Offline-to-Online Transformation via Blackwell Approachability

Negin Golrezaei, Sloan School of Management, MIT

Data-Driven Decision Processes Boot Camp, August 2022

The talk is mainly based on the following paper:

"Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization" with Rad Niazadeh, Joshua Wang, Fransisca Susan, and Ashwinkumar Badanidiyuru,

preliminary conference version: **ACM EC 2021** full journal version: **Management Science (forthcoming)**

Applications in Modern Marketplaces

- Shared economies
- Ridesharing

Food delivery

Internet advertising

Cloud platforms

Google Cloud

real-time interactions

with users

Future uncertainty (real-time aspect)

Time-varying environments (dynamic aspect)

Economical Goals

Computational complexity

(combinatorial aspect)

High-level Goal: decision making by learning and optimization in online marketplaces, despite these challenges

Some Examples (and there are more)

Assortment planning: What items to offer to customers to maximize market share?

Product ranking: How to display products on online platforms?

Reserve price optimization: How to set reserve prices in auctions run to sell adviews?

Challenges Marketplaces Face

- 1) Future uncertainty: Needs to <u>learn</u> the best course of action
- 2) Time-varying environments: The underlying environments keep changing
- 3) Computational complexity: exponentially many options to try

Assortment planning	Product ranking	Reserve price optimization				
Demand is uncertain and time-varying	Customers' search behaviors are uncertain and time-varying	Advertisers' values are uncertain and time-varying				
Number of assortments to try is exponentially large	Number of rankings to try is exponentially large	Number of reserve prices to try is exponentially large				
NP hard (maximizing	NP hard (maximizing	NP hard [Roughgarden and				
suk Running example in this talk:						
Assortment planning to maximize market share						

Assortment Planning: Maximizing Market Share

- There are n products
- Our goal is to choose set S with $|S| \leq K$ that maximizes market share
- $f(S) = \sum_{i \in S} \text{Prob}(i \text{ is purchased } | S)$ is the <u>market share</u> (demand) under set $S: f(\cdot)$ is a monotone <u>submodular</u> function
- Offline problem: We want to find $S^* = \operatorname{argmax}_{|S| \le K} f(S)$ NP hard
- Online learning problem:
 - In every round $t \in [T]$, there is an <u>unknown</u> demand function $f_t(\cdot)$
 - Choose set S_t
 - Full information: observe $f_t(\cdot)$
 - Bandit: observe $f_t(S_t)$
 - Benchmark= in-hindsight optimal $OPT = \max_{S:|S| \le K} \sum_{t} f_t(S)$

From Offline Optimization to Online Learning

- Occasionally, even the offline optimization problem is NP-hard
 - We have access to approximation algorithms; greedy, LP relaxation & rounding, primal-dual, etc.
- Their performance guarantees only hold in the offline regime
- What about the online regime, with repeated interactions?

Agenda: developing generic tools to transform a large class of approximation algorithms used in marketplaces to their online variants, with almost no performance loss (over time)

We "mimic" the structure of offline approximation algorithm using Blackwell approachability

This Work: Iterative Greedy Algorithms

Assortment planningGreedy

Product ranking

Greedy ✓

Reserve price optimization

Greedy ✓

A large class of problems in market design and revenue management admit greedy-type algorithms for their offline problem (with theoretical guarantees).

Greedy Algorithm for Assortment Planning Problem

Greedy is (1-1/e)-approximation for maximizing monotone submodular functions subject to cardinality [Nemhauser et al., 1987]

Initialize $S^{(0)} = \{\}$ For subproblem i = 1 to K:

Greedily pick $z_i \in [n]$ such that $z_i \leftarrow argmax_{j \in [n]} \{f(S^{(i-1)} \cup \{j\}) - f(S^{(i-1)})\}$ Set $S^{(i)} \leftarrow S^{(i-1)} \cup \{z_i\}$ End
Return $S^{(K)}$ Choose a product with the

Choose a product with the maximum marginal market share $\Delta f(S^{(i-1)}, j)$

Research Question: Can we transform offline iterative greedy algorithms in a computationally efficient fashion to online algorithms with sublinear approximate regret?

