# Contextual Inverse Optimization: Offline and Online Learning 

Omar Besbes, Yuri Fonseca and Ilan Lobel<br>Columbia, Columbia and NYU

Simons Institute, September 2022

## Contextual Inverse Optimization

- Standard data-driven decision processes framework:
- Given context, choose action, observe reward.
- In many settings, rewards cannot be observed.
- Is there other type of feedback that we can use to learn?


## Contextual Inverse Optimization

- Standard data-driven decision processes framework:
- Given context, choose action, observe reward.
- In many settings, rewards cannot be observed.
- Is there other type of feedback that we can use to learn?
- In this work we consider problems where the reward is not observed but we observe, after-the-fact, what you should have done.
- Contextual inverse optimization


## Contextual Inverse Optimization

- Standard data-driven decision processes framework:
- Given context, choose action, observe reward.
- In many settings, rewards cannot be observed.
- Is there other type of feedback that we can use to learn?
- In this work we consider problems where the reward is not observed but we observe, after-the-fact, what you should have done.
- Contextual inverse optimization
- Applications:
- Economics: learn from revealed preferences.
- Robotics: teach a robot or AV by demonstration.
- Medicine: learn from a doctor's decision-making.


## Problem Formulation

In every $t$, you would like to solve:

$$
\min _{x \in \mathcal{X}_{t}} f_{t}(x)^{\prime} c^{\star}
$$

We don't know $c^{\star}$, but we observe $\mathcal{X}_{t}, f_{t}(\cdot)$ and $x_{t}^{\star}$ (after period $t$ ):

$$
x_{t}^{\star} \in \underset{x \in \mathcal{X}_{t}}{\arg \min } f_{t}(x)^{\prime} c^{\star}
$$

## Problem Formulation

In every $t$, you would like to solve:

$$
\min _{x \in \mathcal{X}_{t}} f_{t}(x)^{\prime} c^{\star}
$$

We don't know $c^{\star}$, but we observe $\mathcal{X}_{t}, f_{t}(\cdot)$ and $x_{t}^{\star}$ (after period $t$ ):

$$
x_{t}^{\star} \in \underset{x \in \mathcal{X}_{t}}{\arg \min } f_{t}(x)^{\prime} c^{\star}
$$

Example: Learning from Revealed Preferences

$$
x_{t}^{\star}=\underset{x \in \mathcal{X}_{t}}{\arg \max } x^{\prime} Z_{t} c^{\star}: x^{\prime} p_{t} \leq b_{t}, \quad \mathcal{X}_{t}=\{0,1\}^{n_{t}}
$$

## Related Literature: Inverse Optimization

Estimate cost vector based on optimal action

- Ajuha and Orlin (OR 2001)

What if you have many data points?

- Esfahani, Shafieezadeh-Abadeh, Hanasuanto and Kuhn (MP 2018): closest to our offline model, stochastic framework
- Bärmann, Pokutta and Schneider (ICML 2017): closest to our online model, gradient descent approach


## Related Literature: Contextual Pricing and Search

Class of contextual bandit models where nature picks context adversarially and we choose action.

- Cohen, Lobel and Paes Leme (MS 2020): ellipsoid method
- Lobel, Paes Leme and Vladu (OR 2018): centroid and projection
- Paes Leme and Schneider (FOCS 2018): intrinstic volume
- Krishnamurthy, Lykouris, Podimata and Schapire (STOC 2021): irrational agents

We leverage ideas from this literature, but the problems are of a different nature (we have far less control on the feedback).

## Related Literature: Structured Prediction and Inverse Reinforcement Learning

Optimization-based structured prediction is similar to inverse optimization but focuses on a different metric (prediction error).

- Taskar, Chatalbashev, Koller and Guestrin (ICML 2005): SVM-style approach called maximum margin planning
- Ratliff, Bagnell and Zinkevich (ICML 2006): online version

If you assign linear functionals to features, this approach can be used to learn a reward function in reinforcement learning.

- Abbeel and Ng (ICML 2004): apprenticeship learning


## Main Results

Offline setting:

- We propose a geometric definition of data informativeness.
- Using this notion, we characterize the minimax regret.


## Main Results

Offline setting:

- We propose a geometric definition of data informativeness.
- Using this notion, we characterize the minimax regret.

Online setting:

- State-of-the-art: Bärmann et al. (ICML 2017) obtain $O(\sqrt{T})$ regret, assuming linear context functions.
- We obtain $O\left(d^{4} \ln T\right)$ regret, assuming Lipschitz context functions.


## Offline Setting: The Data

In the offline setting, we have $N$ observations, and for $i=1, \ldots, N$, we have:

- A set of feasible actions $\mathcal{X}_{i} \subset \mathbb{R}^{n}$
- A context function $f_{i}: \mathcal{X}_{i} \rightarrow \mathbb{R}^{d}$
- An optimal action $x_{i}^{\star} \in \mathcal{X}_{i}$
$x_{i}^{\star} \in \arg \min f_{i}(x)^{\prime} c^{\star} \quad$ for some unknown $c^{\star}$ $x \in \mathcal{X}_{i}$


## Offline Setting: The Data

In the offline setting, we have $N$ observations, and for $i=1, \ldots, N$, we have:

- A set of feasible actions $\mathcal{X}_{i} \subset \mathbb{R}^{n}$
- A context function $f_{i}: \mathcal{X}_{i} \rightarrow \mathbb{R}^{d}$
- An optimal action $x_{i}^{\star} \in \mathcal{X}_{i}$

$$
x_{i}^{\star} \in \underset{x \in \mathcal{X}_{i}}{\arg \min } f_{i}(x)^{\prime} c^{\star} \quad \text { for some unknown } c^{\star}
$$

Given the data $\mathcal{D}=\left(\mathcal{X}_{i}, f_{i}, x_{i}^{\star}\right)_{i=1, \ldots, N}$ and initial knowledge set $c^{\star} \in C_{0}$, the set of feasible cost vectors is:

$$
C(\mathcal{D})=\left\{c \in C_{0}: x_{i}^{\star} \in \underset{x \in \mathcal{X}_{i}}{\arg \min } f_{i}(x)^{\prime} c, i=1, \ldots, N\right\}
$$

