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Applications in Modern Marketplaces
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High-level Goal: decision making by learning

Learning &
Optimization

Future uncertainty
(real-time aspect)

Time-varying
environments
(dynamic aspect)

Computational
complexity

and optimization in online marketplaces,
despite these challenges
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Some Examples (and there are more)

Retail Assortment Planning
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Assortment planning: What Product ranking: How to Reserve price optimization:
items to offer to customers  display products on online  How to set reserve prices in
to maximize market share? platforms? auctions run to sell ad-

views?




Challenges Marketplaces Face

1) Future uncertainty: Needs to learn the best course of action

2) Time-varying environments: The underlying environments keep changing

3) Computational complexity: exponentially many options to try

Assortment planning Product ranking Reserve price optimization
Demand is uncertain and Customers’ search Advertisers’ values are
time-varying behaviors are uncertain | uncertain and time-varying

and time-varying

Number of assortments to try | Number of rankings to Number of reserve prices to try

is exponentially large try is exponentially is exponentially large
large

NP hard (maximizing NP hard (maximizing NP hard [Roughgarden and

suk

— Assortment planning to maximize market share




Assortment Planning: Maximizing Market Share

There are n products
Our goal is to choose set S with |S| < K that maximizes market share

f(S) = ).;es Prob(iis purchased |S) is the market share (demand) under set

S: f(+) is a monotone submodular function

Offline problem: we want to find S* = argmax|sj<xf(S) NP hard
Online learning problem:

* Inevery round t€ [T], there is an unknown demand function f;()

* Choose set S;

* Full information: observe f;(+)

 Bandit: observe f;(S;)

* Benchmark=in-hindsight optimal OPT = Sr%:l;lz%tht(S)



From Offline Optimization to Online Learning

® Occasionally, even the offline optimization problem is NP-hard
* We have access to approximation algorithms; greedy, LP
relaxation & rounding, primal-dual, etc.

® Their performance guarantees only hold in the offline regime

® What about the online regime, with repeated interactions?

Agenda: developing generic tools to transform a large class of
approximation algorithms used in marketplaces to their online
variants, with almost no performance loss (over time)

We “mimic” the structure of offline approximation algorithm
using Blackwell approachability



This Work: Iterative Greedy Algorithms

DExpecia

Retail Assortment Planning
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planning optimization
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A large class of problems in market design and revenue management
admit greedy-type algorithms for their offline problem (with
theoretical guarantees).



Greedy Algorithm for Assortment Planning
Problem

is (1-1/e)-approximation for maximizing monotone submodular functions
subject to cardinality [Nemhauser et al., 1987]
[ Subproblem 1 }

Initialize S(© = {} ¥
For subproblemi = 1to K: .

Greedily pick z; € [n] such that

T R O s P
[ JE[N] )
Set S® « =Dy {2} l _
End ‘ Find best local

Return S Choose a product with the . move
maximum marginal market [

share Af(s(i—l),j) Subproblem K }




Research Question: Can we transform offline iterative greedy
algorithms in a computationally efficient fashion to online
algorithms with sublinear approximate regret?

Approximate regret = regret bound with respect to y times the best in-
hindsight benchmark, where y € [0,1] is the approximation factor of greedy

Y —Regret= VS%?SXK 2t [t (8) — Zeerr [t (St)
Power of Framework

* |dentifying simple generic conditions under which
such a transformation exists

* Showing a large class of problems admit iterative
greedy algorithms satisfying these conditions
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Two Natural/General Conditions

I. Robustness of greedy to local errors:
Small mistakes at each subproblem of greedy only harm the objective as
much as the mistake; no error amplification

II. Blackwell Locality:
Each subproblem of the greedy algorithm can be cast as a Blackwell game

r(z,y)

David Blackwell
(1919-2010) |
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Blackwell Games

Repeated Blackwell game: Repeated two-player (P1 and P2) zero-sum

game with vector-valued biaffine payoff

Round t

Round T

P1 plays x;
P2 plays y;

