t \]

\[z_t \in [0,1]: \text{adaptively and adversarially chosen} \]
Contextual Search with Adversarial Noise

Exists hidden $\theta^* \in \mathbb{R}^d$ same across rounds.

For rounds $t = 1, \ldots, T$:

1. Nature chooses d-dimensional context $u_t \in \mathbb{R}^d$, s.t., $||u_t|| = 1$.

2. Learner queries a scalar $y_t \in \mathbb{R}$.

3. Nature replies $\sigma_t = \text{sign}(y_t - y_t^*) \in \{-1, +1\}$ (binary feedback).

4. Learner incurs (but does not observe) loss $\ell(y_t, y_t^*) \in [0, 1]$.

$y_t^* = \langle u_t, \theta^* \rangle + z_t$
$z_t \in [-1, 1]$: adaptively and adversarially chosen
Contextual Search with Adversarial Noise

Exists hidden $\theta^* \in \mathbb{R}^d$ same across rounds.

For rounds $t = 1, \ldots, T$:

1. Nature chooses d-dimensional context $u_t \in \mathbb{R}^d$, s.t., $||u_t|| = 1$.

2. Learner queries a scalar $y_t \in \mathbb{R}$.

3. Nature replies $\sigma_t = \text{sign}(y_t - y_t^*) \in \{-1, +1\}$ (binary feedback).

4. Learner incurs (but does not observe) loss $\ell(y_t, y_t^*) \in [0,1]$.

\[
y_t^* = \langle u_t, \theta^* \rangle + z_t
\]

$z_t \in [-1,1]$: adaptively and adversarially chosen
Contextual Search with Adversarial Noise

Exists hidden $\theta^* \in \mathbb{R}^d$ same across rounds.

For rounds $t = 1, \ldots, T$:

1. Nature chooses d-dimensional context $u_t \in \mathbb{R}^d$, s.t., $||u_t|| = 1$.
2. Learner queries a scalar $y_t \in \mathbb{R}$.
3. Nature replies $\sigma_t = \text{sign}(y_t - y_t^*) \in \{-1, +1\}$ (binary feedback).
4. Learner incurs (but does not observe) loss $\ell(y_t, y_t^*) \in [0,1]$.

Desiderata for our Algorithms
- ✓ Graceful degradation of regret with C
- ✓ No knowledge of C assumed (agnostic)
Main Results

[Krishnamurthy, Lykouris, P., Schapire, STOC21/OR22]

ε – ball loss: $\text{Regret} = O(C_0 \, d^3 \, \log^3 \, 1/\varepsilon)$

symmetric, pricing loss: $\text{Regret} = O(C_0 \, d^3 \, \log^3 \, T)$

[Paes Leme, P., Schneider, COLT22]

ε – ball loss: $\text{Regret} = O(C_0 + d \, \log \, 1/\varepsilon)$

symmetric loss: polytime, $\text{Regret} = O(C_1 + d \, \log \, T)$, where $C_1 = \Sigma_t |z_t|$
Known Results

<table>
<thead>
<tr>
<th>Loss</th>
<th>$\ell(y_t, y_t^*)$</th>
<th>Lower Bound [R]</th>
<th>Upper Bound [R]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε-ball</td>
<td>$1{</td>
<td>y_t - y_t^*</td>
<td>\geq \varepsilon}$</td>
</tr>
<tr>
<td>symmetric</td>
<td>$</td>
<td>y_t - y_t^*</td>
<td>$</td>
</tr>
<tr>
<td>pricing</td>
<td>$y_t^* - y_t \cdot 1{y_t \leq y_t^*}$</td>
<td>$\Omega(d \log \log T)$</td>
<td>$O(d \log \log T + d \log d)$ [LLS21]</td>
</tr>
</tbody>
</table>

[Cohen, Lobel, Paes Leme, EC16/MS19], [Lobel, Paes Leme, Vladu, EC17/OR18], [Paes Leme, Schneider, FOCS18], [Liu, Paes Leme, Schneider, SODA21]
Contextual Search with Adversarial Noise

Exists hidden $\theta^* \in \mathbb{R}^d$ same across rounds.