## Policy and Objective

A policy $\pi \in \mathcal{P}$ is a mapping from ( $\mathcal{D}, \mathcal{X}, f$ ) to an action $x^{\pi} \in \mathcal{X}$
Our regret is given by:

$$
\mathcal{R}^{\pi}\left(c^{\star}, \mathcal{X}, f\right)=f\left(x^{\pi}\right)^{\prime} c^{\star}-f\left(x^{\star}\right)^{\prime} c^{\star}
$$

Our objective is to find $\pi \in \mathcal{P}$ that minimizes the worst-case regret:

$$
\mathrm{WCR}^{\pi}(\mathcal{D})=\sup _{c^{\star} \in \mathcal{C}(\mathcal{D}), \mathcal{X} \in \mathcal{B}, f \in \mathcal{F}} \mathcal{R}^{\pi}\left(c^{\star}, \mathcal{X}, f\right)
$$

- $\mathcal{B}$ : set of all measurable subsets of $\mathbb{R}^{n}$ with diameter at most 1
- $\mathcal{F}$ : set of all 1-Lipschitz continuous functions from $\mathbb{R}^{n}$ to $\mathbb{R}^{d}$


## Offline Learning in an Adversarial Setting

Without distributional assumptions, we can't make claims about the convergence of the minimax regret as $N$ grows.

- In a worst-case scenario $\left(\mathcal{X}_{i}\right.$ and $f_{i}$ are identical for all $\left.i=1, \ldots, N\right)$, we wouldn't learn anything from observations $2, \ldots, N$.


## Offline Learning in an Adversarial Setting

Without distributional assumptions, we can't make claims about the convergence of the minimax regret as $N$ grows.

- In a worst-case scenario $\left(\mathcal{X}_{i}\right.$ and $f_{i}$ are identical for all $\left.i=1, \ldots, N\right)$, we wouldn't learn anything from observations $2, \ldots, N$.

We need a bound that is strong if the data is informative.

## Offline Learning in an Adversarial Setting

Without distributional assumptions, we can't make claims about the convergence of the minimax regret as $N$ grows.

- In a worst-case scenario $\left(\mathcal{X}_{i}\right.$ and $f_{i}$ are identical for all $\left.i=1, \ldots, N\right)$, we wouldn't learn anything from observations $2, \ldots, N$.

We need a bound that is strong if the data is informative.

- What does it mean for the data to be informative?


## Offline Learning in an Adversarial Setting

Without distributional assumptions, we can't make claims about the convergence of the minimax regret as $N$ grows.

- In a worst-case scenario $\left(\mathcal{X}_{i}\right.$ and $f_{i}$ are identical for all $\left.i=1, \ldots, N\right)$, we wouldn't learn anything from observations $2, \ldots, N$.

We need a bound that is strong if the data is informative.

- What does it mean for the data to be informative?

We will build a geometric notion of what is an informative data set $\mathcal{D}$.

## Proxy Policies

We focus our attention on proxy policies, which are policies where we pick action $x^{\pi}$ according to a proxy cost vector $c^{\pi}$ :

$$
\mathcal{P}^{\prime}=\left\{\pi \in \mathcal{P}: x^{\pi} \in \underset{x \in \mathcal{X}}{\arg \min } f(x)^{\prime} c^{\pi}, \text { for some } c^{\pi} \in \mathbb{S}^{d}\right\}
$$

## Proxy Policies

We focus our attention on proxy policies, which are policies where we pick action $x^{\pi}$ according to a proxy cost vector $c^{\pi}$ :

$$
\mathcal{P}^{\prime}=\left\{\pi \in \mathcal{P}: x^{\pi} \in \underset{x \in \mathcal{X}}{\arg \min } f(x)^{\prime} c^{\pi}, \text { for some } c^{\pi} \in \mathbb{S}^{d}\right\}
$$

Given a proxy cost $c^{\pi}$ and a true cost $c^{\star}$, our loss is bounded by:

$$
\mathcal{L}\left(c^{\pi}, c^{\star}\right)=\sup \left\{f\left(x^{\pi}\right)^{\prime} c^{\star}-f\left(x^{\star}\right)^{\prime} c^{\star}: x^{\pi} \in \underset{x \in \mathcal{X}}{\arg \min } f(x)^{\prime} c^{\pi}, \mathcal{X} \in \mathcal{B}, f \in \mathcal{F}\right\}
$$

## Proxy Policies

We focus our attention on proxy policies, which are policies where we pick action $x^{\pi}$ according to a proxy cost vector $c^{\pi}$ :

$$
\mathcal{P}^{\prime}=\left\{\pi \in \mathcal{P}: x^{\pi} \in \underset{x \in \mathcal{X}}{\arg \min } f(x)^{\prime} c^{\pi}, \text { for some } c^{\pi} \in \mathbb{S}^{d}\right\}
$$

Given a proxy cost $c^{\pi}$ and a true $\operatorname{cost} c^{\star}$, our loss is bounded by:

$$
\mathcal{L}\left(c^{\pi}, c^{\star}\right)=\sup \left\{f\left(x^{\pi}\right)^{\prime} c^{\star}-f\left(x^{\star}\right)^{\prime} c^{\star}: x^{\pi} \in \underset{x \in \mathcal{X}}{\arg \min } f(x)^{\prime} c^{\pi}, \mathcal{X} \in \mathcal{B}, f \in \mathcal{F}\right\}
$$

For any data set $\mathcal{D}$ :

$$
\inf _{\pi \in \mathcal{P}^{\prime}} \mathrm{WCR}^{\pi}(\mathcal{D})=\inf _{\mathrm{c}^{\pi} \in \mathbb{S}^{d}} \sup _{\mathrm{c}^{\star} \in \mathrm{C}(\mathcal{D})} \mathcal{L}\left(\mathrm{c}^{\pi}, \mathrm{c}^{\star}\right)
$$

