Limited Commitment: Mechanism Design meets Information Design

Data-Driven Decision Processes Bootcamp

Laura Doval
Columbia Business School and CEPR

Based on joint work with Vasiliki Skreta
(Static) Mechanism Design:

- Agents have private information: T_i is the set of types of agent i and
 \[\psi : \Theta \mapsto \Delta(T_1 \times \cdots \times T_N) \]
 describes the information player i has about θ and the types of other players.
- Payoffs only depend on A_0.
- We are given a mapping $\pi : \Theta \mapsto \Delta(A_0)$.
- **Question:** Can we design actions for each player A_1, \ldots, A_N and an outcome function
 \[f : \times_{i=1}^N A_i \mapsto \Delta(A_0) \] such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f \rangle$?

Example: Google ad auction design

- $A_0 \subseteq (\{0, 1\} \times \mathbb{R})^N$ and $(q, t) \in A_0$ if, and only if, $0 \leq \sum_{i=1}^N q_i \leq 1$.
- $\Theta = \Theta_1 \times \ldots \Theta_N$; $T_i = \Theta_i$ denotes advertiser i’s value for the slot; $\psi(\cdot | \theta) = \delta_\theta$.
- π is the rule that assigns the good to the advertiser w/ highest θ_i.

Mechanism Design

(Static) Mechanism Design: (in more standard textbook notation)

- Agents have private information: $\Theta = \times_{i=1}^{N} \Theta_i$ and agent i knows θ_i. That is,

$$\psi: \Theta \mapsto \Delta(\Theta_1 \times \cdots \times \Theta_N)$$

is such that $\psi(\cdot | \theta) = \delta_{\theta}$.

- Payoffs only depend on A_0.

- We are given a mapping $\pi: \Theta \mapsto \Delta(A_0)$.

- **Question:** Can we design actions for each player M_1, \ldots, M_N and an outcome function $f: \times_{i=1}^{N} M_i \mapsto \Delta(A_0)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f \rangle$?

Example: Google ad auction design

- $A_0 \subseteq (\{0, 1\} \times \mathbb{R})^N$ and $(q, t) \in A_0$ if, and only if, $0 \leq \sum_{i=1}^{N} q_i \leq 1$.

- $\Theta = \Theta_1 \times \ldots \Theta_N$; $T_i = \Theta_i$ denotes advertiser i’s value for the slot; $\psi(\cdot | \theta) = \delta_{\theta}$.

- π is the rule that assigns the good to the advertiser w/ highest θ_i.
Given $\pi : \Theta \mapsto \Delta(A_0)$,

MD question: Can we design actions for each player M_1, \ldots, M_N and an outcome function $f : \times_{i=1}^N M_i \mapsto \Delta(A_0)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f \rangle$?
Given \(\pi : \Theta \mapsto \Delta(A_0) \),

MD question: Can we design actions for each player \(M_1, \ldots, M_N \) and an outcome function \(f : \times_{i=1}^N M_i \mapsto \Delta(A_0) \) such that \(\pi \) is the equilibrium outcome of the game defined by \(\langle G, \psi, f \rangle \)?

- The focus is on designing a game *given* an information structure
Given $\pi : \Theta \mapsto \Delta(A_0)$,

MD question: Can we design actions for each player M_1, \ldots, M_N and an outcome function $f : \times_{i=1}^N M_i \mapsto \Delta(A_0)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f \rangle$?

- The focus is on designing a game *given* an information structure
- The first order concern is that the information is in the hands of selfish players
Given $\pi : \Theta \mapsto \Delta(A_0)$,

MD question: Can we design actions for each player M_1, \ldots, M_N and an outcome function $f : \times_{i=1}^N M_i \mapsto \Delta(A_0)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f \rangle$?

- The focus is on designing a game *given* an information structure
- The first order concern is that the information is in the hands of selfish players
- and the information is needed to know what is the “correct” outcome.
Given $\pi : \Theta \mapsto \Delta(A_0)$,

MD question: Can we design actions for each player M_1, \ldots, M_N and an outcome function $f : \times_{i=1}^N M_i \mapsto \Delta(A_0)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f \rangle$?

- The focus is on designing a game *given* an information structure
- The first order concern is that the information is in the hands of selfish players
- and the information is needed to know what is the “correct” outcome.
- We need to be able to consider *all* possible games
Given $\pi : \Theta \mapsto \Delta(A_0)$,

MD question: Can we design actions for each player M_1, \ldots, M_N and an outcome function $f : \prod_{i=1}^{N} M_i \mapsto \Delta(A_0)$ such that π is the equilibrium outcome of the game defined by $\langle G, \psi, f \rangle$?

- The focus is on designing a game *given* an information structure
- The first order concern is that the information is in the hands of selfish players
- and the information is needed to know what is the “correct” outcome.
- We need to be able to consider *all* possible games
- Mechanism design provides us with a language to do this via the revelation principle.
Theorem (Gibbard, 1973; Myerson, 1979; Dasgupta et al, 1979)

There exists a game that has π as an equilibrium outcome if and only if the following game implements π:

1. **Actions** $M_i = \Theta_i$

2. When players take actions $\theta' = (\theta'_1, \ldots, \theta'_N)$, the outcome is $f(\bar{\theta}) = \pi(\cdot | \theta')$.

Furthermore, it is without loss of generality to assume that the players find it optimal to truthfully report their types.
Theorem (Gibbard, 1973; Myerson, 1979; Dasgupta et al, 1979)

There exists a game that has π as an equilibrium outcome if and only if the following game implements π:

1. Actions $M_i = \Theta_i$
2. When players take actions $\theta' = (\theta'_1, \ldots, \theta'_N)$, the outcome is $f(\bar{\theta}) = \pi(\cdot|\theta')$.

Furthermore, it is without loss of generality to assume that the players find it optimal to truthfully report their types.
Theorem (Gibbard, 1973; Myerson, 1979; Dasgupta et al, 1979)

There exists a game that has π as an equilibrium outcome if and only if the following game implements π:

1. Actions $M_i = \Theta_i$
2. When players take actions $\theta' = (\theta'_1, \ldots, \theta'_N)$, the outcome is $f(\bar{\theta}) = \pi(\cdot | \theta')$.

Furthermore, it is without loss of generality to assume that the players find it optimal to truthfully report their types.
Theorem (Gibbard, 1973; Myerson, 1979; Dasgupta et al, 1979)

There exists a game that has π as an equilibrium outcome if and only if the following game implements π:

1. Actions $M_i = \Theta_i$
2. When players take actions $\theta' = (\theta'_1, \ldots, \theta'_N)$, the outcome is $f(\bar{\theta}) = \pi(\cdot|\theta')$.

Furthermore, it is without loss of generality to assume that the players find it optimal to truthfully report their types.
Theorem (Gibbard, 1973; Myerson, 1979; Dasgupta et al, 1979)

There exists a game that has π as an equilibrium outcome if and only if the following game implements π:

1. Actions $M_i = \Theta_i$
2. When players take actions $\theta' = (\theta'_1, \ldots, \theta'_N)$, the outcome is $f(\bar{\theta}) = \pi(\cdot | \theta')$.

Furthermore, it is without loss of generality to assume that the players find it optimal to truthfully report their types.
Theorem (Gibbard, 1973; Myerson, 1979; Dasgupta et al, 1979)

There exists a game that has π as an equilibrium outcome if and only if the following game implements π:

1. Actions $M_i = \Theta_i$
2. When players take actions $\theta' = (\theta'_1, \ldots, \theta'_N)$, the outcome is $f(\bar{\theta}) = \pi(\cdot | \theta')$.

Furthermore, it is without loss of generality to assume that the players find it optimal to truthfully report their types.
Theorem (Gibbard, 1973; Myerson, 1979; Dasgupta et al, 1979)

There exists a game that has π as an equilibrium outcome if and only if the following game implements π:

1. Actions $M_i = \Theta_i$
2. When players take actions $\theta' = (\theta'_1, \ldots, \theta'_N)$, the outcome is $f(\bar{\theta}) = \pi(\cdot|\theta')$.

Furthermore, it is without loss of generality to assume that the players find it optimal to truthfully report their types.
Theorem (Gibbard, 1973; Myerson, 1979; Dasgupta et al, 1979)

There exists a game that has π as an equilibrium outcome if and only if the following game implements π:

1. Actions $M_i = \Theta_i$
2. When players take actions $\theta' = (\theta'_1, \ldots, \theta'_N)$, the outcome is $f(\bar{\theta}) = \pi(\cdot | \theta')$.

Furthermore, it is without loss of generality to assume that the players find it optimal to truthfully report their types.
The learning problem becomes *trivial*:
The learning problem becomes *trivial*:

- Abstract from the (maybe decentralized) learning process that ends up with the information that is ultimately an input in the designer’s objective/rule
The learning problem becomes *trivial*:
- Abstract from the (maybe decentralized) learning process that ends up with the information that is ultimately an input in the designer’s objective/rule
- Without loss, the owners of the information reveal it
 - Because it is in their best interest to do so!
 - they are compensated via rents and/or the allocation is distorted
The learning problem becomes *trivial*:
- Abstract from the (maybe decentralized) learning process that ends up with the information that is ultimately an input in the designer’s objective/rule
- Without loss, the owners of the information reveal it
 - Because it is in their best interest to do so!
 - they are compensated via rents and/or the allocation is distorted

The RP does not mean that *all* mechanisms are truthful
The learning problem becomes *trivial*:

- Abstract from the (maybe decentralized) learning process that ends up with the information that is ultimately an input in the designer’s objective/rule
- Without loss, the owners of the information reveal it
 - Because it is in their best interest to do so!
 - they are compensated via rents and/or the allocation is distorted

The RP does not mean that *all* mechanisms are truthful

- Many real world mechanisms are not truthful (e.g., first price auctions)
- not clear that truthful mechanisms are *better* (e.g., second price auctions) (c.f., Li, 2017, Akbarpour & Li, 2020)
So why the obsession with the revelation principle?