For rounds $t = 1, \ldots, T$:

1. Nature chooses d-dimensional context $u_t \in \mathbb{R}^d$, s.t., $||u_t|| = 1$.

2. Learner queries a scalar $y_t \in \mathbb{R}$.

3. Nature replies $\sigma_t = \text{sign}(y_t - y_t^*) \in \{-1, +1\}$ (binary feedback).

4. Learner incurs (but does not observe) loss $\ell(y_t, y_t^*) \in [0,1]$.

for $z_t \in \{0,1\}$:

- $\text{Regret} = O(C_0 \ d^3 \ \log^3 T)$ for pricing, symmetric loss
- $\text{Regret} = O(C_0 \ d^3 \ \log^3 1/\epsilon)$ for ϵ-ball loss

[Krishnamurthy, Lykouris, P., Schapire, STOC21/OR22]

Runtime $\text{poly} (d, \log T)^{\text{poly}(\log T)}$
Traditional Approach for Contextual Search Algorithms

Traditional Approach for Contextual Search Algorithms

For rounds $t = 1, \ldots, T$:
Traditional Approach for Contextual Search Algorithms

For rounds $t = 1, \ldots, T$:

- Maintain active **knowledge set** with feasible values for θ^*.
Traditional Approach for Contextual Search Algorithms

For rounds $t = 1, \ldots, T$:

- Maintain active **knowledge set** with feasible values for θ^*.

- Learner chooses y_t to make enough "progress"

 (e.g., $y_t = \langle u_t, \text{centroid of knowledge set} \rangle$).

Knowledge set for θ^*
Traditional Approach for Contextual Search Algorithms

For rounds $t = 1, \ldots, T$:

- Maintain active **knowledge set** with feasible values for θ^*.
- Learner chooses y_t to make enough "progress"
 (e.g., $y_t = \langle u_t, \text{centroid of knowledge set} \rangle$).
- Eliminate **inconsistent side** of knowledge set.
Traditional Approach for Contextual Search Algorithms

For rounds $t = 1, \ldots, T$:

- Maintain active **knowledge set** with feasible values for θ^*.
- Learner chooses y_t to make enough "progress" (e.g., $y_t = \langle u_t, \text{centroid of knowledge set} \rangle$).
- Eliminate **inconsistent side** of knowledge set.

[CoHEN, LOBEL, PAES LEME, EC16/MS19]. [LOBEL, PAES LEME, VLADU, EC17/OR18], [PAES LEME, SCHNEIDER, FOCS18], [LIU, PAES LEME, SCHNEIDER, SODA21]
Traditional Approach for Contextual Search Algorithms

For rounds $t = 1, \ldots, T$:

- Maintain active **knowledge set** with feasible values for θ^*.
- Learner chooses y_t to make enough "**progress**"
 (e.g., $y_t = \langle u_t, \text{centroid of knowledge set} \rangle$).
- Eliminate **inconsistent side** of knowledge set.

[Evgeny Cohen, Ilan Lobel, Rafael Paes Leme, EC16/MS19],
[Ilan Lobel, Rafael Paes Leme, Vladu, EC17/OR18],
[Rafael Paes Leme, Yishay Schneider, FOCS18],
[Zhen Liu, Rafael Paes Leme, Yishay Schneider, SODA21]
Traditional Approach for Contextual Search Algorithms

For rounds $t = 1, \ldots, T$:

- Maintain active **knowledge set** with feasible values for θ^*.
- Learner chooses y_t to make enough "progress" (e.g., $y_t = \langle u_t, \text{centroid of knowledge set} \rangle$).
- Eliminate **inconsistent side** of knowledge set.

[Cohe, Lobel, Paes Leme, EC16/MS19], [Lobel, Paes Leme, Vladu, EC17/OR18],
[Paes Leme, Schneider, FOCS18], [Liu, Paes Leme, Schneider, SODA21]
Traditional Approach for Contextual Search Algorithms

For rounds $t = 1, \ldots, T$:

- Maintain active **knowledge set** with feasible values for θ^*.
- Learner chooses y_t to make enough "progress" (e.g., $y_t = \langle u_t, \text{centroid of knowledge set} \rangle$).
- Eliminate **inconsistent side** of knowledge set.