P1 obtains payoff(x,, v;)
P2 obtains —payoff(x,,v;)

P1 plays xr
P2 plays yr

P1 obtains payoff(x;, v7)
P2 obtains —payoff(xr, vr)

P1 wants to approach a convex S and P2 does not want this to happen

T
1
de (;2 payoff(x¢, y¢) , S ) =0(1)
t=1

If set S is “approachable” in a single-shot Blackwell game, in the
repeated game, P1 can approach it using Blackwell algorithm AlgB
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High-level Idea

Blackwell Locality: We cast each
subproblem i as a Blackwell game
o With biaffine payoff vector and
approachable target convex set S
o With the help of AlgB, we can
generate a sequence of actions that
are “almost locally best on average
over time”

Robustness to local errors: Errors across
subproblems don’t get amplified

Online problem (round t)

|

Subproblem 1 is handled by
Blackwell Algorithm AlgB,

|

4

|

Subproblem i is handled by
Blackwell Algorithm AlgB;

|

U

|

Subproblem K is handled by
Blackwell Algorithm AlgBg

|
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Two Natural/General Conditions

Retail Assortment Planning
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Robustness v/ Robustness ¢ Robustness ¢

Blackwell locality v’ Blackwell locality ¥  Blackwell locality v/
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Contributions and Main Results

* Designing an efficient framework to transform offline iterative
greedy algorithms to low-regret adversarial online learning
algorithms via Blackwell approachability

* Vanishing approximate regret

. 0(\/7 ) for full information and O(TZ/ 3) for bandit information

* Two conditions: robustness to local errors and Blackwell locality

* Wide-range of apps in operations & markets



Contributions and Main Results

* Our framework has a wide-range of applications

Online Full-Information Setting Online Bandit Setting
N Our y-Regret The Best Prior ) The Best Prior
Applications y Bound Bound Our y-Regret Bound Bound
Product Ranking 1/2 O(n‘/Tlogn) - 0(n5/3T2/3 (logn)1/3 ) -
Reserve Price x 3/574/5 1/3 -
Optimization 1/2 | 0(nTlogT ) | 0(nTlogT) 0(n3/5T*/>(lognT)/3)
Non-M t Set
on 0:|3| one Se 1/2 O(n\/Y_") O(n\/ﬂ* 0(nT2/3) -
Non-Monotone y =1/4, 1
Strong-DR SM 1/2 | 0(n{TlogT) 0(T5/6)s 0(nT*/>(log T)/3) Y =1 O (T11/12)s
Non-Monotone
Weak-DR SM 1/2 | 0(n\/TlogT) - 0(nT*/>(log T)*/?) -
Monotone Cont. SM 1- @
(Strong-DR) in Downward O(y/Tn log(n)) O(\/T) $ 0(nT°%/°(logn)/® 0(nT?8/°
1/ g g
Closed Convex Set e

VT dependency

2
Discrete: T3 dependency

"Roughgarden and Wang, 2019; *Roughgarden and Wang, 2018; $Thang and
Srivastav, 2019; °Chen et al 2018; @ Zhang et al 2020



Related Work

Offline-to-online transformation for NP-hard combinatorial problems

Offline-to-online
transformation

Combinatorial
learning

Our contribution

Hazan and Koren, 2016 — negative results for general
comb. problems

Kalai and Vempala, 2005, Dudik et al., 2017 — learner
can solve offline problem efficiently

Kakade et al., 2009 — NP-hard problem amenable to
approximation, linear rewards

Audibert et al., 2014 — exponentially weighted avg.
forecaster for full-info setting, tight regret, linear
rewards

Bubeck et al., 2012, Hazan and Karnin, 2016 — efficient
algorithm for the bandit setting, linear rewards

NP-hard problems with non-linear rewards
Both bandit and full-information settings
Transform offline greedy algorithms to online