- Truthful mechanisms are a good first cut abstraction,
- It is a recipe for constructing algorithms that implement allocations,
- It transforms an equilibrium problem into a constrained optimization problem.
- From the design perspective, if I cannot find a truthful mechanism that implements my desired rule then no mechanism does.
Mechanism design in the wild

- Sponsored search auctions
- Display advertising
- FCC spectrum auctions
- Kidney exchange
- Healthcare systems
- Recommendation systems
- Routing on the Internet
- Resource allocation in the cloud
- Platform design for a sharing economy
- Energy and electricity markets
- Bitcoin
- Participatory democracy
- Crowdsourcing
Even closer to a data-driven decision process:
- Repeated interactions
- Persistent and/or evolving types

(new) burgeoning area of dynamic mechanism design in Econ, CS, and OR
- internet auctions, government procurement, durable goods, regulation

The designer learns information that is relevant for today but also subsequent periods
- e.g., the optimal reserve price for today may not be optimal tomorrow

what the designer learns today, they can use tomorrow:
- ratchet effect
 - e.g., forward-looking bidders understand that bids today determine reserve prices tomorrow

⇒ additional incentive to shave bids above and beyond the strategic and dynamic interaction
• Even closer to a data-driven decision process:
 - Repeated interactions
 - Persistent and/or evolving types
Even closer to a data-driven decision process:
- Repeated interactions
- Persistent and/or evolving types

(new) burgeoning area of dynamic mechanism design in Econ, CS, and OR
- internet auctions, government procurement, durable goods, regulation
• Even closer to a data-driven decision process:
 - Repeated interactions
 - Persistent and/or evolving types

• (new) burgeoning area of dynamic mechanism design in Econ, CS, and OR
 - internet auctions, government procurement, durable goods, regulation

• The designer learns information that is relevant for today but also subsequent periods
 - e.g., the optimal reserve price for today may not be optimal tomorrow
• Even closer to a data-driven decision process:
 - Repeated interactions
 - Persistent and/or evolving types

• (new) burgeoning area of dynamic mechanism design in Econ, CS, and OR
 - internet auctions, government procurement, durable goods, regulation

• The designer learns information that is relevant for today but also subsequent periods
 - e.g., the optimal reserve price for today may not be optimal tomorrow

• what the designer learns today, they can use tomorrow: ratchet effect
 - e.g., forward-looking bidders understand that bids today determine reserve prices tomorrow⇒
 additional incentive to shave bids above and beyond the strategic and dynamic interaction
Dynamic Mechanism Design

- If the designer has **full commitment** to the mechanism/algorithm, this is not an issue
Dynamic Mechanism Design

- If the designer has full commitment to the mechanism/algorithm, this is not an issue.
- The revelation principle holds in dynamic environments (Myerson 1986):
Dynamic Mechanism Design

- If the designer has **full commitment** to the mechanism/algorithm, this is not an issue
- The revelation principle holds in dynamic environments (Myerson 1986):
 - Wlog, the designer asks the players to report their (new) private information,
Dynamic Mechanism Design

- If the designer has **full commitment** to the mechanism/algorithm, this is not an issue.
- The revelation principle holds in dynamic environments (Myerson 1986):
 - Wlog, the designer asks the players to report their (new) private information,
 - Wlog, we focus on truthful equilibria* of this game.
Dynamic Mechanism Design

• If the designer has **full commitment** to the mechanism/algorithm, this is not an issue
• The revelation principle holds in dynamic environments (Myerson 1986):
 - Wlog, the designer asks the players to report their (new) private information,
 - Wlog, we focus on truthful equilibria* of this game.
• What changes are the determinants of the agents' rents: they account for today's private information and the impact of today's information in future decisions
Dynamic Mechanism Design

• If the designer has **full commitment** to the mechanism/algorithm, this is not an issue

• The revelation principle holds in dynamic environments (Myerson 1986):
 - Wlog, the designer asks the players to report their (new) private information,
 - Wlog, we focus on truthful equilibria* of this game.

• What changes are the determinants of the agents' rents: they account for today's private information and the impact of today's information in future decisions

• Sometimes these rents are large enough that optimal mechanisms do not use the information learned
Dynamic Mechanism Design

- If the designer has **full commitment** to the mechanism/algorithm, this is not an issue.
- The revelation principle holds in dynamic environments (Myerson 1986):
 - Wlog, the designer asks the players to report their (new) private information,
 - Wlog, we focus on truthful equilibria* of this game.
- What changes are the determinants of the agents' rents: they account for today's private information and the impact of today's information in future decisions.
- Sometimes these rents are large enough that optimal mechanisms do not use the information learned.
 - *e.g.*, **sale of a durable good**
Consider the following example:

- Seller (designer) wants to sell one unit of a good to buyer over two periods.
Consider the following example:

- Seller (designer) wants to sell one unit of a good to buyer over two periods
- Buyer's valuation for the good is private information $\theta \sim F_1$
Consider the following example:

- Seller (designer) wants to sell one unit of a good to the buyer over two periods.
- Buyer's valuation for the good is private information $\theta \sim F_1$.
- Revenue-maximizing mechanism is to set the same price p each period, where

$$p \in \arg \max_{\hat{p}} \hat{p} \left(1 - F_1(\hat{p})\right).$$
Consider the following example:

- Seller (designer) wants to sell one unit of a good to buyer over two periods
- Buyer’s valuation for the good is private information $\theta \sim F_1$
- Revenue-maximizing mechanism is to set the same price p each period, where

$$p \in \arg \max_{\hat{p}} \left(1 - F_1(\hat{p})\right).$$
Consider the following example:

- Seller (designer) wants to sell one unit of a good to buyer over two periods
- Buyer’s valuation for the good is private information $\theta \sim F_1$
- Revenue-maximizing mechanism is to set the same price p each period, where

$$p \in \arg \max_{\hat{p}} \hat{p} \left(1 - F_1(\hat{p}) \right).$$
Consider the following example:

- Seller (designer) wants to sell one unit of a good to buyer over two periods
- Buyer's valuation for the good is private information $\theta \sim F_1$
- Revenue-maximizing mechanism is to set the same price p each period, where

$$p \in \arg \max_{\hat{p}} \hat{p} (1 - F_1(\hat{p})).$$

Period 1

![Diagram](no p? no)
Consider the following example:

- Seller (designer) wants to sell one unit of a good to buyer over two periods
- Buyer’s valuation for the good is private information $\theta \sim F_1$
- Revenue-maximizing mechanism is to set the same price p each period, where

$$p \in \arg \max_{\hat{p}} \hat{p} (1 - F_1(\hat{p})).$$
Consider the following example:

- Seller (designer) wants to sell one unit of a good to buyer over two periods.
- Buyer’s valuation for the good is private information $\theta \sim F_1$.
- Revenue-maximizing mechanism is to set the same price p each period, where

$$p \in \arg \max_{\hat{p}} \hat{p} \left(1 - F_1(\hat{p})\right).$$
Consider the following example:

- Seller (designer) wants to sell one unit of a good to buyer over two periods.
- Buyer's valuation for the good is private information $\theta \sim F_1$.
- Revenue-maximizing mechanism is to set the same price p each period, where

$$p \in \arg\max_{\hat{p}} \hat{p} \left(1 - F_1(\hat{p}) \right).$$
Consider the following example:

- Seller (designer) wants to sell one unit of a good to buyer over two periods
- Buyer's valuation for the good is private information $\theta \sim F_1$
- Revenue-maximizing mechanism is to set the same price p each period, where

$$p \in \arg \max_{\hat{p}} \hat{p} \left(1 - F_1(\hat{p}) \right).$$
Consider the following example:

- Seller (designer) wants to sell one unit of a good to buyer over two periods.
- Buyer's valuation for the good is private information $\theta \sim F_1$.
- Revenue-maximizing mechanism is to set the same price p each period, where

$$p \in \arg \max_{\hat{p}} \hat{p} \left(1 - F_1(\hat{p})\right).$$

Period 1

- $\theta > p$
- p?

Period 2

- $p_2 < p$?
Consider the following example:

- Seller (designer) wants to sell **one** unit of a good to buyer over two periods
- Buyer’s valuation for the good is private information $\theta \sim F_1$
- Revenue-maximizing mechanism is to set the same price p each period, where

$$
p \in \arg \max_{\hat{p}} \hat{p} \left(1 - F_1(\hat{p})\right).
$$

![Diagram](image)
Oftentimes, optimal mechanisms are not *sequentially rational*:

- i.e., if we gave the designer the possibility to revise the decision rule given the new learned information, they would have an incentive to do so.

There are many examples with these features

- dynamic (ad) auctions (e.g., Google) (c.f., Kanoria & Nazerzadeh, 2014; Papadimitrou et al, 2014; Balseiro et al, 2022)
- repeated sales (e.g., Lobel & Paes Leme, 2017; Devanur et al, 2019; Immorlica et al, 2017)
- procurement (e.g., Gur et al, 2022)

Desiderata: a theory of mechanism design that does not rely so strongly on the assumption that the designer has full commitment
Instead, we would like to assume that the designer does not have full commitment.
Instead, we would like to assume that the designer does not have full commitment.

The first issue is that the complement of commitment is way too big:
Instead, we would like to assume that the designer does not have full commitment.

The first issue is that the complement of commitment is way too big:

- Short-term mechanisms that can be revised in each period (e.g., Freixas, Guesnerie, & Tirole, 1985, Laffont & Tirole, 1986, Hart & Tirole, 1988, . . .)
- Full-term mechanisms with 2-sided renegotiation (e.g., Hart & Tirole, 1988, Dewatripoint, 1989)
- Full-term mechanisms with 1-sided renegotiation (e.g., Baron & Besanko, 1987)
- Long, but not full, term contract with renegotiation (e.g., Rey & Salanie, 1990)
- Cannot commit even to today's mechanism (e.g., Adams & Schwarz, 2007, Vartianen, 2013, Akbarpour & Li, 2020)

Papers in CS & OR that study dynamic lack of commitment focus on this case as well: Papadimitrou et al., 2014; Lobel & Paes Leme, 2017; Devanur et al., 2019; Immorlica et al., 2017; Balseiro et al., 2022; Gur et al., 2022
Instead, we would like to assume that the designer does not have full commitment.

The first issue is that the complement of commitment is way too big:

- Short-term mechanisms that can be revised in each period (e.g., Freixas, Guesnerie, & Tirole, 1985, Laffont & Tirole, 1986, Hart & Tirole, 1988, . . .)
- Full-term mechanisms with 2-sided renegotiation (e.g., Hart & Tirole, 1988, Dewatripoint, 1989)
Instead, we would like to assume that the designer does not have full commitment.

The first issue is that the complement of commitment is way too big:

- Short-term mechanisms that can be revised in each period (e.g., Freixas, Guesnerie, & Tirole, 1985, Laffont & Tirole, 1986, Hart & Tirole, 1988, . . .)
- Full-term mechanisms w/ 2-sided renegotiation (e.g., Hart & Tirole, 1988, Dewatripoint, 1989)
- Full-term mechanisms w/ 1-sided renegotiation (e.g., Baron & Besanko, 1987)
Instead, we would like to assume that the designer does not have full commitment.

The first issue is that the complement of commitment is way too big:

- Short-term mechanisms that can be revised in each period (e.g., Freixas, Guesnerie, & Tirole, 1985, Laffont & Tirole, 1986, Hart & Tirole, 1988, ...)
- Full-term mechanisms w/ 2-sided renegotiation (e.g., Hart & Tirole, 1988, Dewatripoint, 1989)
- Full-term mechanisms w/ 1-sided renegotiation (e.g., Baron & Besanko, 1987)
- Long, but not full, term contract w/ renegotiation (e.g., Rey & Salanie, 1990)
Instead, we would like to assume that the designer does not have full commitment.