Knowledge set for θ^*

[Aggressively introducing cuts \rightarrow fast, logarithmic bounds]

[Cohen, Lobel, Paes Leme, EC16/MS19], [Lobel, Paes Leme, Vladu, EC17/OR18], [Paes Leme, Schneider, FOCS18], [Liu, Paes Leme, Schneider, SODA21]
Traditional Approach for Contextual Search Algorithms

For rounds $t = 1, \ldots, T$:

- Maintain active **knowledge set** with feasible values for θ^*.
- Learner chooses y_t to make enough "progress"
 (e.g., $y_t = \langle u_t, \text{centroid of knowledge set} \rangle$).
- Eliminate **inconsistent side** of knowledge set.

\[\text{Regret} \leq O(d \cdot \log T) \]
Traditional Approach for Contextual Search Algorithms

For rounds $t = 1, \ldots, T$:

- Maintain active **knowledge set** with feasible values for θ^*.
- Learner chooses y_t to make enough "progress"
 (e.g., $y_t = \langle u_t, \text{centroid of knowledge set} \rangle$).
- Eliminate **inconsistent side** of knowledge set.

Important properties of cut

1. **Never eliminate** θ^*
 - Retain all parameters consistent with feedback
2. **Volumetric progress**
 - Cut through centroid

Aggressively introducing cuts \Rightarrow fast, logarithmic bounds

\[\text{Regret} \leq O(d \cdot \log T) \]
Idea Overview

1. Create a robust version of the knowledge-set-based algorithm that is robust to a known amount of corruption $\tilde{c} \approx \log T$.

2. **Unknown C**: Run a variant of the Multi-Layering Race technique from [Lykouris, Mirrokni, Paes Leme, *STOC18*].
Idea Overview

1. Create a robust version of the knowledge-set-based algorithm that is robust to a \textbf{known} amount of corruption $\tilde{c} \approx \log T$.

2. \textbf{Unknown} C: Run a variant of the Multi-Layering Race technique from [Lykouris, Mirrokni, Paes Leme, STOC18].
Robust Volumetric Progress
Robust Volumetric Progress

Challenge 1

We cannot repeat the same query (contexts are different at different rounds).
Robust Volumetric Progress

Challenge 1

We cannot repeat the same query (contexts are different at different rounds).

Context cut: hyperplane perpendicular to context

\[u_1 = (1,0) \]
\[u_2 = (0.8,0.6) \]
Robust Volumetric Progress

Challenge 1

We cannot repeat the same query (contexts are different at different rounds).

Context cut: hyperplane perpendicular to context

\[u_1 = (1,0) \quad u_2 = (0.8, 0.6) \]

Idea 1

Keep “penalty” for each parameter & make cut once a context cut fully retains protected region on one side.

- Protected region: all parameters with “penalty” \(\leq \overline{c} \).
Robust Volumetric Progress

Challenge 1

We cannot repeat the same query (contexts are different at different rounds).

Context cut: hyperplane perpendicular to context

Idea 1

Keep “penalty” for each parameter & make cut once a context cut fully retains protected region on one side.

- Protected region: all parameters with “penalty” ≤ \(\tilde{c} \).

\[u_1 = (1,0) \]
Robust Volumetric Progress

Challenge 1

We cannot repeat the same query (contexts are different at different rounds).

Context cut: hyperplane perpendicular to context

Idea 1

Keep “penalty” for each parameter & make cut once a context cut fully retains protected region on one side.

- Protected region: all parameters with “penalty” $\leq c$.

$u_1 = (1,0)$
Robust Volumetric Progress

Challenge 1
We cannot repeat the same query (contexts are different at different rounds).

Context cut: hyperplane perpendicular to context

- **Idea 1**
 - Keep “penalty” for each parameter & make cut once a context cut fully retains protected region on one side.
 - Protected region: all parameters with “penalty” ≤ \tilde{c}.

$u_1 = (1,0)$
Robust Volumetric Progress

Challenge 1
We cannot repeat the same query (contexts are different at different rounds).

Context cut: hyperplane perpendicular to context

Idea 1
Keep “penalty” for each parameter & make cut once a context cut fully retains protected region on one side.
• Protected region: all parameters with “penalty” ≤ \bar{c}.

$u_1 = (1,0)$
Robust Volumetric Progress

We cannot repeat the same query (contexts are different at different rounds).

Challenge 1

Context cut: hyperplane perpendicular to context

Keep “penalty” for each parameter & make cut once a context cut fully retains protected region on one side.

- Protected region: all parameters with “penalty” ≤ \(\bar{c} \).

\[u_1 = (1,0) \]
Robust Volumetric Progress
Robust Volumetric Progress

Challenge 2

We may never have a context cut with the protected region fully on one side.
Robust Volumetric Progress

Challenge 2

We may never have a context cut with the protected region fully on one side.

Counterexample: Even with infinite contexts and $\bar{c} = 1$, no such context cut.
Robust Volumetric Progress

Challenge 2
We may never have a context cut with the protected region fully on one side.

