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Contextual Inverse Optimization

▶ Standard data-driven decision processes framework:

▶ Given context, choose action, observe reward.

▶ In many settings, rewards cannot be observed.
▶ Is there other type of feedback that we can use to learn?

▶ In this work we consider problems where the reward is not observed
but we observe, after-the-fact, what you should have done.
▶ Contextual inverse optimization

▶ Applications:
▶ Economics: learn from revealed preferences.
▶ Robotics: teach a robot or AV by demonstration.
▶ Medicine: learn from a doctor’s decision-making.
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Problem Formulation

In every t, you would like to solve:

min
x∈Xt

ft(x)
′c⋆

We don’t know c⋆, but we observe Xt , ft(·) and x⋆t (after period t):

x⋆t ∈ argmin
x∈Xt

ft(x)
′c⋆

Example: Learning from Revealed Preferences

x⋆t = argmax
x∈Xt

x ′Ztc
⋆ : x ′pt ≤ bt , Xt = {0, 1}nt
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Related Literature: Inverse Optimization

Estimate cost vector based on optimal action

▶ Ajuha and Orlin (OR 2001)

What if you have many data points?

▶ Esfahani, Shafieezadeh-Abadeh, Hanasuanto and Kuhn (MP 2018):
closest to our offline model, stochastic framework

▶ Bärmann, Pokutta and Schneider (ICML 2017): closest to our online
model, gradient descent approach
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Related Literature: Contextual Pricing and Search

Class of contextual bandit models where nature picks context adversarially
and we choose action.

▶ Cohen, Lobel and Paes Leme (MS 2020): ellipsoid method

▶ Lobel, Paes Leme and Vladu (OR 2018): centroid and projection

▶ Paes Leme and Schneider (FOCS 2018): intrinstic volume

▶ Krishnamurthy, Lykouris, Podimata and Schapire (STOC 2021):
irrational agents

We leverage ideas from this literature, but the problems are of a different
nature (we have far less control on the feedback).
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Related Literature: Structured Prediction
and Inverse Reinforcement Learning

Optimization-based structured prediction is similar to inverse optimization
but focuses on a different metric (prediction error).

▶ Taskar, Chatalbashev, Koller and Guestrin (ICML 2005): SVM-style
approach called maximum margin planning

▶ Ratliff, Bagnell and Zinkevich (ICML 2006): online version

If you assign linear functionals to features, this approach can be used to
learn a reward function in reinforcement learning.

▶ Abbeel and Ng (ICML 2004): apprenticeship learning
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Main Results

Offline setting:

▶ We propose a geometric definition of data informativeness.

▶ Using this notion, we characterize the minimax regret.

Online setting:

▶ State-of-the-art: Bärmann et al. (ICML 2017) obtain O(
√
T ) regret,

assuming linear context functions.

▶ We obtain O(d4 lnT ) regret, assuming Lipschitz context functions.
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▶ State-of-the-art: Bärmann et al. (ICML 2017) obtain O(
√
T ) regret,

assuming linear context functions.

▶ We obtain O(d4 lnT ) regret, assuming Lipschitz context functions.



8/34

Offline Setting: The Data

In the offline setting, we have N observations, and for i = 1, ...,N, we have:

▶ A set of feasible actions Xi ⊂ Rn

▶ A context function fi : Xi → Rd

▶ An optimal action x⋆i ∈ Xi

x⋆i ∈ argmin
x∈Xi

fi (x)
′c⋆ for some unknown c⋆

Given the data D = (Xi , fi , x
⋆
i )i=1,...,N and initial knowledge set c⋆ ∈ C0,

the set of feasible cost vectors is:

C (D) =

{
c ∈ C0 : x

⋆
i ∈ argmin

x∈Xi

fi (x)
′c, i = 1, ...,N

}
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Policy and Objective

A policy π ∈ P is a mapping from (D,X , f ) to an action xπ ∈ X

Our regret is given by:

Rπ (c⋆,X , f ) = f (xπ)′c⋆ − f (x⋆)′c⋆

Our objective is to find π ∈ P that minimizes the worst-case regret:

WCRπ(D) = sup
c⋆∈C(D), X∈B, f ∈F

Rπ (c⋆,X , f )

▶ B: set of all measurable subsets of Rn with diameter at most 1

▶ F : set of all 1-Lipschitz continuous functions from Rn to Rd
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Offline Learning in an Adversarial Setting

Without distributional assumptions, we can’t make claims about the
convergence of the minimax regret as N grows.

▶ In a worst-case scenario (Xi and fi are identical for all i = 1, ...,N), we
wouldn’t learn anything from observations 2, ...,N.

We need a bound that is strong if the data is informative.

▶ What does it mean for the data to be informative?

