Online Reinforcement Learning and Regret

Christina Lee Yu, Sean Sinclair
Cornell University

Main Question

"Given" an MDP,
 how do we find the optimal policy?

First setting

Fully Known Model

- Known transitions + rewards
- Q: Computational complexity of finding good policies?

First setting

Fully Known Model

- Known transitions + rewards
- Q: Computational complexity of finding good policies?

Stochastic Queueing Network

First setting

Fully Known Model

- Known transitions + rewards
- Q: Computational complexity of finding good policies?

Value Iteration Policy Iteration

Function Approximation

Second Setting

Generative Model

- Unknown transitions + rewards
- Can sample arbitrary (state, action)
- Q: Sample complexity of finding good policies?

Generative Model

- Unknown transitions + rewards
- Can sample arbitrary (state, action)
- Q: Sample complexity of finding good policies?

Physics Simulators
[Zhang,Zhang,Maguluri,2021] [Chen,Maguluri,Shakkottai,Shanmugam,2020]
[Agarwal,Kakade,Yang,2020] [Srikant,Ying,2019]

Second Setting

Generative Model

Q Learning
 TD Learning

- Unknown transitions + rewards
- Can sample arbitrary (state, action)
- Q: Sample complexity of finding good policies?
[Zhang,Zhang,Maguluri,2021] [Chen,Maguluri,Shakkottai,Shanmugam,2020]
[Agarwal,Kakade,Yang,2020] [Srikant,Ying,2019]

Do we need another setting?

Some problems have "restricted" interaction with environment

Fully Known Model

- Known transitions + rewards
- Q: Computational complexity of finding good policies?

Generative Model

- Can sample arbitrary (state, action)
- Q: Sample complexity of finding good policies?

Optimizing drug dosages

Decide dosage for next three days

[Bastani et al,2022] [Padmanabhan,Meskin,Haddad,2017][Kallus,Uehara,2020]

Drug dosage model

Decide dosage for next three days

Drug dosage model

Decide dosage for next three days

Drug dosage model

Decide dosage for next three days

Some problems have "restricted" interaction with environment

Fully Known Model

- Fully understand interaction of medication and patient covariates

Generative Model

- Able to simulate what "would" happen for any given dosage sequence

Online Model

- Can only sample trajectories under
some chosen policy
- Q: Regret incurred over time compared to optimal policy
- "Most complex": constrained
exploration, correlated estimates,

Third Setting (this talk)

Online Model

- Can only sample trajectories under some chosen policy

잉
 H1กH1H

- Q: Regret incurred over time compared to optimal policy
- "Most complex": constrained

Memory management exploration, correlated estimates,

A MDP is defined by: $\mathcal{M}=\left\{\mathcal{S}, \mathcal{A}, r, T, s_{0}, H\right\}$
$T_{h}: \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$
H

State space
Action space Reward

Transitions
Time horizon

$$
\pi_{h}: \mathcal{S} \rightarrow \Delta(\mathcal{A})
$$

Policy

A MDP is defined by: $\mathcal{M}=\left\{\mathcal{S}, \mathcal{A}, r, T, s_{0}, H\right\}$
\mathcal{S}
\mathcal{A}
$r_{h}: \mathcal{S} \times \mathcal{A} \rightarrow[0,1]$
$T_{h}: \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$
H

State space
Action space Reward

Transitions
Time horizon
$\pi_{h}: \mathcal{S} \rightarrow \Delta(\mathcal{A})$
Policy

Bellman Equations

The Bellman Equations note that:

$$
V_{h}^{\pi}(s)=\mathbb{E}_{A \sim \pi_{h}(s)}\left[r_{h}(s, A)+\mathbb{E}_{S^{\prime} \sim T_{h}(\cdot \mid s, A)}\left[V_{h+1}^{\pi}\left(S^{\prime}\right)\right]\right]
$$

$$
Q_{h}^{\pi}(s, a)=r_{h}(s, a)+\mathbb{E}_{S^{\prime} \sim T_{h}(\cdot \mid s, a)}\left[V_{h+1}^{\pi}\left(S^{\prime}\right)\right]
$$