Idea 2
Combine context cuts to compute a “valid cut”.

Counterexample: Even with infinite contexts and $\bar{c} = 1$, no such context cut.
Robust Volumetric Progress

Challenge 2
We may never have a context cut with the protected region fully on one side.

Counterexample: Even with infinite contexts and $\bar{c} = 1$, no such context cut.

Idea 2
Combine context cuts to compute a “valid cut”.

Important Properties of Valid Cut
1. Never eliminate θ^*
 • Retains protected region on one side.
2. Volumetric progress
 • Cross close to centroid.
Robust Volumetric Progress

Challenge 2
We may never have a context cut with the protected region fully on one side.

Counterexample: Even with infinite contexts and \(\bar{c} = 1 \), no such context cut.

Idea 2
Combine context cuts to compute a “valid cut”.

Idea 3
Show that \(2d \cdot (d + 1) \cdot \bar{c} + 1 \) context cuts have enough information to compute such a valid cut (Caratheodory’s theorem).

Important Properties of Valid Cut
1. Never eliminate \(\theta^* \)
 - Retains protected region on one side.
2. Volumetric progress
 - Cross close to centroid.
Robust Volumetric Progress

Challenge 2
We may never have a context cut with the protected region fully on one side.

Idea 2
Combine context cuts to compute a “valid cut”.

Idea 3
Show that $2d \cdot (d + 1) \cdot \bar{c} + 1$ context cuts have enough information to compute such a valid cut (Caratheodory’s theorem).

Counterexample: Even with infinite contexts and $\bar{c} = 1$, no such context cut.

Important Properties of Valid Cut
1. Never eliminate θ^*
 - Retains protected region on one side.
2. Volumetric progress
 - Cross close to centroid.
Robust Volumetric Progress

Challenge 2
We may never have a context cut with the protected region fully on one side.

Idea 2
Combine context cuts to compute a “valid cut”.

Idea 3
Show that $2d \cdot (d + 1) \cdot \bar{c} + 1$ context cuts have enough information to compute such a valid cut (Caratheodory’s theorem).

Counterexample: Even with infinite contexts and $\bar{c} = 1$, no such context cut.

Important Properties of Valid Cut
1. Never eliminate θ^*
 - Retains protected region on one side.
2. Volumetric progress
 - Cross close to centroid.

\[\text{penalty} \leq \bar{c} \]
Robust Volumetric Progress

Challenge 2

We may never have a context cut with the protected region fully on one side.

Idea 2

Combine context cuts to compute a “valid cut”.

Idea 3

Show that \(2d \cdot (d + 1) \cdot \bar{c} + 1\) context cuts have enough information to compute such a valid cut (Caratheodory’s theorem).

Counterexample: Even with infinite contexts and \(\bar{c} = 1\), no such context cut.

Important Properties of Valid Cut

1. Never eliminate \(\theta^*\)
 - Retains protected region on one side.

2. Volumetric progress
 - Cross close to centroid.

\[\text{penalty} \leq \bar{c}\]
Robust Volumetric Progress

Challenge 2

We may never have a context cut with the protected region fully on one side.

Idea 2

Combine context cuts to compute a "valid cut".

Idea 3

Show that $2d \cdot (d + 1) \cdot \bar{c} + 1$ context cuts have enough information to compute such a valid cut (*Caratheodory’s theorem*).

Counterexample: Even with infinite contexts and $\bar{c} = 1$, no such context cut.

Important Properties of Valid Cut

1. *Never eliminate θ^**
 - Retains protected region on one side.
2. *Volumetric progress*
 - Cross close to centroid.

\[\text{penalty} \leq \bar{c} \]
Robust Volumetric Progress

Challenge 2

We may never have a context cut with the protected region fully on one side.

Counterexample: Even with infinite contexts and $\bar{c} = 1$, no such context cut.

Idea 2

Combine context cuts to compute a “valid cut”.

Idea 3

Show that $2d \cdot (d + 1) \cdot \bar{c} + 1$ context cuts have enough information to compute such a valid cut (**Caratheodory’s theorem**).

Important Properties of Valid Cut

1. Never eliminate θ^*
 - Retains protected region on one side.

2. Volumetric progress
 - Cross close to centroid.

Known \bar{c}

- **penalty $\leq \bar{c}$**
- $d + 1$ points
Robust Volumetric Progress

Challenge 2
We may never have a context cut with the protected region fully on one side.