We will build a geometric notion of what is an informative data set D.
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Proxy Policies

We focus our attention on proxy policies, which are policies where we pick
action xπ according to a proxy cost vector cπ:

P ′ =
{
π ∈ P : xπ ∈ argmin

x∈X
f (x)′cπ, for some cπ ∈ Sd

}

Given a proxy cost cπ and a true cost c⋆, our loss is bounded by:

L(cπ, c⋆) = sup

{
f (xπ)′c⋆ − f (x⋆)′c⋆ : xπ ∈ argmin

x∈X
f (x)′cπ,X ∈ B, f ∈ F

}
For any data set D:

inf
π∈P ′

WCRπ(D) = inf
cπ∈Sd

sup
c⋆∈C(D)

L(cπ, c⋆)
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The Loss of a Proxy Policy

Lemma

Let θ be the angle between two vectors. For any cπ, c⋆ ∈ Sd :

L(cπ, c⋆) =

{
sin θ(cπ, c⋆) if θ(cπ, c⋆) ≤ π/2

1 otherwise

If the angle between the true cost c⋆ and the proxy cost cπ is small, the
regret must also be small.

We prove this lemma by showing that the problem of finding a worst-case
loss is a semi-definite program.
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Uncertainty Angle and Circumcenter

Definition

We define the uncertainty angle of a set C to be:

α(C ) = inf
ĉ∈Sd

sup
c⋆∈C

θ(ĉ , c⋆),

Lemma

The minimizer ĉ exists and we call it the circumcenter of C .

The uncertainty angle and the circumcenter are the aperture and the axis of
the smallest revolution cone containing C .
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The Circumcenter Policy

Definition

We call the proxy policy that uses the circumcenter as the proxy cost the
circumcenter policy.

Theorem

The optimal proxy policy is the circumcenter policy. It achieves:

inf
π∈P ′

WCRπ(D) =

{
sinα(C (D)) if α(C (D)) ≤ π/2

1 otherwise

▶ The uncertainty angle determines the worst-case regret.

▶ Nontrivial bounds iff D implies feasible costs live in a pointed cone.
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Online Setting: The Data

In the online setting, at each period t = 1, ...,T , we are given:

▶ A set of feasible actions Xt ⊂ Rn

▶ A context function ft : Xt → Rd

We then choose an action xπt ∈ Xt

At the end of period t, we observe an optimal action x⋆t ∈ Xt

Our data at the start of period t is given by

It = (Xi , fi , x
⋆
i , x

π
i )i=1,...,t−1 ∪ (Xt , ft)

The set of cost vectors compatible with our data at period t is:

C (It) =

{
c ∈ C0 : x

⋆
i ∈ argmin

x∈Xi

fi (x)
′c , i = 1, ..., t − 1

}
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Policy and Objective

A policy π ∈ P is a mapping from It to an action xπt ∈ Xt

Our cumulative regret is given by:

Rπ
T

(
c⋆, X⃗ , f⃗

)
=

T∑
t=1

(
ft(x

π
t )

′c⋆ − ft(x
⋆
t )

′c⋆
)

Our objective is to find π ∈ P that minimizes the worst-case regret:

WCRπ(C0) = sup
c⋆∈C0, X⃗∈BT , f⃗ ∈FT

Rπ
(
c⋆, X⃗ , f⃗

)
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The Decision-Maker Does Not Control the Feedback

In related problems (contextual pricing and contextual search), the
decision-maker has some control over the feedback it gets.

In our problem, the decision-maker has no direct control over the feedback.

▶ The actions {xπt } do not appear in the information set:

c⋆ ∈ C (It) =

{
c ∈ C0 : x

⋆
i ∈ argmin

x∈Xi

fi (x)
′c , i = 1, ..., t − 1

}

▶ Perhaps we should ignore the dynamics and use a greedy policy.

▶ Greedy = circumcenter policy.
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The Circumcenter Policy Fails in the Online Setting

Theorem

There exists a C0 such that, if the decision-maker uses the circumcenter
policy, nature can cause regret that is linear in T .

▶ Nature can construct instances where there the decision-maker
simultaneously incurs large regret and learns essentially nothing.
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Learning Nothing While Incurring Regret

▶ Feasible actions X = {0, x1} and context function f (x) = x

▶ Proxy cost of ĉ(C0) implies x1 is better

▶ With true cost c⋆, the actual optimal action is x⋆ = 0

▶ Regret is substantial: x1
′c⋆

▶ Feedback is marginal: x1
′c⋆ ≥ x⋆′c⋆ = 0
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What Control Do We Have?