Main Question

Online Model

- Can only sample trajectories under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Unknown transition + reward
Over sequence of episodes:

Main Question

Online Model

- Can only sample trajectories under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Unknown transition + reward
Over sequence of episodes:

- Pick current policy π^{k}

Main Question

Online Model

- Can only sample trajectories under some chosen policy
- Q: Regret incurred over time

Unknown transition + reward
Over sequence of episodes:

- Pick current policy π^{k}
- Execute over H steps (episode)

Main Question

Online Model

- Can only sample trajectories under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Unknown transition + reward
Over sequence of episodes:

- Pick current policy π^{k}
- Execute over H steps (episode)
- Collect dataset and update policy $\left\{\left(S_{1}^{k}, A_{1}^{k}, R_{1}^{k}\right), \ldots,\left(S_{H}^{k}, A_{H}^{k}, R_{H}^{k}\right)\right\}$

Main Question

Online Model

- Can only sample trajectories under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Unknown transition + reward
Over sequence of episodes:

- Pick current policy π^{k}
- Execute over H steps (episode)
- Collect dataset and update policy $\left\{\left(S_{1}^{k}, A_{1}^{k}, R_{1}^{k}\right), \ldots,\left(S_{H}^{k}, A_{H}^{k}, R_{H}^{k}\right)\right\}$

Horizon $\mathrm{H}=$ Number of dosage decisions Episodes K = Number of homogenous patients

Drug dosage model

Main Question

Online Model

- Can only sample trajectories under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Unknown transition + reward
Over sequence of episodes:

- Pick current policy π^{k}
- Execute over H steps (episode)
- Collect dataset and update policy $\left\{\left(S_{1}^{k}, A_{1}^{k}, R_{1}^{k}\right), \ldots,\left(S_{H}^{k}, A_{H}^{k}, R_{H}^{k}\right)\right\}$

Goal: Minimize regret:

$$
\operatorname{RegREt}(K)=\sum_{k=1}^{K} V_{1}^{*}\left(s_{0}\right)-V_{1}^{\pi^{k}}\left(s_{0}\right)
$$

Goal: Minimize regret:

$$
\operatorname{ReGRET}(K)=\sum_{k=1}^{K} V_{1}^{*}\left(s_{0}\right)-V_{1}^{\pi^{k}}\left(s_{0}\right)
$$

Theorem: If regret is sublinear in K , can obtain PAC-style sample complexity bound for learning a good policy:

$$
\operatorname{REGRET}(K) \leq K^{1-\alpha}
$$

$\operatorname{Number~} \operatorname{SAMPLES}(\epsilon) \leq \epsilon^{-1 / \alpha}$

Policy Comparison
Compare two policies $\pi^{A l g}, \pi^{R e f}$

Policy Comparison

Compare two policies $\pi^{A l g}, \pi^{R e f}$

Two policies differ on chosen action, how much to "compensate"?

Policy Comparison

Compare two policies $\pi^{A l g}, \pi^{\text {Ref }}$

Policy Comparison

Compare two policies $\pi^{A l g}, \pi^{\text {Ref }}$

Two policies differ on chosen action, how much to "compensate"?

$$
r\left(s_{h}, \pi^{R e f}\left(s_{h}\right)\right)-r\left(s_{h}, \pi^{A l g}\left(s_{h}\right)\right)
$$

$$
r\left(s_{h}, \pi^{R e f}\left(s_{h}\right)\right)
$$

Policy Comparison

Compare two policies $\pi^{A l g}, \pi^{\text {Ref }}$

Two policies differ on chosen action, how much to "compensate"?

$$
Q_{h}^{\pi^{A l g}}\left(s_{h}, \pi^{R e f}\left(s_{h}\right)\right)-V_{h}^{\pi^{A l g}}\left(s_{h}\right)
$$