Counterexample: Even with infinite contexts and $\bar{c} = 1$, no such context cut.

Idea 2
Combine context cuts to compute a “valid cut”.

Idea 3
Show that $2d \cdot (d + 1) \cdot \bar{c} + 1$ context cuts have enough information to compute such a valid cut (Caratheodory’s theorem).

Important Properties of Valid Cut
1. Never eliminate θ^*
 - Retains protected region on one side.
2. Volumetric progress
 - Cross close to centroid.

Each penalty for black point attributed to ≥ 1 protected point
\Rightarrow penalty (black) $\leq \bar{c} \cdot (d + 1)$
Robust Volumetric Progress

Challenge 2
We may never have a context cut with the protected region fully on one side.

Idea 2
Combine context cuts to compute a "valid cut".

Idea 3
Show that $2d \cdot (d + 1) \cdot c + 1$ context cuts have enough information to compute such a valid cut (Caratheodory's theorem).

Counterexample: Even with infinite contexts and $\bar{c} = 1$, no such context cut.

Important Properties of Valid Cut

1. Never eliminate θ^*
 - Retains protected region on one side.
2. Volumetric progress
 - Cross close to centroid.

Each penalty for black point attributed to ≥ 1 protected point

$\text{penalty } \leq \bar{c}$

$\geq \bar{c} \cdot (d + 1) + 1$

$d + 1$ points

Known \bar{c}
Robust Volumetric Progress

Challenge 2

We may never have a context cut with the protected region fully on one side.

Counterexample: Even with infinite contexts and $\bar{c} = 1$, no such context cut.

Idea 2

Combine context cuts to compute a “valid cut”.

Idea 3

Show that $2d \cdot (d + 1) \cdot \bar{c} + 1$ context cuts have enough information to compute such a valid cut (*Caratheodory’s theorem*).

Idea 4

Use Perceptron to find a valid cut.

Important Properties of Valid Cut

1. Never eliminate θ^*
 - Retains protected region on one side.
2. Volumetric progress
 - Cross close to centroid.
A Fundamentally Different Approach
A Fundamentally Different Approach

• Maintain \textit{probability density function} $f(\cdot)$ over all possible values of θ^*.

• \textbf{Density} at point $x = \text{extent}$ to which x is \textit{consistent} with θ^*.
A Fundamentally Different Approach

• Maintain **probability density function** $f(\cdot)$ over all possible values of θ^*.

• **Density** at point $x = \text{extent}$ to which x is **consistent** with θ^*.

→ Never remove values from consideration, just shift its “weight”.

→ Higher weight to more probable values.
A Fundamentally Different Approach

- Maintain **probability density function** $f(\cdot)$ over all possible values of θ^*.
- **Density** at point $x = \text{extent}$ to which x is **consistent** with θ^*.

→ Never remove values from consideration, just shift its “weight”.
→ Higher weight to more probable values.
A Fundamentally Different Approach

• Maintain **probability density function** $f(\cdot)$ over all possible values of θ^*.
• **Density** at point $x = \text{extent}$ to which x is **consistent** with θ^*.

→ Never remove values from consideration, just shift its “weight”.
→ Higher weight to more probable values.
A Fundamentally Different Approach

• Maintain **probability density function** $f(\cdot)$ over all possible values of θ^*.

• **Density** at point $x = \text{extent}$ to which x is **consistent** with θ^*.

→ Never remove values from consideration, just shift its “weight”.

→ Higher weight to more probable values.
A Fundamentally Different Approach

- Maintain **probability density function** \(f(\cdot) \) over all possible values of \(\theta^* \).

- **Density** at point \(x = \text{extent} \) to which \(x \) is **consistent** with \(\theta^* \).

→ Never remove values from consideration, just shift its “weight”.

→ Higher weight to more probable values.

Seemingly more ”forgiving” approach → faster bounds for corruption-robust
Algorithm for ε – Ball Loss
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:

\[
\langle u_t, x \rangle = a
\]

$B(0,1)$
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:

- Observe u_t and query $y_t = \varepsilon - \text{window - median}(f_t)$
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:

• Observe u_t and query $y_t = \varepsilon - \text{window - median}(f_t)$
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:

- Observe u_t and query $y_t = \varepsilon – \text{window – median}(f_t)$
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:

• Observe u_t and query $y_t = \varepsilon - \text{window - median}(f_t)$
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:

- Observe u_t and query $y_t = \varepsilon$ – window – median(f_t)
Algorithm for \(\varepsilon \) – Ball Loss

\(\varepsilon \) – Window Median Algorithm

Initialize \(f_1(x) \): uniform over \(B(0,1) \).