Let us assume ft(x
⋆
t ) ̸= ft(x

π
t ) (otherwise we don’t incur regret)

By the optimality of x⋆t : ft(x
⋆
t )

′c⋆ ≤ ft(x
π
t )

′c⋆

▶ That is, we can add constraint (ft(x
⋆
t )− ft(x

π
t ))

′c⋆ ≤ 0 to C (It+1)

We do have some control over the vector (ft(x
⋆
t )− ft(x

π
t ))

By the optimality of xπt : ft(x
⋆
t )

′cπt ≥ ft(x
π
t )

′cπt
▶ (ft(x

⋆
t )− ft(x

π
t )) must satisfy (ft(x

⋆
t )− ft(x

π
t ))

′cπt ≥ 0

The constraints (ft(x
⋆
t )− ft(x

π
t ))

′c⋆ ≤ 0 and (ft(x
⋆
t )− ft(x

π
t ))

′cπt ≥ 0
jointly imply that either cπt /∈ C (It+1) or c

π
t ∈ ∂C (It+1)
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When We Don’t Learn Much

For nature to cause regret in period t, it needs to either remove cπt from
C (It) or at least cut the knowledge set through it

▶ Nature is able to cause significant and little learning when the proxy
cost is at or near the boundary of C0.
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Inverse Exploration

We don’t have any direct control over the information gain in our problem

To cause regret, nature needs to cut cπt or move it to a boundary of
C (It+1)

If we choose cπt that is away from all the boundaries of C (It), nature needs
to at least cut through cπt , giving us a lot of information

We call this process of forcing nature to choose between causing regret and
impeding learning inverse exploration
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The Circumcenter Trap

The circumcenter is the greedy policy (myopically optimal)

The knowledge set evolves by incorporating new halfspace cuts

But the circumcenter of a polyhedral cone can easily lie on its boundary

Once the circumcenter falls on the boundary, the circumcenter is trapped

We will solve this problem by regularizing the knowledge set.

▶ We will replace the knowledge sets by supersets that contain them

▶ We will use ellipsoidal cones, which avoid this intertemporal tradeoff

▶ Ellipsoidal cone: circumcenter = axis (farthest point from all borders)
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The EllipsoidalCones Algorithm

EllipsoidalCones is a first step towards our final algorithm

▶ Choose cπt as the circumcenter of Et

▶ Choose action xπt ∈ argminx∈Xt
ft(x)

′cπt

▶ Collect feedback x⋆t and compute δπt = ft(x
π
t )− ft(x

⋆
t )

▶ Update the ellipsoidal cone if δπt is “informative in a new direction”

Types of periods:

▶ No update: we incur low regret

▶ Cone update: we gain valuable information about c⋆
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Why Periods Without Updates?

The ellipsoid method runs the risk of making the ellipsoid ill-conditioned
(long and skinny). No-update periods prevent that from happening.
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Ellipsoid Method for Ellipsoidal Cones

▶ The variation of the ellipsoid method we developed for cones is novel

▶ It required finding the best-fit new ellipsoidal cone after an update
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Performance of EllipsoidalCones

Theorem

Consider any C0 with α(C0) < π/2. Then, EllipsoidalCones incurs
regret:

WCR(C0) = O
(
d2 ln(T tanα(C0))

)
.

First ln(T ) regret bound for this problem.

Requires that C0 live inside a pointed cone.

▶ Can we relax this assumption?
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What If we Started From a Nonpointed Set?

If d = 1 or 2, we reach a pointed set after 2 periods where ft(x
π
t ) ̸= ft(x

⋆
t )

If d ≥ 3, nature can stop the knowledge set from becoming pointed

This occurs if natures avoids 1 or more dimensions
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Ignoring Unused Dimensions

If nature decides not to use a dimension, we don’t incur regret from it

We can safely ignore such dimensions until nature decides to use them

We do this by keeping track of subspace ∆t where the projection of C (It)
onto ∆t lives inside a pointed cone

We ignore all information we have about costs orthogonal to ∆t
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The ProjectedCones Algorithm

▶ As long as we collect δπt close enough to the subspace ∆t , we
proceed with a robustified version of the EllipsoidalCones

▶ Otherwise we update ∆t+1 (increase the dimension) and fit a new cone

Types of periods:

▶ No update: Low regret

▶ Cone update: Sufficient learning within the subspace

▶ Dimension update: Construct a pointed cone in a higher dimension
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The Dimension Update

By performing a dimension update only if δπt is sufficiently far from ∆t , we
obtain a higher-dimensional knowledge set that fits inside a pointed cone.

There is a tradeoff in how to set the minimum gap from ∆t for an update.

▶ A bigger gap improves subspace updates (more pointed cone)

▶ A smaller gap improves cone updates (less robustness needed)
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Performance of ProjectedCones

Theorem

For any C0, ProjectedCones incurs regret:

WCR(C0) = O
(
d4 lnT

)
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Summary of Online Learning Results

The circumcenter policy (optimal for offline) is a greedy policy.

▶ We need a policy that forces nature to explore (inverse exploration).

We can make circumcenter work by making several adaptations:

▶ Replace polyhedral sets (bad for learning) with ellipsoidal cones.

▶ Adapt ellipsoid method to work with ellipsodial cones.

▶ Skip knowledge set updates on low-regret periods.

▶ Maintain subspace where knowledge set projection is pointed.

First logarithmic regret bound for this class of models.
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Takeaways

Feedback from optimal actions:

▶ Rich class of problems at the frontier of OR and ML

▶ This kind of feedback arises in a wide class of domains

▶ Gives rise to a novel family of algorithms

▶ Imitation learning is quite different from statistical learning:

inverse exploration vs. classical exploration-exploitation
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