## The Loss of a Proxy Policy

## Lemma

Let $\theta$ be the angle between two vectors. For any $c^{\pi}, c^{\star} \in \mathbb{S}^{d}$ :

$$
\mathcal{L}\left(c^{\pi}, c^{\star}\right)= \begin{cases}\sin \theta\left(c^{\pi}, c^{\star}\right) & \text { if } \theta\left(c^{\pi}, c^{\star}\right) \leq \pi / 2 \\ 1 & \text { otherwise }\end{cases}
$$

## The Loss of a Proxy Policy

## Lemma

Let $\theta$ be the angle between two vectors. For any $c^{\pi}, c^{\star} \in \mathbb{S}^{d}$ :

$$
\mathcal{L}\left(c^{\pi}, c^{\star}\right)= \begin{cases}\sin \theta\left(c^{\pi}, c^{\star}\right) & \text { if } \theta\left(c^{\pi}, c^{\star}\right) \leq \pi / 2 \\ 1 & \text { otherwise }\end{cases}
$$

If the angle between the true cost $c^{\star}$ and the proxy cost $c^{\pi}$ is small, the regret must also be small.

## The Loss of a Proxy Policy

## Lemma

Let $\theta$ be the angle between two vectors. For any $c^{\pi}, c^{\star} \in \mathbb{S}^{d}$ :

$$
\mathcal{L}\left(c^{\pi}, c^{\star}\right)= \begin{cases}\sin \theta\left(c^{\pi}, c^{\star}\right) & \text { if } \theta\left(c^{\pi}, c^{\star}\right) \leq \pi / 2 \\ 1 & \text { otherwise }\end{cases}
$$

If the angle between the true cost $c^{\star}$ and the proxy cost $c^{\pi}$ is small, the regret must also be small.

We prove this lemma by showing that the problem of finding a worst-case loss is a semi-definite program.

## Uncertainty Angle and Circumcenter

## Definition

We define the uncertainty angle of a set $C$ to be:

$$
\alpha(C)=\inf _{\hat{c} \in \mathbb{S}^{d}} \sup _{c^{\star} \in C} \theta\left(\hat{c}, c^{\star}\right),
$$

## Uncertainty Angle and Circumcenter

## Definition

We define the uncertainty angle of a set $C$ to be:

$$
\alpha(C)=\inf _{\hat{c} \in \mathbb{S}^{d}} \sup _{c^{\star} \in C} \theta\left(\hat{c}, c^{\star}\right),
$$

## Lemma

The minimizer $\hat{c}$ exists and we call it the circumcenter of $C$.

## Uncertainty Angle and Circumcenter

## Definition

We define the uncertainty angle of a set $C$ to be:

$$
\alpha(C)=\inf _{\hat{c} \in \mathbb{S}^{d}} \sup _{c^{\star} \in C} \theta\left(\hat{c}, c^{\star}\right),
$$

## Lemma

The minimizer $\hat{c}$ exists and we call it the circumcenter of $C$.
The uncertainty angle and the circumcenter are the aperture and the axis of the smallest revolution cone containing $C$.


## The Circumcenter Policy

## Definition

We call the proxy policy that uses the circumcenter as the proxy cost the circumcenter policy.

## The Circumcenter Policy

## Definition

We call the proxy policy that uses the circumcenter as the proxy cost the circumcenter policy.

## Theorem

The optimal proxy policy is the circumcenter policy. It achieves:

$$
\inf _{\pi \in \mathcal{P}^{\prime}} \operatorname{WCR}^{\pi}(\mathcal{D})= \begin{cases}\sin \alpha(C(\mathcal{D})) & \text { if } \alpha(C(\mathcal{D})) \leq \pi / 2 \\ 1 & \text { otherwise }\end{cases}
$$

## The Circumcenter Policy

## Definition

We call the proxy policy that uses the circumcenter as the proxy cost the circumcenter policy.

## Theorem

The optimal proxy policy is the circumcenter policy. It achieves:

$$
\inf _{\pi \in \mathcal{P}^{\prime}} \operatorname{WCR}^{\pi}(\mathcal{D})= \begin{cases}\sin \alpha(C(\mathcal{D})) & \text { if } \alpha(C(\mathcal{D})) \leq \pi / 2 \\ 1 & \text { otherwise }\end{cases}
$$

- The uncertainty angle determines the worst-case regret.


## The Circumcenter Policy

## Definition

We call the proxy policy that uses the circumcenter as the proxy cost the circumcenter policy.

## Theorem

The optimal proxy policy is the circumcenter policy. It achieves:

$$
\inf _{\pi \in \mathcal{P}^{\prime}} \operatorname{WCR}^{\pi}(\mathcal{D})= \begin{cases}\sin \alpha(C(\mathcal{D})) & \text { if } \alpha(C(\mathcal{D})) \leq \pi / 2 \\ 1 & \text { otherwise }\end{cases}
$$

- The uncertainty angle determines the worst-case regret.
- Nontrivial bounds iff $\mathcal{D}$ implies feasible costs live in a pointed cone.


## Online Setting: The Data

In the online setting, at each period $t=1, \ldots, T$, we are given:

- A set of feasible actions $\mathcal{X}_{t} \subset \mathbb{R}^{n}$
- A context function $f_{t}: \mathcal{X}_{t} \rightarrow \mathbb{R}^{d}$


## Online Setting: The Data

In the online setting, at each period $t=1, \ldots, T$, we are given:

- A set of feasible actions $\mathcal{X}_{t} \subset \mathbb{R}^{n}$
- A context function $f_{t}: \mathcal{X}_{t} \rightarrow \mathbb{R}^{d}$

We then choose an action $x_{t}^{\pi} \in \mathcal{X}_{t}$

## Online Setting: The Data

In the online setting, at each period $t=1, \ldots, T$, we are given:

- A set of feasible actions $\mathcal{X}_{t} \subset \mathbb{R}^{n}$
- A context function $f_{t}: \mathcal{X}_{t} \rightarrow \mathbb{R}^{d}$

We then choose an action $x_{t}^{\pi} \in \mathcal{X}_{t}$
At the end of period $t$, we observe an optimal action $x_{t}^{\star} \in \mathcal{X}_{t}$