The first issue is that the complement of commitment is way too big:

- Short-term mechanisms that can be revised in each period (e.g., Freixas, Guesnerie, & Tirole, 1985, Laffont & Tirole, 1986, Hart & Tirole, 1988, . . .)
- Full-term mechanisms w/ 2-sided renegotiation (e.g., Hart & Tirole, 1988, Dewatripoint, 1989)
- Full-term mechanisms w/ 1-sided renegotiation (e.g., Baron & Besanko, 1987)
- Long, but not full, term contract w/ renegotiation (e.g., Rey & Salanie, 1990)
- Cannot commit even to today’s mechanism (e.g., Adams & Schwarz 2007, Vartianen 2013, Akbarpour & Li 2020)
Instead, we would like to assume that the designer does not have full commitment

The first issue is that the complement of commitment is way too big:

- **Short-term mechanisms that can be revised in each period** (e.g., Freixas, Guesnerie, & Tirole, 1985, Laffont & Tirole, 1986, Hart & Tirole, 1988, …)
- **Full-term mechanisms w/ 2-sided renegotiation** (e.g., Hart & Tirole, 1988, Dewatripoint, 1989)
- **Full-term mechanisms w/ 1-sided renegotiation** (e.g., Baron & Besanko, 1987)
- **Long, but not full, term contract w/ renegotiation** (e.g., Rey & Salanie, 1990)
- **Cannot commit even to today’s mechanism** (e.g., Adams & Schwarz 2007, Vartianen 2013, Akbarpour & Li 2020)

Papers in CS & OR that study dynamic lack of commitment focus on this case as well: Papadimitrou et al, 2014; Lobel & Paes Leme, 2017; Devanur et al, 2019; Immorlica et al, 2017; Balseiro et al, 2022; Gur et al, 2022
Instead, we would like to assume that the designer does not have full commitment.

The first issue is that the complement of commitment is way too big:

- **Short-term mechanisms that can be revised in each period** (e.g., Freixas, Guesnerie, & Tirole, 1985, Laffont & Tirole, 1986, Hart & Tirole, 1988, . . .)

- **Full-term mechanisms w/ 2-sided renegotiation** (e.g., Hart & Tirole, 1988, Dewatrippoint, 1989)

- **Full-term mechanisms w/ 1-sided renegotiation** (e.g., Baron & Besanko, 1987)

- **Long, but not full, term contract w/ renegotiation** (e.g., Rey & Salanie, 1990)

- **Cannot commit even to today’s mechanism** (e.g., Adams & Schwarz 2007, Vartianen 2013, Akbarpour & Li 2020)

Papers in CS & OR that study dynamic lack of commitment focus on this case as well:

Commitment to short-term mechanisms

Setting:

- Uninformed designer interacts with privately & persistently informed agent over time
- Designer can offer short-term mechanisms
- Designer can commit to today’s mechanism, but not to the continuation ones.

Examples:
1. Regulation (c.f., Laffont & Tirole, 1988)
2. Procurement
3. Political Economy; e.g., taxation and social insurance,
4. Ad auctions, online shopping

Few papers analyze optimal mechanisms under limited commitment:

- Optimal mechanisms w/ finite horizon, e.g.,
- Infinite Horizon under restrictions, e.g.,
 - iid private information: e.g., Sleet and Yeltekin (2006, 2008), Farhi, Sleet, Yeltekin, and Werning (2012), Golosov and Iovino (2021)
Commitment to short-term mechanisms

Setting:

- Uninformed designer interacts with privately & persistently informed agent over time
- Designer can offer short-term mechanisms
- Designer can commit to today's mechanism, but not to the continuation ones.

Examples:

1. Regulation (c.f., Laffont & Tirole, 1988)
2. Procurement
3. Political Economy; e.g., taxation and social insurance,
4. Ad auctions, online shopping
Commitment to short-term mechanisms

Setting:

- Uninformed designer interacts with privately & persistently informed agent over time
- Designer can offer short-term mechanisms
- Designer can commit to today's mechanism, but not to the continuation ones.

Examples:

1. Regulation (c.f., Laffont & Tirole, 1988)
2. Procurement
3. Political Economy; e.g., taxation and social insurance,
4. Ad auctions, online shopping

Few papers analyze optimal mechanisms under limited commitment:

- **Optimal mechanisms w/ finite horizon**, e.g.,
- **Infinite Horizon under restrictions**, e.g.,
 - **iid private information**: e.g., Sleet and Yeltekin (2006, 2008), Farhi, Sleet, Yeltekin, and Werning (2012), Golosov and Iovino (2021)
The second issue is that the revelation principle no longer holds under limited commitment:

The lack of commitment in repeated adverse-selection situations leads to substantial difficulties for contract theory.

Laffont & Tirole, 1993

- Substantial setback in terms of what we know about optimal policies under limited commitment.
Commitment to short-term mechanisms

The second issue is that the revelation principle no longer holds under limited commitment:

The lack of commitment in repeated adverse-selection situations leads to substantial difficulties for contract theory.

Laffont & Tirole, 1993

- Substantial setback in terms of what we know about optimal policies under limited commitment.

Revelation principle for mechanism design with limited commitment

We characterize a class of mechanisms and strategies that are enough to implement any outcome distribution that can be implemented under limited commitment.
Mechanisms (Myerson ’82, Forges ’85)

- M is a set of input messages,
- S is a set of output messages,
- φ assigns to each input message a joint distribution over output messages and allocations
Mechanisms (Myerson '82, Forges '85)

- M is a set of input messages,
- S is a set of output messages,
- φ assigns to each input message a joint distribution over output messages and allocations.
Mechanisms (Myerson ’82, Forges ’85)

- M is a set of input messages,
- S is a set of output messages,
- φ assigns to each input message a joint distribution over output messages and allocations
Mechanisms

Without loss of generality:

• Communication is direct, i.e., $M = \Theta$.
• Communication is observable: M and S have the same cardinality and φ is invertible.
• Equilibrium communication is truthful.
Revelation Principle under commitment

Without loss of generality,

- Communication is **direct**, i.e., $M = \Theta$.
- Communication is **observable**: M and S have the same cardinality and φ is invertible.
- Equilibrium communication is **truthful**.
Limited Commitment 1: Bester & Strausz (ECMA, 2001)

Assume:

- Communication is **observable**: M and S have the same cardinality and φ is *invertible*,
- No randomization in the allocation, i.e., each output message is attached to one allocation.
Limited Commitment 1: Bester & Strausz (ECMA, 2001)

Assume:

- Communication is **observable**: M and S have the same cardinality and φ is invertible,
- No randomization in the allocation, i.e., each output message is attached to one allocation.

Then, if the principal earns his highest payoff consistent with the agent’s payoff, wlog

- Communication is **direct**, i.e., $M = \Theta$,

However, **Equilibrium/communication is truthful**. (c.f., Papadimitrou et al, 2014)
What we know: Bester & Strausz (2001, 2007)

Limited Commitment 2: Bester & Strausz (JET, 2007)

Assume:

- Communication is observable, |M| and |S| have the same cardinality, and \(\varphi \) is invertible.
- No randomization in the allocation, i.e., each output message is attached to one allocation.
What we know: Bester & Strausz (2001, 2007)

Limited Commitment 2: Bester & Strausz (JET, 2007)

Assume:

- Communication is observable; \(M \) and \(S \) have the same cardinality and \(\varphi \) is invertible.
- No randomization in the allocation, i.e., each output message is attached to one allocation.

Then, without loss of generality:

- Communication is direct, i.e., \(M = \Theta \),
- Equilibrium communication is truthful.
Revelation Principle for Limited Commitment

Without loss of generality,

- Communication is **direct**, i.e., $M = \Theta$.
- Equilibrium communication is **truthful**.
Revelation Principle for Limited Commitment

Without loss of generality,

- Communication is **direct**, i.e., $M = \Theta$.
- Output messages are **beliefs**, i.e., $S = \Delta(\Theta)$
- Equilibrium communication is **truthful**
Revelation Principle for Limited Commitment

Without loss of generality,

- Communication is **direct**, i.e., $M = \Theta$.
- Output messages are **beliefs**, i.e., $S = \Delta(\Theta)$
- Equilibrium communication is **truthful**
- Equilibrium output messages coincide with principal’s equilibrium beliefs
Revelation Principle for Limited Commitment

Without loss of generality,

- Communication is **direct**, i.e., $M = \Theta$.
- Output messages are **beliefs**, i.e., $S = \Delta(\Theta)$
- Equilibrium communication is **truthful**
- Equilibrium output messages coincide with **principal’s equilibrium beliefs**

$$\Theta \xrightarrow{\varphi} \Delta(\Theta) \times A$$
Revelation Principle for Limited Commitment

Without loss of generality,

- Communication is **direct**, i.e., $M = \Theta$.
- Output messages are **beliefs**, i.e., $S = \Delta(\Theta)$
- Equilibrium communication is **truthful**
- Equilibrium output messages coincide with principal’s equilibrium beliefs
- Equilibrium mechanisms separate the design of the information from the design of the allocation

$$\Theta \xrightarrow{\varphi} \Delta(\Theta) \times A$$
Revelation Principle for Limited Commitment

Without loss of generality,

- Communication is **direct**, i.e., $M = \Theta$.
- Output messages are **beliefs**, i.e., $S = \Delta(\Theta)$
- Equilibrium communication is **truthful**
- Equilibrium output messages coincide with **principal’s equilibrium beliefs**
- Equilibrium mechanisms separate the design of the information from the design of the allocation

\[
\Theta \xrightarrow{\varphi} \Delta(\Theta) \times A = \Theta \xrightarrow{\beta} \Delta(\Theta) \xrightarrow{\alpha} A
\]
Revelation Principle for Limited Commitment

Without loss of generality,

- Communication is **direct**, i.e., $M = \Theta$.
- Output messages are **beliefs**, i.e., $S = \Delta(\Theta)$.
- Equilibrium communication is **truthful**.
- Equilibrium output messages coincide with principal’s equilibrium beliefs.
- Equilibrium mechanisms separate the design of the information from the design of the allocation.

$$\Theta \xrightarrow{\varphi} \Delta(\Theta) \times A \quad \text{and} \quad \Theta \xrightarrow{\beta} \Delta(\Theta) \xrightarrow{\alpha} A$$

Direct-Blackwell mechanisms
In a dynamic setting, we need the mechanism to replicate

1. The type-by-type allocation distribution
2. and (at the very least) the type-by-type distribution of beliefs
In a dynamic setting, we need the mechanism to replicate

1. The type-by-type allocation distribution (mechanism design)
2. and (at the very least) the type-by-type distribution of beliefs (information design)
In a dynamic setting, we need the mechanism to replicate

1. The type-by-type allocation distribution (mechanism design)
2. and (at the very least) the type-by-type distribution of beliefs (information design)