For rounds \(t = 1, ..., T \):
- Observe \(u_t \) and query \(y_t = \varepsilon – \text{window – median}(f_t) \)
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:
- Observe u_t and query $y_t = \varepsilon – \text{window – median}(f_t)$
- Update density:
\[
f_{t+1}(x) = \begin{cases}
 \frac{3}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \geq \frac{\varepsilon}{2} \\
 1 \cdot f_t(x), & \text{if } -\frac{\varepsilon}{2} \leq \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq \frac{\varepsilon}{2} \\
 \frac{1}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq -\frac{\varepsilon}{2} \\
 \frac{1}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq \frac{\varepsilon}{2}
\end{cases}
\]
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:

- Observe u_t and query $y_t = \varepsilon – \text{window} – \text{median}(f_t)$
- Update density:

$$f_{t+1}(x) = \begin{cases}
\frac{3}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \geq \frac{\varepsilon}{2} \\
1 \cdot f_t(x), & \text{if } -\frac{\varepsilon}{2} \leq \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq \frac{\varepsilon}{2} \\
\frac{1}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq -\frac{\varepsilon}{2}
\end{cases}$$
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:

- Observe u_t and query $y_t = \varepsilon – window – median(f_t)$

- Update density:

$$f_{t+1}(x) = \begin{cases}
\frac{3}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \geq \frac{\varepsilon}{2} \\
1 \cdot f_t(x), & \text{if } -\frac{\varepsilon}{2} \leq \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq \frac{\varepsilon}{2} \\
\frac{1}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq -\frac{\varepsilon}{2}
\end{cases}$$
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:

- Observe u_t and query $y_t = \varepsilon – window – median(f_t)$
- Update density:

$$f_{t+1}(x) = \begin{cases}
\frac{3}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot \langle u_t, x \rangle - y_t \geq \frac{\varepsilon}{2} \\
1 \cdot f_t(x), & \text{if } -\frac{\varepsilon}{2} \leq \sigma_t \cdot \langle u_t, x \rangle - y_t \leq \frac{\varepsilon}{2} \\
\frac{1}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot \langle u_t, x \rangle - y_t \leq -\frac{\varepsilon}{2}
\end{cases}$$

Main Result

- ε – ball loss: $Regret = O(C_0 + d \log 1/\varepsilon)$
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:

- Observe u_t and query $y_t = \varepsilon – \text{window} – \text{median}(f_t)$
- Update density:

$$f_{t+1}(x) = \begin{cases}
\frac{3}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \geq \frac{\varepsilon}{2} \\
1 \cdot f_t(x), & \text{if } -\frac{\varepsilon}{2} \leq \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq \frac{\varepsilon}{2} \\
\frac{1}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq -\frac{\varepsilon}{2}
\end{cases}$$

Proof Idea
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:

- Observe u_t and query $y_t = \varepsilon - \text{window} - \text{median}(f_t)$
- Update density:

 $$f_{t+1}(x) = \begin{cases}
 \frac{3}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \geq \frac{\varepsilon}{2} \\
 1 \cdot f_t(x), & \text{if } -\frac{\varepsilon}{2} \leq \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq \frac{\varepsilon}{2} \\
 \frac{1}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq -\frac{\varepsilon}{2}
 \end{cases}$$

Proof Idea

1. Given updates above, $f_t(\cdot)$ is always a density.
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, ..., T$:

• Observe u_t and query $y_t = \varepsilon$ – window – median(f_t)

• Update density:

$$f_{t+1}(x) = \begin{cases}
\frac{3}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \geq \frac{\varepsilon}{2} \\
1 \cdot f_t(x), & \text{if } -\frac{\varepsilon}{2} \leq \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq \frac{\varepsilon}{2} \\
\frac{1}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq -\frac{\varepsilon}{2}
\end{cases}$$

Proof Idea

1. Given updates above, $f_t(\cdot)$ is always a density.

2. Potential $\Phi_t = \int_{B(\theta^*, \varepsilon/2)} f_t(x) dx$:
Algorithm for ϵ – Ball Loss

ϵ – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:
- Observe u_t and query $y_t = \epsilon$ – window – median(f_t)
- Update density:

$$f_{t+1}(x) = \begin{cases}
\frac{3}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \geq \frac{\epsilon}{2} \\
1 \cdot f_t(x), & \text{if } -\frac{\epsilon}{2} \leq \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq \frac{\epsilon}{2} \\
\frac{1}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq -\frac{\epsilon}{2}
\end{cases}$$