## Online Setting: The Data

In the online setting, at each period $t=1, \ldots, T$, we are given:

- A set of feasible actions $\mathcal{X}_{t} \subset \mathbb{R}^{n}$
- A context function $f_{t}: \mathcal{X}_{t} \rightarrow \mathbb{R}^{d}$

We then choose an action $x_{t}^{\pi} \in \mathcal{X}_{t}$
At the end of period $t$, we observe an optimal action $x_{t}^{\star} \in \mathcal{X}_{t}$ Our data at the start of period $t$ is given by

$$
\mathcal{I}_{t}=\left(\mathcal{X}_{i}, f_{i}, x_{i}^{\star}, x_{i}^{\pi}\right)_{i=1, \ldots, t-1} \cup\left(\mathcal{X}_{t}, f_{t}\right)
$$

## Online Setting: The Data

In the online setting, at each period $t=1, \ldots, T$, we are given:

- A set of feasible actions $\mathcal{X}_{t} \subset \mathbb{R}^{n}$
- A context function $f_{t}: \mathcal{X}_{t} \rightarrow \mathbb{R}^{d}$

We then choose an action $x_{t}^{\pi} \in \mathcal{X}_{t}$
At the end of period $t$, we observe an optimal action $x_{t}^{\star} \in \mathcal{X}_{t}$
Our data at the start of period $t$ is given by

$$
\mathcal{I}_{t}=\left(\mathcal{X}_{i}, f_{i}, x_{i}^{\star}, x_{i}^{\pi}\right)_{i=1, \ldots, t-1} \cup\left(\mathcal{X}_{t}, f_{t}\right)
$$

The set of cost vectors compatible with our data at period $t$ is:

$$
C\left(\mathcal{I}_{t}\right)=\left\{c \in C_{0}: x_{i}^{\star} \in \underset{x \in \mathcal{X}_{i}}{\arg \min } f_{i}(x)^{\prime} c, i=1, \ldots, t-1\right\}
$$

## Policy and Objective

A policy $\pi \in \mathcal{P}$ is a mapping from $\mathcal{I}_{t}$ to an action $x_{t}^{\pi} \in \mathcal{X}_{t}$

Our cumulative regret is given by:

$$
\mathcal{R}_{T}^{\pi}\left(c^{\star}, \overrightarrow{\mathcal{X}}, \vec{f}\right)=\sum_{t=1}^{T}\left(f_{t}\left(x_{t}^{\pi}\right)^{\prime} c^{\star}-f_{t}\left(x_{t}^{\star}\right)^{\prime} c^{\star}\right)
$$

Our objective is to find $\pi \in \mathcal{P}$ that minimizes the worst-case regret:

$$
\mathrm{WCR}^{\pi}\left(C_{0}\right)=\sup _{c^{\star} \in C_{0}, \overrightarrow{\mathcal{X}} \in \mathcal{B}^{T}, \vec{f} \in \mathcal{F}^{T}} \mathcal{R}^{\pi}\left(c^{\star}, \overrightarrow{\mathcal{X}}, \vec{f}\right)
$$

## The Decision-Maker Does Not Control the Feedback

In related problems (contextual pricing and contextual search), the decision-maker has some control over the feedback it gets.

## The Decision-Maker Does Not Control the Feedback

In related problems (contextual pricing and contextual search), the decision-maker has some control over the feedback it gets.

In our problem, the decision-maker has no direct control over the feedback.

## The Decision-Maker Does Not Control the Feedback

In related problems (contextual pricing and contextual search), the decision-maker has some control over the feedback it gets.

In our problem, the decision-maker has no direct control over the feedback.

- The actions $\left\{x_{t}^{\pi}\right\}$ do not appear in the information set:

$$
c^{\star} \in C\left(\mathcal{I}_{t}\right)=\left\{c \in C_{0}: x_{i}^{\star} \in \underset{x \in \mathcal{X}_{i}}{\arg \min } f_{i}(x)^{\prime} c, i=1, \ldots, t-1\right\}
$$

## The Decision-Maker Does Not Control the Feedback

In related problems (contextual pricing and contextual search), the decision-maker has some control over the feedback it gets.

In our problem, the decision-maker has no direct control over the feedback.

- The actions $\left\{x_{t}^{\pi}\right\}$ do not appear in the information set:

$$
c^{\star} \in C\left(\mathcal{I}_{t}\right)=\left\{c \in C_{0}: x_{i}^{\star} \in \underset{x \in \mathcal{X}_{i}}{\arg \min } f_{i}(x)^{\prime} c, i=1, \ldots, t-1\right\}
$$

- Perhaps we should ignore the dynamics and use a greedy policy.


## The Decision-Maker Does Not Control the Feedback

In related problems (contextual pricing and contextual search), the decision-maker has some control over the feedback it gets.

In our problem, the decision-maker has no direct control over the feedback.

- The actions $\left\{x_{t}^{\pi}\right\}$ do not appear in the information set:

$$
c^{\star} \in C\left(\mathcal{I}_{t}\right)=\left\{c \in C_{0}: x_{i}^{\star} \in \underset{x \in \mathcal{X}_{i}}{\arg \min } f_{i}(x)^{\prime} c, i=1, \ldots, t-1\right\}
$$

- Perhaps we should ignore the dynamics and use a greedy policy.
- Greedy $=$ circumcenter policy.


## The Circumcenter Policy Fails in the Online Setting

## Theorem

There exists a $C_{0}$ such that, if the decision-maker uses the circumcenter policy, nature can cause regret that is linear in $T$.

## The Circumcenter Policy Fails in the Online Setting

## Theorem

There exists a $C_{0}$ such that, if the decision-maker uses the circumcenter policy, nature can cause regret that is linear in $T$.

- Nature can construct instances where there the decision-maker simultaneously incurs large regret and learns essentially nothing.


## The Circumcenter Policy Fails in the Online Setting

## Theorem

There exists a $C_{0}$ such that, if the decision-maker uses the circumcenter policy, nature can cause regret that is linear in $T$.

- Nature can construct instances where there the decision-maker simultaneously incurs large regret and learns essentially nothing.



