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Introduction

how should an agent acquire information over time given

limited resources, and

access to multiple kinds of information?

examples:

mayor wants to learn the COVID incidence rate in city,
allocates limited number of tests across neighborhoods

news reader wants to learn the unknown cost of a proposed
policy, allocates time across different (biased) news sources
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This Talk

model of the dynamic information acquisition problem

main result: optimal information acquisition strategy can be
exactly characterized and has an easily describable structure

tractability of the model lends itself to application

characterization can be used to derive new results in three
settings motivated by particular economic questions



Model



Underlying Unknowns

unknown attributes (θ1, . . . , θK ) ∼ N (µ,Σ)

e.g. each “attribute” is the COVID incidence rate in a specific
neighborhood

attributes may be correlated

learn about θi by observing diffusion process X t
i (more soon)

payoff-relevant state: ω =
K∑

k=1

αkθk

e.g. aggregate COVID incidence rate in city

assume weights αk are known
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Attention Allocation

at each t ∈ R+, allocate budget of resources across attributes:

choose (βt1, . . . , β
t
K ) subject to βt1 + · · ·+ βtK = 1

diffusion processes evolve as

dX t
i = βti · θi · dt +

√
βti · dBt

i

where Bi are independent standard Brownian motions.

more resources ⇒ more precise information

discrete-time analogue: at each time t ∈ Z+, choose attention
vector (β1(t), . . . , βK (t)) summing to 1, and observe

θi +N
(

0,
1

βi (t)

)
for each i = 1, . . . ,K
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Decision Problem

observe complete path of each process

at each time t the history is
{
X≤ti

}K

i=1
information acquisition strategy S : map from histories into
an attention vector
stopping rule τ : map from history into decision of whether to
stop sampling

at endogenously chosen end time τ , take action a ∈ A and
receive u(a, ω, τ)



Related Literature

not a multi-armed bandit problem (Gittins, 1979)

but related to “best-arm identification” when K = 2 (Bubeck
et al. (‘09); Russo (‘16))

Frazier et al. (‘08) show that the myopic “knowledge gradient
policy” is optimal for two arms with independent payoffs

−→ we consider many correlated unknowns that are aggregated to a

one-dimensional payoff-relevant state

dynamic learning from fixed set of signals:

Fudenberg et al. (’18), Che and Mierendorff (’19); Mayskaya (’19);
Gossner et al. (’20); Azevedo et al. (’20)
−→ we allow many signals with flexible correlation

Callender (’11); Garfargnini and Strulovici (’16); Bardhi (’20)
−→ we have a finite number of attributes and noisy observations
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Main Results:

Characterization of the Optimal
Information Acquisition Strategy

Thm 1: result for K = 2

Thm 2: result for K > 2



Case of K = 2

two attributes(
θ1
θ2

)
∼ N

((
µ1
µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))

payoff-relevant state is ω = α1θ1 + α2θ2, where each αi > 0

define covi := Cov(ω, θi ) = αiΣii + αjΣji for each i = 1, 2

Assumption (“Attributes are Not Too Negatively Correlated”)

cov1 + cov2 = α1Σ11 + α2Σ12 + α1Σ21 + α2Σ22 ≥ 0

sufficient conditions:

α1 = α2 Σ12 = Σ21 ≥ 0 Σ11 = Σ22
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Optimal Attention Allocation Strategy

Theorem

Wlog let cov1 ≥ cov2. Define

t1 =
cov1 − cov2
α2 det(Σ)

.

The optimal attention strategy has two stages:

1 At times t ≤ t1, DM allocates all attention to attribute 1.

2 At times t > t1, DM allocates attention in the constant
fraction

(βt1, β
t
2) =

(
α1

α1 + α2
,

α2

α1 + α2

)
.
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Example 1: Independent Attributes

(
θ1
θ2

)
∼ N

((
µ1
µ2

)
,

(
6 0
0 1

))

payoff-relevant state is θ1 + θ2

then optimally:

phase 1: put all attention on learning about θ1

at time t = 5/6, posterior covariance matrix is

(
1 0
0 1

)
after, split attention equally



Example 2: Correlated Attributes

(
θ1
θ2

)
∼ N

((
µ1
µ2

)
,

(
6 2
2 1

))

payoff-relevant state is θ1 + θ2

then optimally:

phase 1: put all attention on learning about θ1

at t = 5/2, posterior covariance is

(
3/8 1/8
1/8 3/8

)
after, split attention equally



K > 2 Attributes

Three different sufficient conditions (only need one):

Assumption 1: (Perpetual Substitutes.) Σ−1 has negative
off-diagonal entries.

the partial correlation between any pair of attributes (controlling for all

other attributes) is positive

Assumption 2: (Perpetual Complements.) Σ has negative
off-diagonal entries and Cov(θi , ω) ≥ 0 for each attribute i .

prior covariances are mildly negative

Assumption 3: (Diagonal Dominance.) Σ−1 is

diagonally-dominant: [Σ−1]ii ≥
∑
j 6=i

|[Σ−1]ij | ∀ i .

covariance matrix is not too far from identity
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Optimal Information Acquisition Strategy

Theorem

Under any of the preceding assumptions, there exist times

0 = t0 < t1 < · · · < tm = +∞

and nested sets

∅ ( B1 ( · · · ( Bm = {1, . . . ,K},

such that an optimal information acquisition strategy is described by a
deterministic path of attention allocations.

At each stage [tk−1, tk):

the optimal attention level is constant

and supported on the sources in Bk .