• Instead of designing a mechanism for a given information structure
Restoring the revelation principle: Allocations and information

In a dynamic setting, we need the mechanism to replicate

1. The type-by-type allocation distribution (mechanism design)
2. and (at the very least) the type-by-type distribution of beliefs (information design)

- Instead of designing a mechanism for a given information structure
- **Direct Blackwell mechanisms** jointly design the mechanism and the information
In a dynamic setting, we need the mechanism to replicate

1. The type-by-type allocation distribution (mechanism design)
2. and (at the very least) the type-by-type distribution of beliefs (information design)

- Instead of designing a mechanism for a given information structure
- Direct Blackwell mechanisms jointly design the mechanism and the information
In a dynamic setting, we need the mechanism to replicate

1. The type-by-type allocation distribution (mechanism design)
2. and (at the very least) the type-by-type distribution of beliefs (information design)

- Instead of designing a mechanism for a given information structure
- **Direct Blackwell mechanisms** jointly design the mechanism and the information

\[\theta \rightarrow M \rightarrow \phi(\cdot|m) \\Rightarrow S \times A \]
Restoring the revelation principle: Allocations and information

In a dynamic setting, we need the mechanism to replicate

1. The type-by-type allocation distribution (mechanism design)
2. and (at the very least) the type-by-type distribution of beliefs (information design)

- Instead of designing a mechanism for a given information structure
- **Direct Blackwell mechanisms** jointly design the mechanism and the information
In a dynamic setting, we need the mechanism to replicate

1. The type-by-type allocation distribution (mechanism design)
2. and (at the very least) the type-by-type distribution of beliefs (information design)

- Instead of designing a mechanism for a given information structure
- **Direct Blackwell mechanisms** jointly design the mechanism and the information
In a dynamic setting, we need the mechanism to replicate

1. The type-by-type allocation distribution (mechanism design)
2. and (at the very least) the type-by-type distribution of beliefs (information design)

- Instead of designing a mechanism for a given information structure
- **Direct Blackwell mechanisms** jointly design the mechanism and the information

![Diagram](image-url)
Revelation Principle for Limited Commitment

Without loss of generality,

- Communication is **direct**, i.e., $M = \Theta$.
- Output messages are **beliefs**, i.e., $S = \Delta(\Theta)$
- Equilibrium communication is **truthful**
- Equilibrium output messages coincide with principal’s equilibrium beliefs
- Equilibrium mechanisms are **Direct Blackwell mechanisms**

\[
\Theta \xrightarrow{\varphi} \Delta(\Theta) \times A \quad = \quad \Theta \xrightarrow{\beta} \Delta(\Theta) \xrightarrow{\alpha} A
\]
Revelation Principle for Limited Commitment (Doval & Skreta, 2021)

Without loss of generality,

- Communication is **direct**, i.e., \(M = \Theta \).
- Output messages are **beliefs**, i.e., \(S = \Delta(\Theta) \).
- Equilibrium communication is **truthful**
- Equilibrium output messages coincide with principal's equilibrium beliefs
- Equilibrium mechanisms are **Direct Blackwell mechanisms**

\[
\Theta \xrightarrow{\varphi} \Delta(\Theta) \times A \quad \equiv \quad \Theta \xrightarrow{\beta} \Delta(\Theta) \xrightarrow{\alpha} A
\]

- Like the standard revelation principle, it reduces the agent's behavior and its impact on the principal's beliefs to a series of constraints the mechanism must satisfy:
Revelation Principle for Limited Commitment

Without loss of generality,

- Communication is **direct**, i.e., \(M = \Theta \).
- Output messages are **beliefs**, i.e., \(S = \Delta(\Theta) \).
- Equilibrium communication is **truthful**
- Equilibrium output messages coincide with principal’s equilibrium beliefs
- Equilibrium mechanisms are **Direct Blackwell mechanisms**

\[
\Theta \xrightarrow{\varphi} \Delta(\Theta) \times A \quad \equiv \quad \Theta \xrightarrow{\beta} \Delta(\Theta) \xrightarrow{\alpha} A
\]

- Like the standard revelation principle, it reduces the agent’s behavior and its impact on the principal’s beliefs to a series of constraints the mechanism must satisfy:
 - Truthtelling + participation + Bayes’ plausibility constraint (designer’s sequential rationality)
Revelation Principle for Limited Commitment (Doval & Skreta, 2021)

Without loss of generality,

- Communication is **direct**, i.e., $M = \Theta$.
- Output messages are **beliefs**, i.e., $S = \Delta(\Theta)$
- Equilibrium communication is **truthful**
- Equilibrium output messages coincide with **principal’s equilibrium beliefs**
- Equilibrium mechanisms are **Direct Blackwell mechanisms**

$$\Theta \xrightarrow{\varphi} \Delta(\Theta) \times A$$ $$\Theta \xrightarrow{\beta} \Delta(\Theta) \xrightarrow{\alpha} A$$

New applications facilitated by the generality of the framework
- no restrictions on the cardinality of Θ
- on the length of the interaction
- extension to Markov settings
- Optimality of posted prices in infinite horizon-binary type durable goods model
- Optimality of coarse product lines (menus) when purchase history leads to price discrimination

Today: Revisit the sale of a durable good w/ a continuum of types and finite horizon
Revelation Principle for Limited Commitment

Revelation Principle for Limited Commitment (Doval & Skreta, 2021)

Without loss of generality,

- Communication is **direct**, i.e., $M = \Theta$.
- Output messages are **beliefs**, i.e., $S = \Delta(\Theta)$
- Equilibrium communication is **truthful**
- Equilibrium output messages coincide with **principal’s equilibrium beliefs**
- Equilibrium mechanisms are **Direct Blackwell mechanisms**

\[
\Theta \xrightarrow{\varphi} \Delta(\Theta) \times A \quad \overset{\text{def}}{=} \quad \Theta \xrightarrow{\beta} \Delta(\Theta) \xrightarrow{\alpha} A
\]

- **New applications** facilitated by the generality of the framework
Revelation Principle for Limited Commitment (Doval & Skreta, 2021)

Without loss of generality,

- Communication is direct, i.e., $M = \Theta$.
- Output messages are beliefs, i.e., $S = \Delta(\Theta)$
- Equilibrium communication is truthful
- Equilibrium output messages coincide with principal’s equilibrium beliefs
- Equilibrium mechanisms are Direct Blackwell mechanisms

\[\Theta \xrightarrow{\varphi} \Delta(\Theta) \times A = \Theta \xrightarrow{\beta} \Delta(\Theta) \xrightarrow{\alpha} A \]

- New applications facilitated by the generality of the framework
 - no restrictions on the cardinality of Θ, on the length of the interaction + extension to Markov settings
Revelation Principle for Limited Commitment

Revelation Principle for Limited Commitment (Doval & Skreta, 2021)

Without loss of generality,

- Communication is **direct**, i.e., $M = \Theta$.
- Output messages are **beliefs**, i.e., $S = \Delta(\Theta)$.
- Equilibrium communication is **truthful**.
- Equilibrium output messages coincide with **principal's equilibrium beliefs**.
- Equilibrium mechanisms are **Direct Blackwell mechanisms**.

\[
\Theta \xrightarrow{\varphi} \Delta(\Theta) \times A = \Theta \xrightarrow{\beta} \Delta(\Theta) \xrightarrow{\alpha} A
\]

- **New applications** facilitated by the generality of the framework
 - no restrictions on the cardinality of Θ, on the length of the interaction
 + extension to Markov settings
 - Optimality of posted prices in infinite horizon-binary type durable goods model
Revelation Principle for Limited Commitment

Without loss of generality,

- Communication is direct, i.e., $M = \Theta$.
- Output messages are beliefs, i.e., $S = \Delta(\Theta)$
- Equilibrium communication is truthful
- Equilibrium output messages coincide with principal’s equilibrium beliefs
- Equilibrium mechanisms are Direct Blackwell mechanisms

\[
\Theta \xrightarrow{\varphi} \Delta(\Theta) \times A = \Theta \xrightarrow{\beta} \Delta(\Theta) \xrightarrow{\alpha} A
\]

- New applications facilitated by the generality of the framework
 - no restrictions on the cardinality of Θ, on the length of the interaction + extension to Markov settings
 - Optimality of posted prices in infinite horizon-binary type durable goods model
 - Optimality of coarse product lines (menus) when purchase history leads to price discrimination
Revelation Principle for Limited Commitment

Revelation Principle for Limited Commitment (Doval & Skreta, 2021)

Without loss of generality,

- Communication is direct, i.e., $M = \Theta$.
- Output messages are beliefs, i.e., $S = \Delta(\Theta)$
- Equilibrium communication is truthful
- Equilibrium output messages coincide with principal’s equilibrium beliefs
- Equilibrium mechanisms are Direct Blackwell mechanisms

\[
\Theta \xrightarrow{\varphi} \Delta(\Theta) \times A \quad = \quad \Theta \xrightarrow{\beta} \Delta(\Theta) \xrightarrow{\alpha} A
\]

- New applications facilitated by the generality of the framework
 - no restrictions on the cardinality of Θ, on the length of the interaction + extension to Markov settings
 - Optimality of posted prices in infinite horizon-binary type durable goods model
 - Optimality of coarse product lines (menus) when purchase history leads to price discrimination

- Today: Revisit the sale of a durable good w/ a continuum of types and finite horizon
Two final remarks

Two other reasons to care about MDLC in the context of DDDP and AGT:

1. Simplicity
2. Learning
Simple mechanisms

- Limiting the principal’s commitment was also an attempt to justify simple mechanisms,
- ... the idea being that it would force the principal to condition his mechanism on less variables (e.g., non-clairvoyant mechanisms, Balseiro et al, 2022)
- It turns out that the optimal mechanism is not necessarily “simpler”
 - e.g., posted prices may no longer be optimal to sell durable goods in finite horizon settings,
• Platforms use **learning algorithms** to optimize on prices/reserve prices based on historical data (c.f., Kanoria & Nazerzadeh, 2014; Haghtalab, Lykouris, Nietert, & Wei, 2022)
Learning mechanisms

- Platforms use **learning algorithms** to optimize on prices/reserve prices based on historical data (c.f., Kanoria & Nazerzadeh, 2014; Haghtalab, Lykouris, Nietert, & Wei, 2022)
- Not the same as having limited commitment
• Platforms use **learning algorithms** to optimize on prices/reserve prices based on historical data (c.f., Kanoria & Nazerzadeh, 2014; Haghtalab, Lykouris, Nietert, & Wei, 2022)

• Not the same as having limited commitment
 - e.g., Amazon commits to its algorithm and how it outputs decisions as a function of the inputs
Learning mechanisms