## Learning Nothing While Incurring Regret

- Feasible actions $\mathcal{X}=\left\{0, x_{1}\right\}$ and context function $f(x)=x$
- Proxy cost of $\hat{c}\left(C_{0}\right)$ implies $x_{1}$ is better
- With true cost $c^{\star}$, the actual optimal action is $x^{\star}=0$
- Regret is substantial: $x_{1}{ }^{\prime} c^{\star}$
- Feedback is marginal: $x_{1}{ }^{\prime} c^{\star} \geq x^{\star \prime} c^{\star}=0$



## What Control Do We Have?

Let us assume $f_{t}\left(x_{t}^{\star}\right) \neq f_{t}\left(x_{t}^{\pi}\right)$ (otherwise we don't incur regret)

## What Control Do We Have?

Let us assume $f_{t}\left(x_{t}^{\star}\right) \neq f_{t}\left(x_{t}^{\pi}\right)$ (otherwise we don't incur regret)
By the optimality of $x_{t}^{\star}: f_{t}\left(x_{t}^{\star}\right)^{\prime} c^{\star} \leq f_{t}\left(x_{t}^{\pi}\right)^{\prime} c^{\star}$

- That is, we can add constraint $\left(f_{t}\left(x_{t}^{\star}\right)-f_{t}\left(x_{t}^{\pi}\right)\right)^{\prime} c^{\star} \leq 0$ to $C\left(\mathcal{I}_{t+1}\right)$


## What Control Do We Have?

Let us assume $f_{t}\left(x_{t}^{\star}\right) \neq f_{t}\left(x_{t}^{\pi}\right)$ (otherwise we don't incur regret)
By the optimality of $x_{t}^{\star}: f_{t}\left(x_{t}^{\star}\right)^{\prime} c^{\star} \leq f_{t}\left(x_{t}^{\pi}\right)^{\prime} c^{\star}$

- That is, we can add constraint $\left(f_{t}\left(x_{t}^{\star}\right)-f_{t}\left(x_{t}^{\pi}\right)\right)^{\prime} c^{\star} \leq 0$ to $C\left(\mathcal{I}_{t+1}\right)$

We do have some control over the vector $\left(f_{t}\left(x_{t}^{\star}\right)-f_{t}\left(x_{t}^{\pi}\right)\right)$

## What Control Do We Have?

Let us assume $f_{t}\left(x_{t}^{\star}\right) \neq f_{t}\left(x_{t}^{\pi}\right)$ (otherwise we don't incur regret)
By the optimality of $x_{t}^{\star}: f_{t}\left(x_{t}^{\star}\right)^{\prime} c^{\star} \leq f_{t}\left(x_{t}^{\pi}\right)^{\prime} c^{\star}$

- That is, we can add constraint $\left(f_{t}\left(x_{t}^{\star}\right)-f_{t}\left(x_{t}^{\pi}\right)\right)^{\prime} c^{\star} \leq 0$ to $C\left(\mathcal{I}_{t+1}\right)$

We do have some control over the vector $\left(f_{t}\left(x_{t}^{\star}\right)-f_{t}\left(x_{t}^{\pi}\right)\right)$
By the optimality of $x_{t}^{\pi}: f_{t}\left(x_{t}^{\star}\right)^{\prime} c_{t}^{\pi} \geq f_{t}\left(x_{t}^{\pi}\right)^{\prime} c_{t}^{\pi}$

- $\left(f_{t}\left(x_{t}^{\star}\right)-f_{t}\left(x_{t}^{\pi}\right)\right)$ must satisfy $\left(f_{t}\left(x_{t}^{\star}\right)-f_{t}\left(x_{t}^{\pi}\right)\right)^{\prime} c_{t}^{\pi} \geq 0$


## What Control Do We Have?

Let us assume $f_{t}\left(x_{t}^{\star}\right) \neq f_{t}\left(x_{t}^{\pi}\right)$ (otherwise we don't incur regret)
By the optimality of $x_{t}^{\star}: f_{t}\left(x_{t}^{\star}\right)^{\prime} c^{\star} \leq f_{t}\left(x_{t}^{\pi}\right)^{\prime} c^{\star}$

- That is, we can add constraint $\left(f_{t}\left(x_{t}^{\star}\right)-f_{t}\left(x_{t}^{\pi}\right)\right)^{\prime} c^{\star} \leq 0$ to $C\left(\mathcal{I}_{t+1}\right)$

We do have some control over the vector $\left(f_{t}\left(x_{t}^{\star}\right)-f_{t}\left(x_{t}^{\pi}\right)\right)$
By the optimality of $x_{t}^{\pi}: f_{t}\left(x_{t}^{\star}\right)^{\prime} c_{t}^{\pi} \geq f_{t}\left(x_{t}^{\pi}\right)^{\prime} c_{t}^{\pi}$

- $\left(f_{t}\left(x_{t}^{\star}\right)-f_{t}\left(x_{t}^{\pi}\right)\right)$ must satisfy $\left(f_{t}\left(x_{t}^{\star}\right)-f_{t}\left(x_{t}^{\pi}\right)\right)^{\prime} c_{t}^{\pi} \geq 0$

The constraints $\left(f_{t}\left(x_{t}^{\star}\right)-f_{t}\left(x_{t}^{\pi}\right)\right)^{\prime} c^{\star} \leq 0$ and $\left(f_{t}\left(x_{t}^{\star}\right)-f_{t}\left(x_{t}^{\pi}\right)\right)^{\prime} c_{t}^{\pi} \geq 0$ jointly imply that either $c_{t}^{\pi} \notin C\left(\mathcal{I}_{t+1}\right)$ or $c_{t}^{\pi} \in \partial C\left(\mathcal{I}_{t+1}\right)$

## When We Don't Learn Much

For nature to cause regret in period $t$, it needs to either remove $c_{t}^{\pi}$ from $C\left(\mathcal{I}_{t}\right)$ or at least cut the knowledge set through it

## When We Don't Learn Much

For nature to cause regret in period $t$, it needs to either remove $c_{t}^{\pi}$ from $C\left(\mathcal{I}_{t}\right)$ or at least cut the knowledge set through it

- Nature is able to cause significant and little learning when the proxy cost is at or near the boundary of $C_{0}$.