Policy Comparison

Compare two policies $\pi^{A l g}, \pi^{\text {Ref }}$

Two policies differ on chosen action, how much to "compensate"?

$$
Q_{h}^{\pi^{A l g}}\left(s_{h}, \pi^{\operatorname{Ref}}\left(s_{h}\right)\right)-V_{h}^{\pi^{A l g}}\left(s_{h}\right)
$$

Play $\pi^{\text {Ref }}$ now, then $\pi^{A l g}$

Policy Comparison

Compare two policies $\pi^{A l g}, \pi^{R e f}$

Two policies differ on chosen action, how much to "compensate"?

$$
\begin{aligned}
& Q_{h}^{\pi^{A l g}}\left(s_{h}, \pi^{\text {Ref }}\left(s_{h}\right)\right)-V_{h}^{\pi^{A l g}}\left(s_{h}\right) \\
& =A_{h}^{\pi^{A l g}}\left(s_{h}, \pi^{\operatorname{Ref}}\left(s_{h}\right)\right)
\end{aligned}
$$

"Advantage" function

Given an MDP, how do we find the optimal policy?

Fully Known Model

- Known transitions + rewards
- Q: Computational complexity of finding good policies?

Two Approaches

Value Iteration
Policy Iteration

Given an MDP, how do we find the optimal policy?

Fully Known Model

- Known transitions + rewards
- Q: Computational complexity of finding good policies?

Given an MDP, how do we find the optimal policy?

Online Model

- Can only sample trajectories under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Two Approaches
Value Based
Policy Based

Given an MDP, how do we find the optimal policy?

Online Model

- Can only sample trajectories under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Two Approaches

Value Based

Policy Based

BASE STOCK POLICIES

Inventory Control

Goal: Find the best "base-stock" policy:

$$
\pi_{S}\left(I_{t}\right)= \begin{cases}I_{t}-S & I_{t} \leq S \\ 0 & I_{t} \geq S\end{cases}
$$

$\pi_{S}\left(I_{t}\right)$

Policy Based

Goal: Maximize $\sup _{\theta \in \Theta} V^{\pi_{\theta}}\left(s_{0}\right)$

Policy Based

Goal: Maximize $\sup _{\theta \in \Theta} V^{\pi_{\theta}}\left(s_{0}\right)=\sup _{\theta \in \Theta} J(\theta)$

Policy Based

Goal: Maximize $\sup _{\theta \in \Theta} V^{\pi_{\theta}}\left(s_{0}\right)=\sup _{\theta \in \Theta} J(\theta)$
$J(\theta)$

Use existing stochastic optimization algorithms

Policy Based

Goal: Maximize $\sup _{\theta \in \Theta} V^{\pi_{\theta}}\left(s_{0}\right)=\sup _{\theta \in \Theta} J(\theta)$

Use existing stochastic optimization algorithms

- Zero-Order (Gradient-Free) [Berahas,Byrd,Nocedal,2019] [Lei,Chen,Li,Zheng,2022] [Qian,Yu,2021]
- First-Order (Gradient-Based)
[Bhandari,Russo,2019]
- Second-Order (Hessian-Based)

Policy Based

Goal: Maximize $\sup _{\theta \in \Theta} V^{\pi_{\theta}}\left(s_{0}\right)=\sup _{\theta \in \Theta} J(\theta)$

Primitive:
How can we compare value of two policies?