- Platforms use learning algorithms to optimize on prices/reserve prices based on historical data (c.f., Kanoria & Nazerzadeh, 2014; Haghtalab, Lykouris, Nietert, & Wei, 2022)
- Not the same as having limited commitment
 - e.g., Amazon commits to its algorithm and how it outputs decisions as a function of the inputs
- And yet, these algorithms will do “the best” with the information collected so far according to some objective function
Platforms use **learning algorithms** to optimize on prices/reserve prices based on historical data (c.f., Kanoria & Nazerzadeh, 2014; Haghtalab, Lykouris, Nietert, & Wei, 2022)

- Not the same as having limited commitment
 - e.g., Amazon commits to its algorithm and how it outputs decisions as a function of the inputs

- And yet, these algorithms will do “the best” with the information collected so far according to some objective function

- This may lead to **strategic overfitting**: forward looking agents will have additional incentives to strategize
• Platforms use **learning algorithms** to optimize on prices/reserve prices based on historical data (c.f., Kanoria & Nazerzadeh, 2014; Haghtalab, Lykouris, Nietert, & Wei, 2022)

• Not the same as having limited commitment
 - e.g., Amazon commits to its algorithm and how it outputs decisions as a function of the inputs

• And yet, these algorithms will do “the best” with the information collected so far according to some objective function

• This may lead to **strategic overfitting**: forward looking agents will have additional incentives to strategize

• The representation we obtain is very relevant
Learning mechanisms

- Platforms use **learning algorithms** to optimize on prices/reserve prices based on historical data (c.f., Kanoria & Nazerzadeh, 2014; Haghtalab, Lykouris, Nietert, & Wei, 2022)
- Not the same as having limited commitment
 - e.g., Amazon commits to its algorithm and how it outputs decisions as a function of the inputs
- And yet, these algorithms will do “the best” with the information collected so far according to some objective function
- This may lead to **strategic overfitting**: forward looking agents will have additional incentives to strategize
- The representation we obtain is very relevant
 - the algorithm takes the role of the “sequentially rational principal”.

limited commitment
• Platforms use **learning algorithms** to optimize on prices/reserve prices based on historical data (c.f., Kanoria & Nazerzadeh, 2014; Haghtalab, Lykouris, Nietert, & Wei, 2022)

• Not the same as having limited commitment
 - e.g., Amazon commits to its algorithm and how it outputs decisions as a function of the inputs

• And yet, these algorithms will do “the best” with the information collected so far according to some objective function

• This may lead to **strategic overfitting**: forward looking agents will have additional incentives to strategize

• The representation we obtain is very relevant
 - the algorithm takes the role of the “sequentially rational principal”.

• Our result provides a way of representing these **Bayesian** algorithms and the outcomes that can arise from the strategic interaction with a forward looking agent.
Platforms use **learning algorithms** to optimize on prices/reserve prices based on historical data (c.f., Kanoria & Nazerzadeh, 2014; Haghtalab, Lykouris, Nietert, & Wei, 2022)

- Not the same as having limited commitment
 - e.g., Amazon commits to its algorithm and how it outputs decisions as a function of the inputs

And yet, these algorithms will do “the best” with the information collected so far according to some objective function

- This may lead to **strategic overfitting**: forward looking agents will have additional incentives to strategize
- The representation we obtain is very relevant
 - the algorithm takes the role of the “sequentially rational principal”.

Our result provides a way of representing these *Bayesian* algorithms and the outcomes that can arise from the strategic interaction with a forward looking agent.

- The analyst is forced to jointly describe the way information is stored and how it is used to determine the allocation.
Sale of a durable good: binary types and two periods
- A seller and a buyer interact over two periods.

\[U(\cdot, \theta) = 2 \sum_{t=1}^{T} \delta^{t-1}(q_t \theta - x_t) \]

\[W(\cdot, \theta) = 2 \sum_{t=1}^{T} \delta^{t-1} x_t \]

where \(\delta \in (0,1) \) is a common discount factor.
- A seller and a buyer interact over two periods.
- The seller owns one unit of a durable good and assigns value 0 to it.
Sale of a durable good

- A seller and a buyer interact over two periods.
- The seller owns one unit of a durable good and assigns value 0 to it.
- The buyer has private information indexed by \(\theta \in \Theta \equiv \{\theta_L, \theta_H\} \) and \(\mu_0 = \Pr(\theta = \theta_H) \)
- A seller and a buyer interact over two periods.
- The seller owns one unit of a durable good and assigns value 0 to it.
- The buyer has private information indexed by \(\theta \in \Theta \equiv \{ \theta_L, \theta_H \} \) and \(\mu_0 = \Pr(\theta = \theta_H) \).
- An allocation is a pair \((q, x) \in \{0, 1\} \times \mathbb{R}\),
- A seller and a buyer interact over two periods.
- The seller owns one unit of a durable good and assigns value 0 to it.
- The buyer has private information indexed by $\theta \in \Theta \equiv \{\theta_L, \theta_H\}$ and $\mu_0 = \Pr(\theta = \theta_H)$
- An allocation is a pair $(q, x) \in \{0, 1\} \times \mathbb{R}$,
 - q indicates whether the good is sold ($q = 1$) or not ($q = 0$), and
 - x is a payment from the buyer to the seller.
- If the good is sold in the first period, the game ends.
- If the final allocation is $\{(q_t, x_t)\}_{t \in \{1, 2\}}$, buyer and seller’s payoffs are
 $$U(\cdot, \theta) = 2 \sum_{t=1}^{\delta_t - 1} \delta_t (q_t \theta - x_t)$$
 and
 $$W(\cdot, \theta) = 2 \sum_{t=1}^{\delta_t - 1} \delta_t x_t$$
 where $\delta \in (0, 1)$ is a common discount factor.
Sale of a durable good

- A seller and a buyer interact over two periods.
- The seller owns one unit of a durable good and assigns value 0 to it.
- The buyer has private information indexed by $\theta \in \Theta \equiv \{\theta_L, \theta_H\}$ and $\mu_0 = \Pr(\theta = \theta_H)$
- An allocation is a pair $(q, x) \in \{0, 1\} \times \mathbb{R}$,
 - q indicates whether the good is sold ($q = 1$) or not ($q = 0$), and
 - x is a payment from the buyer to the seller.
- A seller and a buyer interact over two periods.
- The seller owns one unit of a durable good and assigns value 0 to it.
- The buyer has private information indexed by $\theta \in \Theta \equiv \{\theta_L, \theta_H\}$ and $\mu_0 = \Pr(\theta = \theta_H)$
- An allocation is a pair $(q, x) \in \{0, 1\} \times \mathbb{R}$,
 - q indicates whether the good is sold ($q = 1$) or not ($q = 0$), and
 - x is a payment from the buyer to the seller.
- If the good is sold in the first period, the game ends.
- A seller and a buyer interact over two periods.
- The seller owns one unit of a durable good and assigns value 0 to it.
- The buyer has private information indexed by $\theta \in \Theta \equiv \{\theta_L, \theta_H\}$ and $\mu_0 = \Pr(\theta = \theta_H)$
- An allocation is a pair $(q, x) \in \{0, 1\} \times \mathbb{R}$,
 - q indicates whether the good is sold ($q = 1$) or not ($q = 0$), and
 - x is a payment from the buyer to the seller.
- If the good is sold in the first period, the game ends.
- If the final allocation is $\{(q_t, x_t)\}_{t \in \{1, 2\}}$, buyer and seller’s payoffs are

$$U(\cdot, \theta) = \sum_{t=1}^{2} \delta^{t-1} (q_t \theta - x_t) \quad \text{and} \quad W(\cdot, \theta) = \sum_{t=1}^{2} \delta^{t-1} x_t$$

where $\delta \in (0, 1)$ is a common discount factor.
Timing: At the beginning of each period $t \in \{1, 2\}$
Sale of a durable good

Timing: At the beginning of each period $t \in \{1, 2\}$
Timing: At the beginning of each period $t \in \{1, 2\}$
Timing: At the beginning of each period $t \in \{1, 2\}$
Timing: At the beginning of each period $t \in \{1, 2\}$

- Seller offers mechanism
- Buyer accepts mechanism
- Buyer rejects mechanism

When rejected, trade stops and the following occurs:

$$ (q, x) = (0, 0) \rightarrow t + 1 $$
Timing: At the beginning of each period $t \in \{1, 2\}$

- Seller offers mechanism
- Buyer accepts
- Buyer participates
- Buyer rejects

$$(q, x) = (0, 0) \quad \rightarrow \quad t + 1$$
Timing: At the beginning of each period $t \in \{1, 2\}$

- The seller offers a durable good.
- A buyer participates in the mechanism.
- If the buyer accepts the offer, the good is sold.
- If the buyer rejects the offer, no trade occurs.

Mathematically, this is represented as:

$$(q, x) = (0, 0) \rightarrow t + 1$$
Sale of a durable good

Timing: At the beginning of each period $t \in \{1, 2\}$
Timing: At the beginning of each period $t \in \{1, 2\}$

The seller offers a mechanism to the buyer. The buyer can either accept or reject the offer.

- **Accepts**: The buyer participates in the allocation. The outcome is $(q, x) = (0, 0)$, and the allocation proceeds to the next period $t + 1$.

- **Rejects**: No trade occurs, and the allocation process stops at $t + 1$.

The timing diagram illustrates the sequence of events:

1. Seller offers a mechanism.
2. Buyer accepts or rejects.
3. If accepted, allocation proceeds; if rejected, no trade.
4. End of period t.
5. Move to period $t + 1$.