At the final stage, attention is proportional to the weight vector α.

full path can be computed from α and Σ (see paper)
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Properties of the Solution

The optimal attention allocation strategy is:

history-independent (can map out full path from t = 0)

independent of the stopping rule

don’t have to solve for stopping rule and information
acquisition strategy jointly

robust across decision problems



Explanation of Results



Static Problem

Testing Center 1 Testing Center 2

Testing Center 3

incidence rate ✓1 incidence rate ✓2

incidence rate ✓3

one-time budget of t total tests

posterior variance of ! can be written as a function V (q1, q2, q3)

static problem: choose q1, q2, q3 2 R+ to minimize V (q1, q2, q3)
subject to q1 + q2 + q3  t
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Testing Center 1 Testing Center 2

Testing Center 3

incidence rate ✓1 incidence rate ✓2

incidence rate ✓3

one-time budget of t total tests

optimally allocate q⇤1(t) tests optimally allocate q⇤2(t) tests

optimally allocate q⇤3(t) tests

posterior variance of ! can be written as a function V (q1, q2, q3)
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Exogenous End Time T = 100

Testing Center 1 Testing Center 2

Testing Center 3

incidence rate ✓1 incidence rate ✓2

incidence rate ✓3

100 total tests

100 tests 0 tests

0 tests



Exogenous End Time T = 101

Testing Center 1 Testing Center 2

Testing Center 3

incidence rate ✓1 incidence rate ✓2

incidence rate ✓3

101 total tests

1 test 50 tests

50 tests



Exogenous End Time T = 101

Testing Center 1 Testing Center 2

Testing Center 3

incidence rate ✓1 incidence rate ✓2

incidence rate ✓3

101 total tests

1 test 50 tests

50 tests

DM faces intertemporal tradeo↵s: must choose between better information for
a decision at time t = 100 versus t = 101



Key Idea: Uniformly Optimal Strategies

Iff q∗(t) is increasing in in each of its coordinates, possible to
achieve q∗(t) at every t along a single sampling strategy

Call such a strategy uniformly optimal.
minimizes posterior variance at every moment
lemma: best for all decision problems

Our different sufficient conditions on the prior guarantee that
q∗(t) is increasing in t
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When Does a Uniformly Optimal Strategy Exist?

When is q∗(t) increasing in t?

Analogy with a classic consumer demand theory problem:

Utility function U(q1, . . . , qK ) over consumption of qk units of
each of K goods
Let D(p,w) denote consumer’s demand subject to budget
constraint p · q ≤ w .
Demand is normal if each coordinate of D(p,w) increases
with income w .

Let U = −V , p = (1, 1, . . . , 1)′, and w = t. Then normality
of demand is equivalent to monotonicity of q∗(t).

Our condition “Perpetual Complementarity” is directly related
to a sufficient condition for normality of demand.

We exploit properties of U = −V to derive the others.
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Structure of Uniformly Optimal Strategies

The attention allocations βt under the uniformly optimal
strategy are simply the time derivatives of q∗(t).

i.e. “greedy” optimization

At each stage, agent optimally divides attention among the set
of attributes with highest marginal value for learning about ω.

At each stage, the mixture maintains equivalence of marginal
values of those attributes, but reduces it.

Eventually, some other attribute has the same marginal value
and the agent expands his observation set to include it. Etc.
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Application of Characterization

Can apply characterizations to derive new results in settings
motivated by particular economic questions.

We illustrate this with three applications, where we use our
main results to:

tractably introduce correlation in settings that have been
previously studied under strong assumptions of independence.

derive results about other economic behaviors.



Summary of Application 1: Binary Choice

DM learns about unknown payoffs (v1, v2) ∼ N (µ,Σ) of two
goods before making a choice.

Set θ1 = v1, θ2 = −v2, ω = θ1 + θ2 and observe that one of
the sufficient conditions for K = 2 is met (α1 = α2).

So our main result yields the optimal information acquisition
strategy.

Use this to generalize a result from Fudenberg et al. (‘18)
regarding the relationship between choice speed and accuracy.



Summary of Application 2: Attention Manipulation

Gossner et al. (‘21) study the dynamic implications of attention
manipulation in a model with goods with independent payoffs.

Diverting attention towards a specific good leads to

persistently higher cumulative attention devoted to that good
persistently lower cumulative attention to every other good

We derive a complementary result in our setting, focusing on the
role of correlation:

Gossner et al. (‘21)’s qualitative conclusion can in general fail
with correlation
But extends under the “Perpetual Substitutes” condition
identified earlier



Summary of Application 3: Biased News Sources

Stylized game between a liberal and a conservative news source

Report on a common unknown (e.g., the fiscal cost of a policy
proposal), but reporting is biased in opposite directions.

Sources choose the size of their bias and the precision of their
reporting, and compete over readers’ attention.

Apply our result to characterize equilibrium news provision in this
model.

Find that higher intrinsic incentives for bias not only lead to greater
polarization in equilibrium, but also lead to less precise reporting.



Conclusion

Information acquisition is a classic problem within economics, but
relatively few dynamic models are simultaneously rich and tractable.

We present a class of dynamic information acquisition problems
whose solution can be explicitly characterized in closed form.

Key restrictions:

Gaussian uncertainty
a one-dimensional payoff-relevant state
correlation across the unknowns that satisfies certain
assumptions (e.g., if correlation is not too strong)

Can accommodate generality in other aspects of the problem (e.g.,
the decision problem and the agent’s time preferences)

The tractability of the solution and the flexibility of the environment
open the door to interesting applications.



Thank You!