Policy Comparison

Compare two policies $\pi^{A l g}, \pi^{R e f}$

Two policies differ on chosen action, how much to "compensate"?

$$
\begin{aligned}
& Q_{h}^{\pi^{A l g}}\left(s_{h}, \pi^{\operatorname{Ref}}\left(s_{h}\right)\right)-V_{h}^{\pi^{A l g}}\left(s_{h}\right) \\
& =A_{h}^{\pi^{A l g}}\left(s_{h} \cdot \pi^{\operatorname{Ref}}\left(s_{h}\right)\right)
\end{aligned}
$$

Sum over trajectories from $\pi^{\text {Ref }}$

Policy Difference
Goal: Maximize $\sup _{\theta \in \Theta} V^{\pi_{\theta}}\left(s_{0}\right)=\sup _{\theta \in \Theta} J(\theta)$

Policy Difference Lemma:

$$
V^{\pi^{R e f}}-V^{\pi^{A l g}}=\sum_{h=1}^{H} \mathbb{E}_{(S, A) \sim \operatorname{Pr}_{h}^{\pi^{R e f}}}\left[A_{h}^{\pi^{A l g}}(S, A)\right]
$$

Can evaluate using Monte-Carlo roll outs under current policy
Used to guarantee one-step improvement

Policy Based

Goal: Maximize $\sup _{\theta \in \Theta} V^{\pi_{\theta}}\left(s_{0}\right)=\sup _{\theta \in \Theta} J(\theta)$

Use existing stochastic optimization algorithms

- Zero-Order (Gradient-Free) [Berahas,Byrd,Nocedal,2019] [Lei,Chen,Li,Zheng,2022] [Qian,Yu,2021]
- First-Order (Gradient-Based)
[Bhandari,Russo,2019]
- Second-Order (Hessian-Based)

Policy Gradient
Goal: Maximize $\sup _{\theta \in \Theta} V^{\pi_{\theta}}\left(s_{0}\right)=\sup _{\theta \in \Theta} J(\theta)$

What even is $\nabla J(\theta)$?

$$
\begin{aligned}
& \text { Policy Gradient Theorem: } \\
& \nabla_{\theta} J(\theta)=\mathbb{E}_{\pi_{\theta}}\left[\nabla_{\theta} \log \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a)\right]
\end{aligned}
$$

Can evaluate using Monte-Carlo roll outs under current policy

Restricted Policies
Goal: Maximize $\sup _{\theta \in \Theta} V^{\pi_{\theta}}\left(s_{0}\right)=\sup _{\theta \in \Theta} J(\theta)$

Use prior domain knowledge to find restricted class of policies

Goal: Maximize $\sup _{\theta \in \Theta} V^{\pi_{\theta}}\left(s_{0}\right)=\sup _{\theta \in \Theta} J(\theta)$

Use prior domain knowledge to find restricted class of policies

Inventory Control
"Base Stock" policies are
provably near-optimal

Goal: Maximize $\sup _{\theta \in \Theta} V^{\pi_{\theta}}\left(s_{0}\right)=\sup _{\theta \in \Theta} J(\theta)$

Use prior domain knowledge to find restricted class of policies

Exploit structured properties of $J(\theta)$:

- Strongly convex
- Evaluate exactly over traces

Inventory Control
"Base Stock" policies are
provably near-optimal

Goal: Maximize $\sup _{\theta \in \Theta} V^{\pi_{\theta}}\left(s_{0}\right)=\sup _{\theta \in \Theta} J(\theta)$

Characterizes conditions when objective has no local maxima

Assumption 1: Differentiability / continuity of objective

Assumption 2: Closure of policy space under policy-iteration steps

Goal: Maximize $\sup _{\theta \in \Theta} V^{\pi_{\theta}}\left(s_{0}\right)=\sup _{\theta \in \Theta} J(\theta)$

Characterizes conditions when objective has no local maxima

Assumption 1: Differentiability / continuity of objective

Assumption 2: Closure of policy space under policy-iteration steps

Stochastic
Queueing Network

Linear
Quadratic
Regulator

Given a MDP, how do we find the optimal policy?