Proof Idea

1. Given updates above, $f_t(\cdot)$ is always a density.
2. Potential $\Phi_t = \int_{B(\theta^*, \epsilon/2)} f_t(x) dx$:
 - (weakly) increases in uncorrupted rounds
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:

- Observe u_t and query $y_t = \varepsilon – \text{window} – \text{median}(f_t)$
- Update density:

$$f_{t+1}(x) = \begin{cases}
\frac{3}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \geq \frac{\varepsilon}{2} \\
1 \cdot f_t(x), & \text{if } -\frac{\varepsilon}{2} \leq \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq \frac{\varepsilon}{2} \\
\frac{1}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq -\frac{\varepsilon}{2}
\end{cases}$$

Proof Idea

1. Given updates above, $f_t(\cdot)$ is always a density.

2. Potential $\Phi_t = \int_{B(\theta^*, \varepsilon/2)} f_t(x)dx$:
 - (weakly) increases in uncorrupted rounds
 - decreases by $1/2$ in corrupted ones (C_0 in total)
Algorithm for ϵ – Ball Loss

ϵ – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:

- Observe u_t and query $y_t = \epsilon \text{ – window - median}(f_t)$
- Update density:

$$f_{t+1}(x) = \begin{cases}
\frac{3}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \geq \frac{\epsilon}{2} \\
1 \cdot f_t(x), & \text{if } -\frac{\epsilon}{2} \leq \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq \frac{\epsilon}{2} \\
\frac{1}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq -\frac{\epsilon}{2}
\end{cases}$$

Main Result

- ϵ – ball loss: $\text{Regret} = O(C_0 + d \log 1/\epsilon)$
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:

- Observe u_t and query $y_t = \varepsilon$ – window – median(f_t)
- Update density:

\[
f_{t+1}(x) = \begin{cases}
\frac{3}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \geq \frac{\varepsilon}{2} \\
1 \cdot f_t(x), & \text{if } -\frac{\varepsilon}{2} \leq \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq \frac{\varepsilon}{2} \\
\frac{1}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq -\frac{\varepsilon}{2}
\end{cases}
\]

Main Result

- ε – ball loss: $\text{Regret} = O(C_0 + d \log 1/\varepsilon)$
- symmetric loss: $\text{Regret} = O(C_0 + d \log T)$
Algorithm for ε – Ball Loss

ε – Window Median Algorithm

Initialize $f_1(x)$: uniform over $B(0,1)$.

For rounds $t = 1, \ldots, T$:
- Observe u_t and query $y_t = \varepsilon - \text{window - median}(f_t)$
- Update density:

$$f_{t+1}(x) = \begin{cases}
\frac{3}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \geq \frac{\varepsilon}{2} \\
1 \cdot f_t(x), & \text{if } -\frac{\varepsilon}{2} \leq \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq \frac{\varepsilon}{2} \\
\frac{1}{2} \cdot f_t(x), & \text{if } \sigma_t \cdot (\langle u_t, x \rangle - y_t) \leq -\frac{\varepsilon}{2}
\end{cases}$$

This can happen only C_0 times!

Main Result

- ε – ball loss: $\text{Regret} = O(C_0 + d \log \frac{1}{\varepsilon})$
- symmetric loss: $\text{Regret} = O(C_0 + d \log T)$

Runtime $\approx O(T^d \text{ poly}(d,T))$
Efficient Algorithm for Symmetric Loss

Main Result

Polytime algorithm with $\text{Regret} = O(C_1 + d \log T)$ for symmetric loss, where $C_1 = \sum |z_t|$.
Efficient Algorithm for Symmetric Loss

Main Result

Polytime algorithm with $\text{Regret} = O(C_1 + d \log T)$ for symmetric loss, where $C_1 = \sum_t |z_t|$.

$C_1 < C_0 = \sum_t 1\{z_t \neq 0\}$
Efficient Algorithm for Symmetric Loss

Main Result

Polytime algorithm with \(\text{Regret} = O(C_1 + d \log T) \) for symmetric loss, where \(C_1 = \sum_t |z_t| \).