Approximate regret = regret bound with respect to γ times the best inhindsight benchmark, where $\gamma \in [0,1]$ is the approximation factor of greedy

$$\gamma$$
 -Regret= $\gamma \max_{S:|S| \le K} \sum_{t} f_t(S) - \sum_{t \in [T]} f_t(S_t)$

Power of Framework

- Identifying simple generic conditions under which such a transformation exists
- Showing a large class of problems admit iterative greedy algorithms satisfying these conditions

Two Natural/General Conditions

I. Robustness of greedy to local errors:

Small mistakes at each subproblem of greedy only harm the objective as much as the mistake; no error amplification

II. Blackwell Locality:

Each subproblem of the greedy algorithm can be cast as a <u>Blackwell game</u>

David Blackwell (1919-2010)

Blackwell Games

Repeated Blackwell game: Repeated two-player (P1 and P2) zero-sum game with vector-valued biaffine payoff

> Round T Round t

P1 plays
$$x_t$$
 P1 obtains $payoff(x_t, y_t)$ P2 plays y_t P2 obtains $-payoff(x_t, y_t)$ P2 plays y_T P1 obtains $payoff(x_T, y_T)$ P2 plays y_T P2 obtains $-payoff(x_T, y_T)$

P1 plays
$$x_T$$
 P1 obtains $payoff(x_T, y_T)$ P2 plays y_T P2 obtains $-payoff(x_T, y_T)$

P1 wants to approach a convex S and P2 does not want this to happen

$$d_{\infty}\left(\frac{1}{T}\sum_{t=1}^{T} \operatorname{payoff}(\mathbf{x}_{t}, \mathbf{y}_{t}), S\right) = o(1)$$

If set S is "approachable" in a single-shot Blackwell game, in the repeated game, P1 can approach it using Blackwell algorithm AlgB

High-level Idea

Blackwell Locality: We cast each subproblem *i* as a Blackwell game

- With biaffine payoff vector and approachable target convex set S
- With the help of AlgB, we can generate a sequence of actions that are "almost locally best on average over time"

Robustness to local errors: Errors across subproblems don't get amplified

Online problem (round t)

Subproblem 1 is handled by **Blackwell** Algorithm $AlgB_1$

Subproblem i is handled by **Blackwell** Algorithm $AlgB_i$

Subproblem K is handled by Blackwell Algorithm $AlgB_K$

Two Natural/General Conditions

Assortment planning

Greedy ✓

Robustness

Product ranking

Greedy ✓

Robustness

Blackwell locality **√**

Reserve price optimization

Greedy ✓

Robustness ✓

Blackwell locality

Contributions and Main Results

- Designing an efficient framework to transform offline iterative greedy algorithms to low-regret adversarial online learning algorithms via Blackwell approachability
 - Vanishing approximate regret
 - $O(\sqrt{T})$ for full information and $O(T^{2/3})$ for bandit information
 - <u>Two conditions</u>: robustness to local errors and Blackwell locality

Wide-range of apps in operations & markets

Contributions and Main Results

• Our framework has a wide-range of applications

		Online Full-Information Setting		Online Bandit Setting	
Applications	γ	Our γ-Regret Bound	The Best Prior Bound	Our γ-Regret Bound	The Best Prior Bound
Product Ranking	1/2	$O(n\sqrt{T\log n})$	-	$O(n^{5/3}T^{2/3}(\log n)^{1/3})$	-
Reserve Price Optimization	1/2	$O(n\sqrt{T\log T})$	$O(n\sqrt{T\log T})^*$	$O(n^{3/5}T^{4/5}(\log nT)^{1/3})$	-
Non-Monotone Set SM	1/2	$O(n\sqrt{T})$	$O(n\sqrt{T})^{\ddagger}$	$O(nT^{2/3})$	-
Non-Monotone Strong-DR SM	1/2	$O(n\sqrt{T\log T})$	$\gamma = 1/4,$ $O(T^{5/6})^{\S}$	$O\left(nT^{4/5}(\log T)^{1/3}\right)$	$\gamma = \frac{1}{4}, O(T^{11/12})^{\S}$
Non-Monotone Weak-DR SM	1/2	$O(n\sqrt{T\log T})$	-	$O\left(nT^{4/5}(\log T)^{1/3}\right)$	-
Monotone Cont. SM (Strong-DR) in Downward Closed Convex Set	1- 1/e	$O(\sqrt{Tn\log(n)})$	$O(\sqrt{T})^{\;\$}$	$O\left(nT^{5/6}(\log n)^{1/6}\right)$	$O(nT^{8/9})^{@}$

 \sqrt{T} dependency

Discrete: $T^{\frac{2}{3}}$ dependency

*Roughgarden and Wang, 2019; *Roughgarden and Wang, 2018; *Thang and Srivastav, 2019; *Chen et al 2018; *@ Zhang et al 2020

Related Work

Offline-to-online transformation for NP-hard combinatorial problems

Offline-to-online transformation

- Hazan and Koren, 2016 negative results for general comb. problems
- Kalai and Vempala, 2005, Dudik et al., 2017 learner can solve offline problem efficiently
- Kakade et al., 2009 NP-hard problem amenable to approximation, linear rewards

Combinatorial learning

- Audibert et al., 2014 exponentially weighted avg. forecaster for full-info setting, tight regret, linear rewards
- Bubeck et al., 2012, Hazan and Karnin, 2016 efficient algorithm for the bandit setting, **linear rewards**

Our contribution

- NP-hard problems with non-linear rewards
- Both bandit and full-information settings
- Transform offline greedy algorithms to online

What is each subproblem i makes a sequence of actions that are (almost) locally best, but on an average sense over time?