Online Model

- Can only sample trajectories under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Two Approaches

Value Based
Policy Based

Value Based

The Bellman Optimality Equations note that:

$$
\begin{aligned}
V_{h}^{*}(s) & =\max _{a \in \mathcal{A}} Q_{h}^{*}(s, a) \\
Q_{h}^{*}(s, a) & =r_{h}(s, a)+\mathbb{E}_{S^{\prime} \sim T_{h}(\cdot \mid s, a)}\left[V_{h+1}^{*}\left(S^{\prime}\right)\right]
\end{aligned}
$$

Value Based

The Bellman Optimality Equations note that:

$$
\begin{aligned}
V_{h}^{*}(s) & =\max _{a \in \mathcal{A}} Q_{h}^{*}(s, a) \\
Q_{h}^{*}(s, a) & =r_{h}(s, a)+\mathbb{E}_{S^{\prime} \sim T_{h}(\cdot \mid s, a)}\left[V_{h+1}^{*}\left(S^{\prime}\right)\right]
\end{aligned}
$$

Model-Based

- Estimate r and T
- Compute Q*

Play greedy w.r.t. Q^{*}

- Time complexity / storage scales $H S^{2} A$

Model-Free

- Estimate Q^{*} directly
- Play greedy w.r.t. Q^{*}
- Better time complexity / storage (only HSA)

Optimism Principle

- Optimistic estimate

True value

[Simchowitz,Jamieson,2019]

Optimism Principle

- Optimistic estimate

True value

[Simchowitz,Jamieson,2019]

Optimism Principle

- Optimistic estimate

True value

[Simchowitz,Jamieson,2019]

Optimism Principle

- Optimistic estimate

True value

[Simchowitz,Jamieson,2019]

Optimism Principle

_— Optimistic estimate
True value

Estimates converge to true value for
optimal actions on sample paths
[Simchowitz,Jamieson,2019]

1. Optimistic Estimates

$$
\bar{Q}_{h}(s, a) \geq Q_{h}^{*}(s, a)
$$

2. Monotone non-increasing, decrease "fast enough"

$$
\bar{Q}_{h}(s, a)-Q_{h}^{*}(s, a) \sim \frac{1}{\sqrt{t}}
$$

3. Play greedy

$$
\pi_{h}^{k}(s)=\operatorname{argmax}_{a \in \mathcal{A}} \bar{Q}_{h}(s, a)
$$

Value Based

The Bellman Optimality Equations note that:

$$
\begin{aligned}
V_{h}^{*}(s) & =\max _{a \in \mathcal{A}} Q_{h}^{*}(s, a) \\
Q_{h}^{*}(s, a) & =r_{h}(s, a)+\mathbb{E}_{S^{\prime} \sim T_{h}(\cdot \mid s, a)}\left[V_{h+1}^{*}\left(S^{\prime}\right)\right]
\end{aligned}
$$

Model-Based

Model-Free

- Estimate r and T
- Compute Q^{*}

Play greedy w.r.t. Q^{*}

- Time complexity / storage scales $H S^{2} A$

Model Based

The Bellman Optimality Equations note that:

$$
\begin{aligned}
V_{h}^{*}(s) & =\max _{a \in \mathcal{A}} Q_{h}^{*}(s, a) \\
Q_{h}^{*}(s, a) & =r_{h}(s, a)+\mathbb{E}_{S^{\prime} \sim T_{h}(\cdot \mid s, a)}\left[V_{h+1}^{*}\left(S^{\prime}\right)\right]
\end{aligned}
$$

At start of episode k, have collected data: \mathcal{D}^{k}

Model Based

The Bellman Optimality Equations note that:

$$
\begin{aligned}
V_{h}^{*}(s) & =\max _{a \in \mathcal{A}} Q_{h}^{*}(s, a) \\
Q_{h}^{*}(s, a) & =r_{h}(s, a)+\mathbb{E}_{S^{\prime} \sim T_{h}(\cdot \mid s, a)}\left[V_{h+1}^{*}\left(S^{\prime}\right)\right]
\end{aligned}
$$

At start of episode k , have collected data: \mathcal{D}^{k}
Estimate reward and transition via empirical: $\bar{r}_{h} \quad \bar{T}_{h}(\cdot \mid s, a)$