This structure captures the timing of decisions and outcomes in a durable good sale process.
Sale of a durable good

- Final period: seller has full commitment. (Standard) Revelation principle applies.
- Let μ_2 denote the seller’s belief that $\theta = \theta_H$.
Sale of a durable good

- Final period: seller has full commitment. (Standard) Revelation principle applies.
- Let μ_2 denote the seller’s belief that $\theta = \theta_H$.
- The optimal mechanism is as follows:

$$\bar{\mu} \equiv \frac{\theta_L}{\theta_H}$$
Sale of a durable good

- Final period: seller has full commitment. (Standard) Revelation principle applies.
- Let μ_2 denote the seller’s belief that $\theta = \theta_H$.
- The optimal mechanism is as follows:

\[
\begin{align*}
\text{sell at } \theta_L & \\
\mu \equiv \frac{\theta_L}{\theta_H} & \\
\mu_2 &
\end{align*}
\]
Sale of a durable good

- Final period: seller has full commitment. (Standard) Revelation principle applies.
- Let μ_2 denote the seller’s belief that $\theta = \theta_H$.
- The optimal mechanism is as follows:

$$\mu \equiv \frac{\theta_L}{\theta_H}$$

- Why μ_2? Whenever the seller sells to both types, he leaves rents $\mu_2 \Delta \theta$ to θ_H.

$$\theta_L = \mu_2(\theta_H - \Delta \theta) + (1 - \mu_2) \theta_L = \mu_2 \theta_H + (1 - \mu_2)(\theta_L - \mu_2 \Delta \theta) = \mu_2 \theta_H + (1 - \mu_2) \hat{\theta}_L(\mu_2)$$

When $\mu_2 = \mu$, then $\hat{\theta}_L(\mu_2) = 0$.
Sale of a durable good

- Final period: seller has full commitment. (Standard) Revelation principle applies.
- Let μ_2 denote the seller’s belief that $\theta = \theta_H$.
- The optimal mechanism is as follows:

$$\mu \equiv \frac{\theta_L}{\theta_H}$$

sell at θ_L \hspace{2cm} sell at θ_H

$$\mu_2$$
Sale of a durable good

- Final period: seller has full commitment. (Standard) Revelation principle applies.
- Let μ_2 denote the seller’s belief that $\theta = \theta_H$.
- The optimal mechanism is as follows:

\[
\begin{align*}
\mu_2 &\equiv \frac{\theta_L}{\theta_H} \\
\mu &\equiv \frac{\theta_L}{\theta_H} \\
\text{sell at } \theta_L &\approx \text{sell at } \theta_H
\end{align*}
\]
Sale of a durable good

- Final period: seller has full commitment. (Standard) Revelation principle applies.
- Let μ_2 denote the seller’s belief that $\theta = \theta_H$.
- The optimal mechanism is as follows:

\[
\begin{align*}
\theta_L &= \mu_2(\theta_H - \Delta \theta) + (1 - \mu_2)\theta_L = \mu_2\theta_H + (1 - \mu_2)(\theta_L - \frac{\mu_2}{1 - \mu_2}\Delta \theta) \\
&= \mu_2\theta_H + (1 - \mu_2)\hat{\theta}_L(\mu_2)
\end{align*}
\]

- Why $\bar{\mu}$? Whenever the seller sells to both types, he leaves rents $\mu_2\Delta \theta$ to θ_H.

\[
\begin{align*}
\theta_L &= \mu_2(\theta_H - \Delta \theta) + (1 - \mu_2)\theta_L = \mu_2\theta_H + (1 - \mu_2)(\theta_L - \frac{\mu_2}{1 - \mu_2}\Delta \theta) \\
&= \mu_2\theta_H + (1 - \mu_2)\hat{\theta}_L(\mu_2)
\end{align*}
\]
Sale of a durable good

• Final period: seller has full commitment. (Standard) Revelation principle applies.
• Let μ_2 denote the seller’s belief that $\theta = \theta_H$.
• The optimal mechanism is as follows:

![Diagram showing optimal mechanism]

- Why $\bar{\mu}$? Whenever the seller sells to both types, he leaves rents $\mu_2 \Delta \theta$ to θ_H.

$$\theta_L = \mu_2(\theta_H - \Delta \theta) + (1 - \mu_2)\theta_L = \mu_2 \theta_H + (1 - \mu_2)(\theta_L - \frac{\mu_2}{1 - \mu_2} \Delta \theta)$$

$$= \mu_2 \theta_H + (1 - \mu_2)\hat{\theta}_L(\mu_2)$$

When $\mu_2 = \bar{\mu}$, then $\hat{\theta}_L(\mu_2) = 0$.
Wrapping up:

\[R_2(\mu_2) = \begin{cases}
\theta_L & \text{if } \mu_2 \leq \bar{\mu} \\
\mu_2\theta_H & \text{if } \mu_2 > \bar{\mu}
\end{cases} = \begin{cases}
\mu_2\theta_H + (1 - \mu_2)\hat{\theta}_L(\mu_2) & \text{if } \mu_2 \leq \bar{\mu} \\
\mu_2\theta_H & \text{if } \mu_2 > \bar{\mu}
\end{cases} \]

Seller's payoff in period 2
Sale of a durable good

• Recall μ_1 is the prior probability that $\theta = \theta_H$.

μ_1 is the prior probability that $\theta = \theta_H$.

$t = 2$
• Recall μ_1 is the prior probability that $\theta = \theta_H$.

• A mechanism is a tuple

\[
M \xrightarrow{\varphi(\cdot|m)} S \times A
\]

- M is the set of input messages
- S is the set of output messages
- $\varphi : M \mapsto \Delta(S \times A)$
• Recall μ_1 is the prior probability that $\theta = \theta_H$.

• A mechanism is a tuple

\[M \xrightarrow{\varphi(\cdot|m)} S \times A \]

• M is the set of input messages
• S is the set of output messages
• $\varphi : M \mapsto \Delta(S \times A)$ (finite support) – without loss with finitely many types
• Recall \(\mu_1 \) is the prior probability that \(\theta = \theta_H \).

• A mechanism is a tuple

\[
\text{Buyer} \quad \xrightarrow{\text{sends a message}} \quad M \quad \xrightarrow{\varphi(\cdot|m)} \quad S \times A
\]

• \(M \) is the set of input messages
• \(S \) is the set of output messages
• \(\varphi : M \mapsto \Delta(S \times A) \) (finite support)– without loss with finitely many types
• Recall μ_1 is the prior probability that $\theta = \theta_H$.
• A mechanism is a tuple

\begin{align*}
\text{Buyer} & \xrightarrow{\text{sends a message}} M \xrightarrow{\varphi(\cdot|m)} S \times A \\
\text{Seller}
\end{align*}

• M is the set of input messages
• S is the set of output messages
• $\varphi : M \mapsto \Delta(S \times A)$ (finite support)— without loss with finitely many types
Some simplifications:

\[M_1 = \theta \]

\[\phi_1(S_1, a_1 | m_1) \]

\[\phi_1(S_3, a_3 | m_1) \]

\[\phi_1(S_1, a_2 | m_2) \]

\[\phi_1(S_3, a_3 | m_2) \]

\[\theta_1 - \theta_{a_1} \phi_1(S_2, a_2 | m_1) + (1 - \theta_{a_1}) \phi_1(S_2, a_3 | m_2) \]

Bester and Strausz (JET, 2007)
Some simplifications:

- $M_1 = ?$
Some simplifications:

- \(M_1 = ? \)

\[\varphi_1(s_1, a_1 | m_1) \rightarrow s_1, a_1 \]

\[\varphi_1(s_3, a_3 | m_1) \rightarrow s_3, a_3 \]

\[\varphi_1(s_1, a_2 | m_2) \rightarrow s_1, a_1 \]

\[\varphi_1(s_3, a_3 | m_2) \rightarrow s_3, a_3 \]
Some simplifications:

- $M_1 = ?$

\[
\begin{align*}
\varphi_1(s_1, a_1 | m_1) &\rightarrow s_1, a_1 \\
\varphi_1(s_2, a_2 | m_1) &\rightarrow s_2, a_2 \\
p_\theta(s_1, a_1 | m_1) &\rightarrow s_1, a_1 \\
p_\theta(s_3, a_3 | m_1) &\rightarrow s_3, a_3 \\
p_\theta(s_2, a_2 | m_2) &\rightarrow s_2, a_2 \\
\varphi_1(s_3, a_3 | m_2) &\rightarrow s_3, a_3 \\
\varphi_1(s_2, a_2 | m_2) &\rightarrow s_2, a_2 \\
\varphi_1(s_3, a_3 | m_2) &\rightarrow s_3, a_3 \\
\end{align*}
\]
Some simplifications:

- $M_1 = ?$

\[
\begin{align*}
M_1 &= \theta_m s_1 a_1 s_2 a_2 s_3 a_3 m_2 \\
M_2 &= \theta_m s_1 a_1 s_2 a_2 s_3 a_3 m_2
\end{align*}
\]
Some simplifications:

- \(M_1 =? \)

\[
\begin{align*}
\varphi_1(s_1, a_1 | m_1) & \rightarrow s_1, a_1 \\
\varphi_1(s_3, a_3 | m_1) & \rightarrow s_3, a_3 \\
p_\theta & \rightarrow s_2, a_2 \\
1 - p_\theta & \rightarrow s_1, a_1 \\
\varphi_1(s_1, a_1 | m_2) & \rightarrow s_1, a_1 \\
\varphi_1(s_3, a_3 | m_2) & \rightarrow s_3, a_3 \\
\end{align*}
\]
Some simplifications:

- \(M_1 = \Theta \)

\(\theta
\begin{align*}
&\varphi_1(s_1, a_1|m_1) \rightarrow s_1, a_1 \\
&\varphi_1(s_3, a_3|m_1) \rightarrow s_3, a_3 \\
&1 - p_\theta \varphi_1(s_1, a_1|m_2) \rightarrow s_1, a_1 \\
&\varphi_1(s_3, a_3|m_2) \rightarrow s_3, a_3
\end{align*}

\(\phi^*(s_1, a_1|\theta) \rightarrow s_1, a_1 \\
\phi^*(s_2, a_2|\theta) \rightarrow s_2, a_2 \\
\phi^*(s_3, a_3|\theta) \rightarrow s_3, a_3 \)
Some simplifications:

- $M_1 = \Theta$
Some simplifications:

- $M_1 = \Theta$

- Bester and Strausz (JET, 2007)
$S_1 = ?$
Output messages

\(S_1 = ? \)

\[\varphi_1(s_1, a_1|\theta) \]

\[\varphi_1(s_3, a_3|\theta) \]

\[\theta \]

\[s_1, a_1 \]

\[s_2, a_2 \]

\[s_3, a_3 \]
Output messages

\[S_1 =? \]

\[\varphi_1(s_1, a_1|\theta) \]

\[\theta \]

\[\varphi_1(s_3, a_3|\theta) \]

\[s_1, a_1 \rightarrow \mu, a_1 \]

\[s_2, a_2 \rightarrow \mu, a_2 \]

\[s_3, a_3 \rightarrow \mu', a_3 \]
Output messages

$S_1 = ?$

θ

$\varphi_1(s_1, a_1 | \theta) \rightarrow s_1, a_1 \rightarrow \mu, a_1, p_2(\mu)$

$\varphi_1(s_3, a_3 | \theta) \rightarrow s_3, a_3 \rightarrow \mu', a_3, p_2(\mu')$