Idea

- Maintain “structured” \(f_t(\cdot) \), such that it always is a log-concave density.
- Query centroid of distribution: \(y_t = c g_t = \int x f_t(x) dx \).
- Update: \(f_{t+1}(x) = f_t(x) \cdot \left(1 + \frac{1}{3} \cdot \sigma_t \cdot \langle u_t, x - c g_t \rangle\right) \)
- Finer control over corruptions, as density changes proportionally to how close to \(c g_t \) a point \(x \) is (rather than constant update based on \(\sigma_t \)).
Efficient Algorithm for Symmetric Loss

Main Result

Polytime algorithm with \(\text{Regret} = O(C_1 + d \log T) \) for symmetric loss,
where \(C_1 = \sum_t |z_t| \).

Idea

Maintain “structured” \(f_t(\cdot) \), such that it always is a \textit{log-concave density}.

Query centroid of distribution: \(y_t = c g_t = \int x f_t(x)dx \).

Update: \(f_{t+1}(x) = f_t(x) \cdot \left(1 + \frac{1}{3} \cdot \sigma_t \cdot \langle u_t, x - c g_t \rangle\right) \)

Finer control over corruptions, as density changes proportionally to how close to \(c g_t \) a point \(x \) is (rather than constant update based on \(\sigma_t \)).
Corruption-robust contextual search algorithms with rates:

- ε-ball loss: $\text{Regret} = O(C_0 + d \log 1/\varepsilon)$
- symmetric loss: $\text{Regret} = O(C_1 + d \log T)$, where $C_1 = \sum_t |z_t|$ & polytime
- pricing loss: $\text{Regret} = O(C_0 d^3 \log^3 T)$
Main Result

Corruption-robust contextual search algorithms with rates:

- ϵ-ball loss: $\text{Regret} = O(C_0 + d \log 1/\epsilon)$
- Symmetric loss: $\text{Regret} = O(C_1 + d \log T)$, where $C_1 = \sum_t |z_t|$ & polytime
- Pricing loss: $\text{Regret} = O(C_0 d^3 \log^3 T)$

Open Questions
Main Result

Corruption-robust contextual search algorithms with rates:

- \(\varepsilon \)-ball loss: \(\text{Regret} = O(C_0 + d \log \frac{1}{\varepsilon}) \)
- symmetric loss: \(\text{Regret} = O(C_1 + d \log T) \), where \(C_1 = \sum_t |z_t| \) & polytime
- pricing loss: \(\text{Regret} = O(C_0 d^3 \log^3 T) \)

Open Questions

1. Variant of distribution-based algorithms for pricing loss.
Main Result

Corruption-robust contextual search algorithms with rates:

- ε-ball loss: $\text{Regret} = O(C_0 + d \log 1/\varepsilon)$
- Symmetric loss: $\text{Regret} = O(C_1 + d \log T)$, where $C_1 = \sum_t |z_t|$ & polytime
- Pricing loss: $\text{Regret} = O(C_0 d^3 \log^3 T)$

Open Questions

1. Variant of distribution-based algorithms for pricing loss.
2. Algorithms with $\text{Regret} = O(C_1 + d \log d)$ for symmetric loss.
Main Result

Corruption-robust contextual search algorithms with rates:

- \(\varepsilon \)-ball loss: \(\text{Regret} = O(C_0 + d \log 1/\varepsilon) \)
- symmetric loss: \(\text{Regret} = O(C_1 + d \log T) \), where \(C_1 = \sum_t |z_t| \) & polytime
- pricing loss: \(\text{Regret} = O(C_0 d^3 \log^3 T) \)

Open Questions

1. Variant of distribution-based algorithms for pricing loss.
2. Algorithms with \(\text{Regret} = O(C_1 + d \log d) \) for symmetric loss.
3. Polytime algorithm for \(\varepsilon \)-ball loss.
Corruption-robust contextual search algorithms with rates:

- ε–ball loss: $\text{Regret} = O(C_0 + d \log \frac{1}{\varepsilon})$
- Symmetric loss: $\text{Regret} = O(C_1 + d \log T)$, where $C_1 = \sum_t |z_t|$ & polytime
- Pricing loss: $\text{Regret} = O(C_0 d^3 \log^3 T)$

Open Questions

1. Variant of distribution-based algorithms for pricing loss.
2. Algorithms with $\text{Regret} = O(C_1 + d \log d)$ for symmetric loss.
3. Polytime algorithm for ε–ball loss.

Thank you!