## Inverse Exploration

We don't have any direct control over the information gain in our problem

## Inverse Exploration

We don't have any direct control over the information gain in our problem
To cause regret, nature needs to cut $c_{t}^{\pi}$ or move it to a boundary of $C\left(\mathcal{I}_{t+1}\right)$

## Inverse Exploration

We don't have any direct control over the information gain in our problem
To cause regret, nature needs to cut $c_{t}^{\pi}$ or move it to a boundary of $C\left(\mathcal{I}_{t+1}\right)$

If we choose $c_{t}^{\pi}$ that is away from all the boundaries of $C\left(\mathcal{I}_{t}\right)$, nature needs to at least cut through $c_{t}^{\pi}$, giving us a lot of information

## Inverse Exploration

We don't have any direct control over the information gain in our problem
To cause regret, nature needs to cut $c_{t}^{\pi}$ or move it to a boundary of $C\left(\mathcal{I}_{t+1}\right)$

If we choose $c_{t}^{\pi}$ that is away from all the boundaries of $C\left(\mathcal{I}_{t}\right)$, nature needs to at least cut through $c_{t}^{\pi}$, giving us a lot of information

We call this process of forcing nature to choose between causing regret and impeding learning inverse exploration

## The Circumcenter Trap

The circumcenter is the greedy policy (myopically optimal)

## The Circumcenter Trap

The circumcenter is the greedy policy (myopically optimal)
The knowledge set evolves by incorporating new halfspace cuts

## The Circumcenter Trap

The circumcenter is the greedy policy (myopically optimal)
The knowledge set evolves by incorporating new halfspace cuts
But the circumcenter of a polyhedral cone can easily lie on its boundary

## The Circumcenter Trap

The circumcenter is the greedy policy (myopically optimal)
The knowledge set evolves by incorporating new halfspace cuts
But the circumcenter of a polyhedral cone can easily lie on its boundary
Once the circumcenter falls on the boundary, the circumcenter is trapped

## The Circumcenter Trap

The circumcenter is the greedy policy (myopically optimal)
The knowledge set evolves by incorporating new halfspace cuts
But the circumcenter of a polyhedral cone can easily lie on its boundary
Once the circumcenter falls on the boundary, the circumcenter is trapped We will solve this problem by regularizing the knowledge set.

## The Circumcenter Trap

The circumcenter is the greedy policy (myopically optimal)
The knowledge set evolves by incorporating new halfspace cuts
But the circumcenter of a polyhedral cone can easily lie on its boundary
Once the circumcenter falls on the boundary, the circumcenter is trapped We will solve this problem by regularizing the knowledge set.

- We will replace the knowledge sets by supersets that contain them


## The Circumcenter Trap

The circumcenter is the greedy policy (myopically optimal)
The knowledge set evolves by incorporating new halfspace cuts
But the circumcenter of a polyhedral cone can easily lie on its boundary
Once the circumcenter falls on the boundary, the circumcenter is trapped We will solve this problem by regularizing the knowledge set.

- We will replace the knowledge sets by supersets that contain them
- We will use ellipsoidal cones, which avoid this intertemporal tradeoff


## The Circumcenter Trap

The circumcenter is the greedy policy (myopically optimal)
The knowledge set evolves by incorporating new halfspace cuts
But the circumcenter of a polyhedral cone can easily lie on its boundary Once the circumcenter falls on the boundary, the circumcenter is trapped We will solve this problem by regularizing the knowledge set.

- We will replace the knowledge sets by supersets that contain them
- We will use ellipsoidal cones, which avoid this intertemporal tradeoff
- Ellipsoidal cone: circumcenter = axis (farthest point from all borders)


## The EllipsoidalCones Algorithm

EllipsoidalCones is a first step towards our final algorithm

## The EllipsoidalCones Algorithm

EllipsoidalCones is a first step towards our final algorithm

- Choose $c_{t}^{\pi}$ as the circumcenter of $E_{t}$


## The EllipsoidalCones Algorithm

EllipsoidalCones is a first step towards our final algorithm

- Choose $c_{t}^{\pi}$ as the circumcenter of $E_{t}$
- Choose action $x_{t}^{\pi} \in \arg \min _{x \in \mathcal{X}_{t}} f_{t}(x)^{\prime} c_{t}^{\pi}$


## The EllipsoidalCones Algorithm

EllipsoidalCones is a first step towards our final algorithm

- Choose $c_{t}^{\pi}$ as the circumcenter of $E_{t}$
- Choose action $x_{t}^{\pi} \in \arg \min _{x \in \mathcal{X}_{t}} f_{t}(x)^{\prime} c_{t}^{\pi}$
- Collect feedback $x_{t}^{\star}$ and compute $\delta_{t}^{\pi}=f_{t}\left(x_{t}^{\pi}\right)-f_{t}\left(x_{t}^{\star}\right)$


## The EllipsoidalCones Algorithm

EllipsoidalCones is a first step towards our final algorithm

- Choose $c_{t}^{\pi}$ as the circumcenter of $E_{t}$
- Choose action $x_{t}^{\pi} \in \arg \min _{x \in \mathcal{X}_{t}} f_{t}(x)^{\prime} c_{t}^{\pi}$
- Collect feedback $x_{t}^{\star}$ and compute $\delta_{t}^{\pi}=f_{t}\left(x_{t}^{\pi}\right)-f_{t}\left(x_{t}^{\star}\right)$
- Update the ellipsoidal cone if $\delta_{t}^{\pi}$ is "informative in a new direction"


## The EllipsoidalCones Algorithm

EllipsoidalCones is a first step towards our final algorithm

- Choose $c_{t}^{\pi}$ as the circumcenter of $E_{t}$
- Choose action $x_{t}^{\pi} \in \arg \min _{x \in \mathcal{X}_{t}} f_{t}(x)^{\prime} c_{t}^{\pi}$
- Collect feedback $x_{t}^{\star}$ and compute $\delta_{t}^{\pi}=f_{t}\left(x_{t}^{\pi}\right)-f_{t}\left(x_{t}^{\star}\right)$
- Update the ellipsoidal cone if $\delta_{t}^{\pi}$ is "informative in a new direction"