θ

$\varphi_1(s_2, a_2 | \theta) \rightarrow s_2, a_2 \rightarrow \mu, a_2, p_2(\mu)$

period 1
Output messages

\[S_1 = ? \]

\[\varphi_1(\mu, a_1 | \theta) \]

\[\theta \]

\[\varphi_1(\mu', a_3 | \theta) \]

\[\mu', a_3 \rightarrow \mu', a_3, p_2(\mu') \]

\[\mu, a_1 \rightarrow \mu, a_1, p_2(\mu) \]

\[\mu, a_2 \rightarrow \mu, a_2, p_2(\mu) \]

\[\text{period 1} \]
Output messages

\[S_1 = \Delta(\Theta) \]
Separating information and allocation design

\[\varphi_1(\mu, a_1 | \theta) \]

\[\theta \]

\[\varphi_1(\mu', a_3 | \theta) \]

\[\mu, a_1 \rightarrow \mu, a_1, p_2(\mu) \]

\[\mu, a_2 \rightarrow \mu, a_2, p_2(\mu) \]

\[\mu', a_3 \rightarrow \mu', a_3, p_2(\mu') \]
Separating information and allocation design

\[\varphi_1(\mu, a_1 | \theta) \]

\[\varphi_1(\mu', a_3 | \theta) \]

\[\theta \rightarrow \mu, a_1 \rightarrow \mu, a_1, p_2(\mu) \]

\[\theta \rightarrow \mu, a_2 \rightarrow \mu, a_2, p_2(\mu) \]

\[\theta \rightarrow \mu', a_3 \rightarrow \mu', a_3, p_2(\mu') \]
Separating information and allocation design

\[\begin{align*}
\theta & \quad \mu, a_1 \quad \rightarrow \quad \mu, a_1, p_2(\mu) \\
\phi_1(\mu, a_1 | \theta) & \\
\theta & \quad \mu, a_2 \quad \rightarrow \quad \mu, a_2, p_2(\mu) \\
\phi_1(\mu', a_3 | \theta) & \\
\mu', a_3 & \quad \rightarrow \quad \mu', a_3, p_2(\mu') \\
\end{align*} \]

- \[\Pr_{\phi}(\mu | \theta) = \phi_1(\mu, a_1 | \theta) + \phi_1(\mu, a_2 | \theta) \]
Separating information and allocation design

$$\varphi_1(\mu, a_1 | \theta)$$

$$\varphi_1(\mu', a_3 | \theta)$$

$$\theta \rightarrow \mu, a_1 \rightarrow \mu, a_1, p_2(\mu)$$

$$\theta \rightarrow \mu, a_2 \rightarrow \mu, a_2, p_2(\mu)$$

$$\theta \rightarrow \mu', a_3 \rightarrow \mu', a_3, p_2(\mu')$$

$$\theta \rightarrow \mu' \rightarrow \mu'$$

- $$\Pr_\varphi(\mu | \theta) = \varphi_1(\mu, a_1 | \theta) + \varphi_1(\mu, a_2 | \theta)$$
Separating information and allocation design

\[\varphi_1(\mu, a_1|\theta) \]

\[\varphi_1(\mu', a_3|\theta) \]

\[\mu, a_1 \rightarrow \mu, a_1, p_2(\mu) \]

\[\mu, a_2 \rightarrow \mu, a_2, p_2(\mu) \]

\[\mu', a_3 \rightarrow \mu', a_3, p_2(\mu') \]

\[\text{Pr}_{\varphi}(\mu|\theta) = \varphi_1(\mu, a_1|\theta) + \varphi_1(\mu, a_2|\theta) \]

\[\text{Pr}_{\varphi}(a_1|\theta, \mu) = \varphi_1(\mu, a_1|\theta)/\text{Pr}_{\varphi}(\mu|\theta) \]
Separating information and allocation design

- \(\text{Pr}_\varphi(\mu|\theta) = \varphi_1(\mu, a_1|\theta) + \varphi_1(\mu, a_2|\theta) \)

- \(\text{Pr}_\varphi(a_1|\theta, \mu) = \varphi_1(\mu, a_1|\theta) / \text{Pr}_\varphi(\mu|\theta) \)
Separating information and allocation design

- \(\Pr_{\varphi}(\mu|\theta) = \varphi_1(\mu, a_1|\theta) + \varphi_1(\mu, a_2|\theta) \)
- \(\Pr_{\varphi}(a_1|\theta, \mu) = \varphi_1(\mu, a_1|\theta)/\Pr_{\varphi}(\mu|\theta) \)
Separating information and allocation design

\[\phi_1(s_1, a_1 | \theta) \]

\[\phi_1(s_3, a_3 | \theta) \]

- \(\Pr_\varphi(\mu | \theta) = \phi_1(\mu, a_1 | \theta) + \phi_1(\mu, a_2 | \theta) \)

- \(\Pr_\varphi(a_1 | \theta, \mu) = \phi_1(\mu, a_1 | \theta) / \Pr_\varphi(\mu | \theta) \)
Separating information and allocation design

- $\Pr_\varphi(\mu|\theta) = \varphi_1(\mu, a_1|\theta) + \varphi_1(\mu, a_2|\theta)$
- $\Pr_\varphi(a_1|\theta, \mu) = \varphi_1(\mu, a_1|\theta)/\Pr_\varphi(\mu|\theta)$
Separating information and allocation design

- Separate the design of the information from that of the allocation
- β is the mechanism's disclosure rule and α is the mechanism's allocation rule.
One last simplification

Quasilinearity + separation between allocation and information:

- No need to randomize on transfers: \(x(\mu_2) \) is the (expected) payment when output message is \(\mu_2 \)
- \(q(\mu_2) \) is the probability of selling the good when output message is \(\mu_2 \)
Thus, the seller’s optimal outcome solves:

$$\max_{\text{mechanisms}} \text{ Revenue}$$

where $M_1 = \Theta, S_1 = \Delta(\Theta), \varphi = \beta \otimes \alpha$ subject to

- Participation
- Truth telling
- Consistency between beliefs and output messages.
Thus, the seller’s optimal outcome solves:
Thus, the seller’s optimal outcome solves:

$$[x(\mu_2) + (1 - q(\mu_2))\delta R_2(\mu_2)]$$
Thus, the seller’s optimal outcome solves:

\[
\left(\sum_{\theta \in \Theta} \mu_1(\theta) \beta(\mu_2 | \theta) \right) \left[x(\mu_2) + (1 - q(\mu_2)) \delta R_2(\mu_2) \right]
\]
Thus, the seller’s optimal outcome solves:

$$\max_{\beta,q,x} \sum_{\mu_2 \in \Delta(\Theta)} \left(\sum_{\theta \in \Theta} \mu_1(\theta) \beta(\mu_2 | \theta) \right) \left[x(\mu_2) + (1 - q(\mu_2)) \delta R_2(\mu_2) \right]$$
Thus, the seller’s optimal outcome solves:

\[R_1(\mu_1) \equiv \max_{\beta,q,x} \sum_{\mu_2 \in \Delta(\Theta)} \left(\sum_{\theta \in \Theta} \mu_1(\theta) \beta(\mu_2|\theta) \right) [x(\mu_2) + (1 - q(\mu_2))\delta R_2(\mu_2)], \]
Thus, the seller’s optimal outcome solves:

\[R_1(\mu_1) \equiv \max_{\beta, q, x} \sum_{\mu_2 \in \Delta(\Theta)} \left(\sum_{\theta \in \Theta} \mu_1(\theta) \beta(\mu_2|\theta) \right) \left[x(\mu_2) + (1 - q(\mu_2)) \delta R_2(\mu_2) \right], \]

subject to for all \(\theta \in \{\theta_L, \theta_H\} \):
Thus, the seller’s optimal outcome solves:

\[R_1(\mu_1) \equiv \max_{\beta, q, x} \sum_{\mu_2 \in \Delta(\Theta)} \left(\sum_{\theta \in \Theta} \mu_1(\theta) \beta(\mu_2|\theta) \right) \left[x(\mu_2) + (1 - q(\mu_2))\delta R_2(\mu_2) \right], \]

subject to for all \(\theta \in \{\theta_L, \theta_H\} \):

\[\text{Participation}_\theta: \sum_{\mu_2 \in \Delta(\Theta)} \beta(\mu_2|\theta)(\theta q(\mu_2) - x(\mu_2) + (1 - q(\mu_2))\delta u^*(\mu_2, \theta)) \geq 0 \]
Thus, the seller’s optimal outcome solves:

\[
R_1(\mu_1) \equiv \max_{\beta, q, x} \sum_{\mu_2 \in \Delta(\Theta)} \left(\sum_{\theta \in \Theta} \mu_1(\theta) \beta(\mu_2 | \theta) \right) \left[x(\mu_2) + (1 - q(\mu_2)) \delta R_2(\mu_2) \right],
\]

subject to for all \(\theta \in \{\theta_L, \theta_H\} \):

Participation\(_{\theta} \): \[\sum_{\mu_2 \in \Delta(\Theta)} \beta(\mu_2 | \theta)(\theta q(\mu_2) - x(\mu_2) + (1 - q(\mu_2)) \delta u^*(\mu_2, \theta)) \geq 0 \]

Truth telling\(_{\theta, \theta'} \): \[\sum_{\mu_2 \in \Delta(\Theta)} (\beta(\mu_2 | \theta) - \beta(\mu_2 | \theta'))(\theta q(\mu_2) - x(\mu_2) + (1 - q(\mu_2)) \delta u^*(\mu_2, \theta)) \geq 0 \]
Thus, the seller's optimal outcome solves:

\[R_1(\mu_1) \equiv \max_{\beta,q,x} \sum_{\mu_2 \in \Delta(\Theta)} \left(\sum_{\theta \in \Theta} \mu_1(\theta)\beta(\mu_2|\theta) \right) \left[x(\mu_2) + (1 - q(\mu_2))\delta R_2(\mu_2) \right], \]

subject to for all \(\theta \in \{\theta_L, \theta_H\} \):

- **Participation** \(\theta \):
 \[\sum_{\mu_2 \in \Delta(\Theta)} \beta(\mu_2|\theta)(\theta q(\mu_2) - x(\mu_2) + (1 - q(\mu_2))\delta u^*(\mu_2, \theta)) \geq 0 \]

- **Truth telling** \(\theta, \theta' \):
 \[\sum_{\mu_2 \in \Delta(\Theta)} (\beta(\mu_2|\theta) - \beta(\mu_2|\theta'))(\theta q(\mu_2) - x(\mu_2) + (1 - q(\mu_2))\delta u^*(\mu_2, \theta)) \geq 0 \]

- **Consistency** \(\mu_2 \):
 \[\mu_2(\theta_H) \left[\sum_{\theta} \mu_1(\theta)\beta(\mu_2|\theta) \right] = \mu_1(\theta_H)\beta(\mu_2|\theta_H) \]
At the optimum, the following hold:

- The seller extracts all surplus from low-valuation buyer (\Rightarrow participation binds for θ_L)
- High-valuation buyer is indifferent between reporting θ_H and θ_L (\Rightarrow Truthtelling binds for θ_H)
At the optimum, the following hold:

- The seller extracts all surplus from low-valuation buyer (⇒ participation binds for θ_L)
- High-valuation buyer is indifferent between reporting θ_H and θ_L (⇒ Truth telling binds for θ_H)

Hence, we can rewrite the problem as:
At the optimum, the following hold:

- The seller extracts all surplus from low-valuation buyer (⇒ participation binds for θ_L)
- High-valuation buyer is indifferent between reporting θ_H and θ_L (⇒ Truth telling binds for θ_H)