Model Based

The Bellman Optimality Equations note that:

$$
\begin{aligned}
V_{h}^{*}(s) & =\max _{a \in \mathcal{A}} Q_{h}^{*}(s, a) \\
Q_{h}^{*}(s, a) & =r_{h}(s, a)+\mathbb{E}_{S^{\prime} \sim T_{h}(\cdot \mid s, a)}\left[V_{h+1}^{*}\left(S^{\prime}\right)\right]
\end{aligned}
$$

At start of episode k, have collected data: \mathcal{D}^{k}
Estimate reward and transition via empirical: $\bar{r}_{h} \quad \bar{T}_{h}(\cdot \mid s, a)$

Plug estimates into Bellman Optimality Equations

Model Based

Estimate reward and transition via empirical: $\bar{r}_{h} \quad \bar{T}_{h}(\cdot \mid s, a)$

Plug estimates into Bellman Optimality Equations

$$
\begin{aligned}
\bar{V}_{h}(s) & =\max _{a \in \mathcal{A}} \bar{Q}_{h}(s, a) \\
\bar{Q}_{h}(s, a) & =\bar{r}_{h}(s, a)+\mathbb{E}_{S^{\prime} \sim \bar{T}_{h}(\cdot \mid s, a)}\left[\bar{V}_{h+1}\left(S^{\prime}\right)\right]+\lambda \frac{1}{\sqrt{t}} \\
\pi_{h}(s) & =\underset{a \in \mathcal{A}}{\operatorname{argmax}} \bar{Q}_{h}(s, a)
\end{aligned}
$$

Model Based

Estimated value iteration

$$
\bar{V}_{h}(s)=\max _{a \in \mathcal{A}} \bar{Q}_{h}(s, a)
$$

$$
\bar{Q}_{h}(s, a)=\bar{r}_{h}(s, a)+\mathbb{E}_{S^{\prime} \sim \bar{T}_{h}(\cdot \mid s, a)}\left[\bar{V}_{h+1}\left(S^{\prime}\right)\right]+\lambda \frac{1}{\sqrt{t}}
$$

$$
\pi_{h}(s)=\underset{a \in \mathcal{A}}{\operatorname{argmax}} \bar{Q}_{h}(s, a)
$$

True value iteration

$$
\begin{aligned}
V_{h}^{*}(s) & =\max _{a \in \mathcal{A}} Q_{h}^{*}(s, a) \\
Q_{h}^{*}(s, a) & =r_{h}(s, a)+\mathbb{E}_{S^{\prime} \sim T_{h}(\cdot \mid s, a)}\left[V_{h+1}^{*}\left(S^{\prime}\right)\right] \\
\pi_{h}^{*}(s) & =\underset{a \in \mathcal{A}}{\operatorname{argmax}} Q_{h}^{*}(s, a)
\end{aligned}
$$

Empirical value iteration with reward and transition estimates

1. Optimistic Estimates

$$
\bar{Q}_{h}(s, a) \geq Q_{h}^{*}(s, a)
$$

2. Monotone non-increasing, decrease "fast enough"

$$
\bar{Q}_{h}(s, a)-Q_{h}^{*}(s, a) \sim \frac{1}{\sqrt{t}}
$$

3. Play greedy

$$
\pi_{h}^{k}(s)=\operatorname{argmax}_{a \in \mathcal{A}} \bar{Q}_{h}(s, a)
$$

If horizon $\mathrm{H}=1$, estimates reduce:

$$
\begin{aligned}
\bar{Q}_{1}(s, a) & =\bar{r}_{1}(s, a)+\lambda \frac{1}{\sqrt{t}} \\
\pi_{1}(s) & =\underset{a \in \mathcal{A}}{\operatorname{argmax}} \bar{Q}_{1}(s, a)
\end{aligned}
$$

If horizon $\mathrm{H}=1$, estimates reduce:

$$
\begin{aligned}
\bar{Q}_{1}(s, a) & =\bar{r}_{1}(s, a)+\lambda \frac{1}{\sqrt{t}} \\
\pi_{1}(s) & =\operatorname{argmax} \bar{Q}_{1}(s, a)
\end{aligned}
$$