Types of periods:

- No update: we incur low regret


## The EllipsoidalCones Algorithm

EllipsoidalCones is a first step towards our final algorithm

- Choose $c_{t}^{\pi}$ as the circumcenter of $E_{t}$
- Choose action $x_{t}^{\pi} \in \arg \min _{x \in \mathcal{X}_{t}} f_{t}(x)^{\prime} c_{t}^{\pi}$
- Collect feedback $x_{t}^{\star}$ and compute $\delta_{t}^{\pi}=f_{t}\left(x_{t}^{\pi}\right)-f_{t}\left(x_{t}^{\star}\right)$
- Update the ellipsoidal cone if $\delta_{t}^{\pi}$ is "informative in a new direction"

Types of periods:

- No update: we incur low regret
- Cone update: we gain valuable information about $c^{\star}$


## Why Periods Without Updates?

$$
H=\left\{c \in \mathbb{R}^{d}: c^{\prime} e_{1}=1\right\}
$$

## $\Pi_{H}\left(\delta_{t}^{\pi}\right)$

## Why Periods Without Updates?

$$
H=\left\{c \in \mathbb{R}^{d}: c^{\prime} e_{1}=1\right\}
$$

$$
\text { (1,a) } \frac{\Pi_{H}\left(\delta_{t}^{\pi}\right)}{(1)}
$$

The ellipsoid method runs the risk of making the ellipsoid ill-conditioned (long and skinny). No-update periods prevent that from happening.

## Ellipsoid Method for Ellipsoidal Cones

- The variation of the ellipsoid method we developed for cones is novel
- It required finding the best-fit new ellipsoidal cone after an update



## Performance of EllipsoidalCones

## Theorem

Consider any $C_{0}$ with $\alpha\left(C_{0}\right)<\pi / 2$. Then, EllipsoidalCones incurs regret:

$$
\operatorname{WCR}\left(C_{0}\right)=\mathcal{O}\left(d^{2} \ln \left(T \tan \alpha\left(C_{0}\right)\right)\right)
$$

## Performance of EllipsoidalCones

## Theorem

Consider any $C_{0}$ with $\alpha\left(C_{0}\right)<\pi / 2$. Then, EllipsoidalCones incurs regret:

$$
\operatorname{WCR}\left(C_{0}\right)=\mathcal{O}\left(d^{2} \ln \left(T \tan \alpha\left(C_{0}\right)\right)\right)
$$

First $\ln (T)$ regret bound for this problem.

## Performance of EllipsoidalCones

## Theorem

Consider any $C_{0}$ with $\alpha\left(C_{0}\right)<\pi / 2$. Then, EllipsoidalCones incurs regret:

$$
\operatorname{WCR}\left(C_{0}\right)=\mathcal{O}\left(d^{2} \ln \left(T \tan \alpha\left(C_{0}\right)\right)\right)
$$

First $\ln (T)$ regret bound for this problem.
Requires that $C_{0}$ live inside a pointed cone.

## Performance of EllipsoidalCones

## Theorem

Consider any $C_{0}$ with $\alpha\left(C_{0}\right)<\pi / 2$. Then, EllipsoidalCones incurs regret:

$$
\operatorname{WCR}\left(C_{0}\right)=\mathcal{O}\left(d^{2} \ln \left(T \tan \alpha\left(C_{0}\right)\right)\right) .
$$

First $\ln (T)$ regret bound for this problem.
Requires that $C_{0}$ live inside a pointed cone.

- Can we relax this assumption?


## What If we Started From a Nonpointed Set?

If $d=1$ or 2 , we reach a pointed set after 2 periods where $f_{t}\left(x_{t}^{\pi}\right) \neq f_{t}\left(x_{t}^{\star}\right)$

## What If we Started From a Nonpointed Set?

If $d=1$ or 2 , we reach a pointed set after 2 periods where $f_{t}\left(x_{t}^{\pi}\right) \neq f_{t}\left(x_{t}^{\star}\right)$
If $d \geq 3$, nature can stop the knowledge set from becoming pointed

## What If we Started From a Nonpointed Set?

If $d=1$ or 2 , we reach a pointed set after 2 periods where $f_{t}\left(x_{t}^{\pi}\right) \neq f_{t}\left(x_{t}^{\star}\right)$
If $d \geq 3$, nature can stop the knowledge set from becoming pointed
This occurs if natures avoids 1 or more dimensions


$$
C\left(\mathcal{I}_{t}\right)
$$

## Ignoring Unused Dimensions

If nature decides not to use a dimension, we don't incur regret from it

## Ignoring Unused Dimensions

If nature decides not to use a dimension, we don't incur regret from it We can safely ignore such dimensions until nature decides to use them


## Ignoring Unused Dimensions

If nature decides not to use a dimension, we don't incur regret from it We can safely ignore such dimensions until nature decides to use them


We do this by keeping track of subspace $\Delta_{t}$ where the projection of $C\left(\mathcal{I}_{t}\right)$ onto $\Delta_{t}$ lives inside a pointed cone

## Ignoring Unused Dimensions

If nature decides not to use a dimension, we don't incur regret from it We can safely ignore such dimensions until nature decides to use them


We do this by keeping track of subspace $\Delta_{t}$ where the projection of $C\left(\mathcal{I}_{t}\right)$ onto $\Delta_{t}$ lives inside a pointed cone

We ignore all information we have about costs orthogonal to $\Delta_{t}$

## The ProjectedCones Algorithm

- As long as we collect $\delta_{t}^{\pi}$ close enough to the subspace $\Delta_{t}$, we proceed with a robustified version of the EllipsoidalCones


## The ProjectedCones Algorithm

- As long as we collect $\delta_{t}^{\pi}$ close enough to the subspace $\Delta_{t}$, we proceed with a robustified version of the EllipsoidalCones
- Otherwise we update $\Delta_{t+1}$ (increase the dimension) and fit a new cone