High-level Sketch of

our Approach




Mimicking the Greedy Algorithm
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Mimicking the Greedy Algorithm
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Mimicking the Greedy Algorithm
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Preserves the approximation ratio
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Mimicking the Greedy Algorithm

What is each subproblem i makes a sequence of actions that are
but on an ?
This can be done under Blackwell locality condition!

| | | |
v L

A 4 Y
[ Subproblem J [ Subproblem J. . .[ Subproblem J cee [ Subproblem J




Revisiting the Greedy Algorithm

[ Subproblem 1 }

‘. Greedy chooses product z; that maximizes
. marginal market share Af (S0 )
[ ) ‘
Subproblem i
z; « argmaxjemAf (S, 5) AF(SUD, ;) - Af(sED, 1)
\- T / payoff(z;, SGD,af)=| A (S, 7) - AF(sU7D,2)
. Af(SGD, ;) - AF(SEY, n)
[ Subproblem k }
Issue: vector payoff is not linear in

the greedy’s decisions z;!

Af(S,j)=f(SU{j}) — f(S) marginal market share of adding product j to set S

=0
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Revisiting the Greedy Algorithm

Subproblem 1

|

4

\

Subproblem i
returns distribution 6; over n

Y,

3

Subproblem k

Greedy chooses distribution @; on products that
maximizes marginal market share Af(SU~1 )

L]

Y jen1 0:;AF (S0, ) - Af(SUD,1)

| o »
payoff(0,, SE-D Afy=| Ziem /AL (S _);J)-Af (s“V.2) 15 ¢

Y iern) 01, 0F (S, ) - AF (S, n)

Vector payoff is now LINEAR in
the greedy’s decisions 6!

Zje[n] Hl-J-Af(S(i‘l),j) is the expected value of marginal market share at the greedy

solution @;
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Blackwell Locality:Casting Subproblems as

Blackwell Games
P1is algorithm that returns 6,

P2 is the nature (ADV) that chooses Af(S(i_l), : )

Per period payoff vector is biaffine

Yierm 00 AF(SEV, ) -Af(sEY,1)
Payoﬁ(ei,g(i—l), Af)= ZjE[n] 9i,jAf(S(l—1.)’j) —Af(S(‘_l), 2)

Yiem1 00 AF(SEY, ) -AF(SED, n)

Target set S is the positive orthant Payoff (9,-, st , Af) > 0 andis

approachable
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High-level Idea

Blackwell Locality: We cast each
subproblem i as a Blackwell game
o With biaffine payoff vector and
approachable target convex set S
o With the help of AlgB, we can
generate a sequence of actions that
are “almost locally best on average
over time”

Robustness to local errors: Errors across
subproblems don’t get amplified

Online problem (round t)

|

Subproblem 1 is handled by
Blackwell Algorithm AlgB,

|

4

|

Subproblem i is handled by
Blackwell Algorithm AlgB;

|

3

|

Subproblem K is handled by
Blackwell Algorithm AlgBg

|
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Full Information

-

Theorem 1 (Full-information offline-to-online transformation) Suppose that
an offline algorithm is

* robust to local errors, and

* Blackwell local.

Then, in the full information setting, there exists an online algorithm that
runs in polynomial time and satisfies:

y —regret < O (KTl/Z)

where K is the number of subproblems.

Blackwell local:
1) Defining bi-affine vector payoff for each subproblem
2) Defining an approachable target set for each subproblem



Applications




Product Ranking and Reserve Price
Optimization
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Negative Cumulative y —Regret (Doing much better than our
theoretical results)



Takeaway

Transform offline greedy algorithms to online ones using Blackwell
approachability

Need the greedy algorithm to be robust to local errors and Blackwell local

For full information setting, our algorithm has 0(\/7) y —regret
For Bandit setting, our algorithm has O(T%/3) y —regret

Our framework is flexible and can be applied to many applications
Product ranking optimization in online platforms

Reserve price optimization in auctions
Submodular maximization
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Link to the paper: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3613756

Email: golrezae@mit.edu
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