This can be done under Blackwell locality condition!

 $1 \qquad \qquad 2$

Revisiting the Greedy Algorithm

Greedy chooses product z_i that maximizes marginal market share $\Delta f(S^{(i-1)}, \cdot)$

$$\mathsf{Payoff}(\mathbf{z_i}, S^{(i-1)}, \Delta f) = \begin{pmatrix} \Delta f\big(S^{(i-1)}, \mathbf{z_i}\big) - \Delta f\big(S^{(i-1)}, \mathbf{1}\big) \\ \Delta f\big(S^{(i-1)}, \mathbf{z_i}\big) - \Delta f\big(S^{(i-1)}, \mathbf{2}\big) \\ \vdots \\ \Delta f\big(S^{(i-1)}, \mathbf{z_i}\big) - \Delta f\big(S^{(i-1)}, \mathbf{n}\big) \end{pmatrix} \geq \mathbf{0}$$

Issue: <u>vector</u> payoff is not linear in the greedy's decisions **z**_i!

 $\Delta f(S, j) = f(S \cup \{j\}) - f(S)$ marginal market share of adding product j to set S

Revisiting the Greedy Algorithm

 $\sum_{j\in[n]} \theta_{i,j} \Delta f(S^{(i-1)},j)$ is the expected value of marginal market share at the greedy solution θ_i

Blackwell Locality: Casting Subproblems as Blackwell Games

- P1 is algorithm that returns θ_i
- P2 is the nature (ADV) that chooses $\Delta f(S^{(i-1)},...)$
- Per period payoff vector is <u>biaffine</u>

$$\mathsf{Payoff}(\boldsymbol{\theta_i}, S^{(i-1)}, \Delta f) = \begin{pmatrix} \sum_{j \in [n]} \boldsymbol{\theta_{i,j}} \Delta f(S^{(i-1)}, j) - \Delta f(S^{(i-1)}, 1) \\ \sum_{j \in [n]} \boldsymbol{\theta_{i,j}} \Delta f(S^{(i-1)}, j) - \Delta f(S^{(i-1)}, 2) \\ \vdots \\ \sum_{j \in [n]} \boldsymbol{\theta_{i,j}} \Delta f(S^{(i-1)}, j) - \Delta f(S^{(i-1)}, n) \end{pmatrix} \geq \mathbf{0}$$

• Target set S is the positive orthant Payoff $\left(\theta_i, S^{(i-1)}, \Delta f\right) \geq \mathbf{0}$ and is approachable

High-level Idea

Blackwell Locality: We cast each subproblem *i* as a Blackwell game

- With biaffine payoff vector and approachable target convex set S
- With the help of AlgB, we can generate a sequence of actions that are "almost locally best on average over time"

Robustness to local errors: Errors across subproblems don't get amplified

Online problem (round t) Subproblem 1 is handled by Blackwell Algorithm $AlgB_1$ Subproblem i is handled by Blackwell Algorithm $AlgB_i$

Subproblem K is handled by Blackwell Algorithm $AlgB_K$

Full Information

Theorem 1 (Full-information offline-to-online transformation) Suppose that an offline algorithm is

- robust to local errors, and
- Blackwell local.

Then, in the full information setting, there exists an online algorithm that runs in polynomial time and satisfies:

$$\gamma - \text{regret} \le O\left(KT^{1/2}\right)$$

where K is the number of subproblems.

Blackwell local:

- 1) Defining bi-affine vector payoff for each subproblem
- 2) Defining an approachable target set for each subproblem

Product Ranking and Reserve Price Optimization

Product ranking

Reserve price optimization

Negative Cumulative γ —Regret (Doing much better than our theoretical results)

Takeaway

- Transform offline greedy algorithms to online ones using Blackwell approachability
 - Need the greedy algorithm to be robust to local errors and Blackwell local
- For full information setting, our algorithm has $O(\sqrt{T}) \gamma$ —regret
- For Bandit setting, our algorithm has $O(T^{2/3}) \gamma$ —regret
- Our framework is flexible and can be applied to many applications
 - Product ranking optimization in online platforms
 - Reserve price optimization in auctions
 - Submodular maximization

Link to the paper: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3613756

Email: golrezae@mit.edu