Hence, we can rewrite the problem as:

$$q(\mu_2)$$
At the optimum, the following hold:

- The seller extracts all surplus from low-valuation buyer (⇒ participation binds for \(\theta_L \))
- High-valuation buyer is indifferent between reporting \(\theta_H \) and \(\theta_L \) (⇒ Truthtelling binds for \(\theta_H \))

Hence, we can rewrite the problem as:

\[
q(\mu_2)(\mu_2\theta_H + (1 - \mu_2)\hat{\theta}_L(\mu_1))
\]
At the optimum, the following hold:

- The seller extracts all surplus from low-valuation buyer (⇒ participation binds for θ_L)
- High-valuation buyer is indifferent between reporting θ_H and θ_L (⇒ Truthfulness binds for θ_H)

Hence, we can rewrite the problem as:

$$q(\mu_2)(\mu_2 \theta_H + (1 - \mu_2)\hat{\theta}_L(\mu_1)) + (1 - q(\mu_2))$$
At the optimum, the following hold:

- The seller extracts all surplus from low-valuation buyer (⇒ participation binds for θ_L)
- High-valuation buyer is indifferent between reporting θ_H and θ_L (⇒ Truth-telling binds for θ_H)

Hence, we can rewrite the problem as:

$$q(\mu_2)(\mu_2\theta_H + (1 - \mu_2)\hat{\theta}_L(\mu_1)) + (1 - q(\mu_2))\delta R(\mu_2; \mu_1)$$
At the optimum, the following hold:

- The seller extracts all surplus from low-valuation buyer (\Rightarrow participation binds for θ_L)
- High-valuation buyer is indifferent between reporting θ_H and θ_L (\Rightarrow Truth telling binds for θ_H)

Hence, we can rewrite the problem as:

$$\left(\sum_{\theta \in \Theta} \mu_1(\theta) \beta(\mu_2 | \theta)\right) \left[q(\mu_2) (\mu_2 \theta_H + (1 - \mu_2) \hat{\theta}_L(\mu_1)) + (1 - q(\mu_2)) \delta R(\mu_2; \mu_1)\right]$$
At the optimum, the following hold:

• The seller extracts all surplus from low-valuation buyer (⇒ participation binds for θ_L)
• High-valuation buyer is indifferent between reporting θ_H and θ_L (⇒ Truth-telling binds for θ_H

Hence, we can rewrite the problem as:

$$\tau(\mu_2) \left[q(\mu_2)(\mu_2 \theta_H + (1 - \mu_2)\hat{\theta}_L(\mu_1)) + (1 - q(\mu_2))\delta R(\mu_2; \mu_1) \right]$$
Seller optimal outcome

At the optimum, the following hold:

- The seller extracts all surplus from low-valuation buyer (⇒ participation binds for θ_L)
- High-valuation buyer is indifferent between reporting θ_H and θ_L (⇒ Truth-telling binds for θ_H)

Hence, we can rewrite the problem as:

$$R_1(\mu_1) = \max_{\tau, q} \sum_{\mu_2 \in \Delta(\Theta)} \tau(\mu_2) \left[q(\mu_2)(\mu_2 \theta_H + (1 - \mu_2)\hat{\theta}_L(\mu_1)) + (1 - q(\mu_2))\delta R(\mu_2; \mu_1) \right]$$
At the optimum, the following hold:

- The seller extracts all surplus from low-valuation buyer (⇒ participation binds for θ_L)
- High-valuation buyer is indifferent between reporting θ_H and θ_L (⇒ Truth-telling binds for θ_H)

Hence, we can rewrite the problem as:

$$R_1(\mu_1) = \max_{\tau,q} \sum_{\mu_2 \in \Delta(\Theta)} \tau(\mu_2) \left[q(\mu_2)(\mu_2 \theta_H + (1 - \mu_2)\hat{\theta}_L(\mu_1)) + (1 - q(\mu_2))\delta R(\mu_2; \mu_1) \right]$$

subject to

$$\sum_{\mu_2 \in \Delta(\Theta)} \tau(\mu_2)\mu_2(\theta_H) = \mu_1(\theta_H)$$
At the optimum, the following hold:

- The seller extracts all surplus from low-valuation buyer (⇒ participation binds for θ_L)
- High-valuation buyer is indifferent between reporting θ_H and θ_L (⇒ Truth-telling binds for θ_H)

Hence, we can rewrite the problem as:

$$R_1(\mu_1) = \max_{\tau, q} \sum_{\mu_2 \in \Delta(\Theta)} \tau(\mu_2) \left[q(\mu_2)(\mu_2 \theta_H + (1 - \mu_2)\hat{\theta}_L(\mu_1)) + (1 - q(\mu_2))\delta R(\mu_2; \mu_1) \right]$$

subject to

$$\sum_{\mu_2 \in \Delta(\Theta)} \tau(\mu_2) \mu_2(\theta_H) = \mu_1(\theta_H)$$
Sale of a durable good: $t = 1$

$$\delta R_2(\mu_2; \mu_1) = \begin{cases}
\delta(\mu_2\theta_H + (1 - \mu_2)\hat{\theta}_L(\mu_1)) & \text{if } \mu_2 < \bar{\mu} \\
\delta\mu_2\theta_H & \text{if } \mu_2 > \bar{\mu}
\end{cases}$$
Sale of a durable good: $t = 1$

\[\delta R_2(\mu_2; \mu_1) = \begin{cases}
\delta(\mu_2 \theta_H + (1 - \mu_2) \hat{\theta}_L(\mu_1)) & \text{if } \mu_2 < \bar{\mu} \\
\delta \mu_2 \theta_H & \text{if } \mu_2 > \bar{\mu}
\end{cases} \]
Sale of a durable good: $t = 1$

$$\delta R_2(\mu_2; \mu_1) = \begin{cases}
\delta (\mu_2 \theta_H + (1 - \mu_2) \hat{\theta}_L(\mu_1)) & \text{if } \mu_2 < \bar{\mu} \\
\delta \mu_2 \theta_H & \text{if } \mu_2 > \bar{\mu}
\end{cases}$$
Sale of a durable good: $t = 1$

$$
\delta R_2(\mu_2; \mu_1) = \begin{cases}
\delta (\mu_2 \theta_H + (1 - \mu_2) \hat{\theta}_L(\mu_1)) & \text{if } \mu_2 < \bar{\mu} \\
\delta \mu_2 \theta_H & \text{if } \mu_2 > \bar{\mu}
\end{cases}
$$
The "Bayesian persuasion" feel is a consequence of $S \simeq \Delta(\Theta) \Rightarrow$ Constrained Information Design

$$\max_{\tau, q} \sum_{\mu_2 \in \Delta(\Theta)} \tau(\mu_2) \left[q(\mu_2)(\mu_2 \theta_H + (1 - \mu_2)\hat{\theta}_L(\mu_1)) + (1 - q(\mu_2))\delta R_2(\mu_2; \mu_1) \right]$$
 Seller optimal outcome

\[
\max_{\tau,q} \sum_{\mu_2 \in \Delta(\Theta)} \tau(\mu_2) \left[0 \times (\mu_2 \hat{\theta}_H + (1 - \mu_2) \hat{\theta}_L(\mu_1)) + 1 \times \delta R_2(\mu_2; \mu_1) \right]
\]
Seller optimal outcome

\[
\max_{\tau,q} \sum_{\mu_2 \in \Delta(\Theta)} \tau(\mu_2) \left[1 \times (\mu_2 \theta_H + (1 - \mu_2)\hat{\theta}_L(\mu_1)) + 0 \times \delta R_2(\mu_2; \mu_1) \right]
\]

The "Bayesian persuasion" feel is a consequence of $S \approx \Delta(\Theta) \Rightarrow$ Constrained Information Design
The "Bayesian persuasion" feel is a consequence of

\[
\max_{\tau} \sum_{\mu_2 \in \Delta(\Theta)} \tau(\mu_2) \max\{\mu_2 \theta_H + (1 - \mu_2) \hat{\theta}_L(\mu_1), \delta R(\mu_2; \mu_1)\}
\]
The "Bayesian persuasion" feel is a consequence of $\mathcal{S} \simeq \Delta(\Theta) \Rightarrow$ Constrained Information Design.

$$\max_{\tau} \sum_{\mu_2 \in \Delta(\Theta)} \tau(\mu_2) \max\{\mu_2 \theta_H + (1 - \mu_2) \hat{\theta}_L(\mu_1), \delta R(\mu_2; \mu_1)\}$$
The "Bayesian persuasion" feel is a consequence of $S \simeq \Delta(\Theta) \Rightarrow$ Constrained Information Design.

\[
\max_{\tau} \sum_{\mu_2 \in \Delta(\Theta)} \tau(\mu_2) \max\{\mu_2 \theta_H + (1 - \mu_2) \hat{\theta}_L(\mu_1), \delta R(\mu_2; \mu_1)\}
\]
\[
\max_{\tau} \sum_{\mu_2 \in \Delta(\Theta)} \tau(\mu_2) \max\{\mu_2 \theta_H + (1 - \mu_2) \hat{\theta}_L(\mu_1), \delta R(\mu_2; \mu_1)\}
\]

The "Bayesian persuasion" feel is a consequence of \(S \approx \Delta(\Theta) \Rightarrow \) Constrained Information Design.
• Seller splits μ_1 between $\mu_2 = \bar{\mu}$ and $\mu_2 = 1$.
• He sells when $\mu_2 = 1$ ($q(1) = 1$) and delays when $\mu_2 = \bar{\mu}$ ($q(\bar{\mu}) = 0$).
• Posted price of θ_H in both periods.
Seller optimal outcome

- Seller splits μ_1 between $\mu_2 = \bar{\mu}$ and $\mu_2 = 1$
- He sells when $\mu_2 = 1$ ($q(1) = 1$) and delays when $\mu_2 = \bar{\mu}$ ($q(\bar{\mu}) = 0$)
- Posted price of θ_H in both periods.

The “Bayesian persuasion” feel is a consequence of $S \simeq \Delta(\Theta)$
⇒ Constrained Information Design
Economic trade-off: tailor the allocation to the agent’s report vs. learning about the agent’s type.

- No such trade-off when there is commitment: acquired information can always be “forgotten.”
- The seller slows down learning:
 - Similar to Kanoria & Nazerzadeh, 2014; Abernethy et al., 2019; Haghtalab, Lykouris, Nietert, & Wei, 2022
Open questions
This is a problem that had been open in Economics for 30 years. There’s much to do!

1. Most glaring: multiple agents (the existing counterexamples do not survive with our mechanisms)
 - How to aggregate the information from the multiple agents? (e.g., Halpern & Teague, 2006)

2. More practical: How to implement direct-Blackwell mechanisms?
 - Multiple (infinite?) rounds of indirect observable communication?
 - Cryptographic commitments? (e.g., Ferreira & Weinberg, 2020)