## The ProjectedCones Algorithm

- As long as we collect $\delta_{t}^{\pi}$ close enough to the subspace $\Delta_{t}$, we proceed with a robustified version of the EllipsoidalCones
- Otherwise we update $\Delta_{t+1}$ (increase the dimension) and fit a new cone

Types of periods:

## The ProjectedCones Algorithm

- As long as we collect $\delta_{t}^{\pi}$ close enough to the subspace $\Delta_{t}$, we proceed with a robustified version of the EllipsoidalCones
- Otherwise we update $\Delta_{t+1}$ (increase the dimension) and fit a new cone

Types of periods:

- No update: Low regret


## The ProjectedCones Algorithm

- As long as we collect $\delta_{t}^{\pi}$ close enough to the subspace $\Delta_{t}$, we proceed with a robustified version of the EllipsoidalCones
- Otherwise we update $\Delta_{t+1}$ (increase the dimension) and fit a new cone

Types of periods:

- No update: Low regret
- Cone update: Sufficient learning within the subspace


## The ProjectedCones Algorithm

- As long as we collect $\delta_{t}^{\pi}$ close enough to the subspace $\Delta_{t}$, we proceed with a robustified version of the EllipsoidalCones
- Otherwise we update $\Delta_{t+1}$ (increase the dimension) and fit a new cone

Types of periods:

- No update: Low regret
- Cone update: Sufficient learning within the subspace
- Dimension update: Construct a pointed cone in a higher dimension


## The Dimension Update

By performing a dimension update only if $\delta_{t}^{\pi}$ is sufficiently far from $\Delta_{t}$, we obtain a higher-dimensional knowledge set that fits inside a pointed cone.


## The Dimension Update

By performing a dimension update only if $\delta_{t}^{\pi}$ is sufficiently far from $\Delta_{t}$, we obtain a higher-dimensional knowledge set that fits inside a pointed cone.


There is a tradeoff in how to set the minimum gap from $\Delta_{t}$ for an update.

## The Dimension Update

By performing a dimension update only if $\delta_{t}^{\pi}$ is sufficiently far from $\Delta_{t}$, we obtain a higher-dimensional knowledge set that fits inside a pointed cone.


There is a tradeoff in how to set the minimum gap from $\Delta_{t}$ for an update.

- A bigger gap improves subspace updates (more pointed cone)


## The Dimension Update

By performing a dimension update only if $\delta_{t}^{\pi}$ is sufficiently far from $\Delta_{t}$, we obtain a higher-dimensional knowledge set that fits inside a pointed cone.


There is a tradeoff in how to set the minimum gap from $\Delta_{t}$ for an update.

- A bigger gap improves subspace updates (more pointed cone)
- A smaller gap improves cone updates (less robustness needed)


## Performance of ProjectedCones

## Theorem

For any $C_{0}$, ProjectedCones incurs regret:

$$
\operatorname{WCR}\left(C_{0}\right)=\mathcal{O}\left(d^{4} \ln T\right)
$$

## Summary of Online Learning Results

The circumcenter policy (optimal for offline) is a greedy policy.

## Summary of Online Learning Results

The circumcenter policy (optimal for offline) is a greedy policy.

- We need a policy that forces nature to explore (inverse exploration).


## Summary of Online Learning Results

The circumcenter policy (optimal for offline) is a greedy policy.

- We need a policy that forces nature to explore (inverse exploration).

We can make circumcenter work by making several adaptations:

## Summary of Online Learning Results

The circumcenter policy (optimal for offline) is a greedy policy.

- We need a policy that forces nature to explore (inverse exploration).

We can make circumcenter work by making several adaptations:

- Replace polyhedral sets (bad for learning) with ellipsoidal cones.


## Summary of Online Learning Results

The circumcenter policy (optimal for offline) is a greedy policy.

- We need a policy that forces nature to explore (inverse exploration).

We can make circumcenter work by making several adaptations:

- Replace polyhedral sets (bad for learning) with ellipsoidal cones.
- Adapt ellipsoid method to work with ellipsodial cones.


## Summary of Online Learning Results

The circumcenter policy (optimal for offline) is a greedy policy.

- We need a policy that forces nature to explore (inverse exploration).

We can make circumcenter work by making several adaptations:

- Replace polyhedral sets (bad for learning) with ellipsoidal cones.
- Adapt ellipsoid method to work with ellipsodial cones.
- Skip knowledge set updates on low-regret periods.


## Summary of Online Learning Results

The circumcenter policy (optimal for offline) is a greedy policy.

- We need a policy that forces nature to explore (inverse exploration).

We can make circumcenter work by making several adaptations:

- Replace polyhedral sets (bad for learning) with ellipsoidal cones.
- Adapt ellipsoid method to work with ellipsodial cones.
- Skip knowledge set updates on low-regret periods.
- Maintain subspace where knowledge set projection is pointed.


## Summary of Online Learning Results

The circumcenter policy (optimal for offline) is a greedy policy.

- We need a policy that forces nature to explore (inverse exploration).

We can make circumcenter work by making several adaptations:

- Replace polyhedral sets (bad for learning) with ellipsoidal cones.
- Adapt ellipsoid method to work with ellipsodial cones.
- Skip knowledge set updates on low-regret periods.
- Maintain subspace where knowledge set projection is pointed.

First logarithmic regret bound for this class of models.

## Takeaways

Feedback from optimal actions:

- Rich class of problems at the frontier of OR and ML


## Takeaways

Feedback from optimal actions:

- Rich class of problems at the frontier of OR and ML
- This kind of feedback arises in a wide class of domains


## Takeaways

Feedback from optimal actions:

- Rich class of problems at the frontier of OR and ML
- This kind of feedback arises in a wide class of domains
- Gives rise to a novel family of algorithms


## Takeaways

Feedback from optimal actions:

- Rich class of problems at the frontier of OR and ML
- This kind of feedback arises in a wide class of domains
- Gives rise to a novel family of algorithms
- Imitation learning is quite different from statistical learning: inverse exploration vs. classical exploration-exploitation