Reduces to UCB algorithm in H = 1 setting

Model Based

Theorem: In a H-step MDP we have that:

$\operatorname{REGRET}(K) \leq H^{3 / 2} \sqrt{S A K}$

- Optimal dependence on K
- Suboptimal time + space complexity
- Dependence on H still current research
[Jaksch,Ortner,Auer,2010]
[Azar,Osband,Munos,2017] [Agrawal,Jia,2017]

Regret guarantees are worst case, don't capture specific problem structure

In practice: exploration is done via ϵ exploration or bonus terms are tuned for performance

Value Based

The Bellman Optimality Equations note that:

$$
\begin{aligned}
V_{h}^{*}(s) & =\max _{a \in \mathcal{A}} Q_{h}^{*}(s, a) \\
Q_{h}^{*}(s, a) & =r_{h}(s, a)+\mathbb{E}_{S^{\prime} \sim T_{h}(\cdot \mid s, a)}\left[V_{h+1}^{*}\left(S^{\prime}\right)\right]
\end{aligned}
$$

Model-Based

- Estimate r and T
- Compute Q*

Play greedy w.r.t. Q^{*}

- Time complexity / storage scales $H S^{2} A$

Model-Free

- Estimate Q^{*} directly
- Play greedy w.r.t. Q^{*}
- Better time complexity / storage (only HSA)

Model Free

Follows update procedure:

$$
\begin{aligned}
\bar{V}_{h}(s)= & \max _{a \in \mathcal{A}} \bar{Q}_{h}(s, a) \\
\bar{Q}_{h}\left(S_{h}, A_{h}\right)= & \left(1-\alpha_{t}\right) \bar{Q}_{h}\left(S_{h}^{k}, A_{h}^{k}\right)+\alpha_{t}\left(R+\bar{V}_{h+1}\left(S_{h+1}\right)+\lambda \frac{1}{\sqrt{t}}\right) \\
\pi_{h}(s)= & \underset{a \in \mathcal{A}}{\operatorname{argmax}} \bar{Q}_{h}(s, a) \\
& \quad \text { Empirical fixed point iteration with }
\end{aligned}
$$

[Jin,Allen-Zhu,Bubeck,Jordan,2018]

Model Free

Follows update procedure:

$$
\begin{aligned}
\bar{V}_{h}(s) & =\max _{a \in \mathcal{A}} \bar{Q}_{h}(s, a) \\
\bar{Q}_{h}\left(S_{h}, A_{h}\right) & =\left(1-\alpha_{t}\right) \bar{Q}_{h}\left(S_{h}^{k}, A_{h}^{k}\right)+\alpha_{t}\left(R+\bar{V}_{h+1}\left(S_{h+1}\right)+\lambda \frac{1}{\sqrt{t}}\right) \\
\pi_{h}(s) & =\underset{a \in \mathcal{A}}{\operatorname{argmax}} \bar{Q}_{h}(s, a)
\end{aligned}
$$

Learning rate favors later updates

$$
\alpha_{t}=\frac{H+1}{H+t}
$$

Model Free

Informal Theorem: In a H-step MDP we have that:

$\operatorname{REGRET}(K) \leq H^{5 / 2} \sqrt{S A K}$

- Strong relation to theory of Stochastic Approximation (Robbins Munro)
- Optimal dependence on K
- Better time + space complexity than model-based algorithms
- Dependence on H still current research

Some folklore comparisons:
. Performance Model Based > Model Free

- Model Based more compute, easier implementation
- Open Question: Tradeoff minimax regret and storage/compute

Regret guarantees are worst case, don't capture specific problem structure

> Logarithmic Regret: $\quad[$ Simchowitz, Jamieson,2019] [He,Zhou,Gu, 2020] $[$ Yang, Yang, Du,2021]

"Variance" Dependence:

[Zanette,Brunskill,2019]

> [Sam,Cheng,Yu,2022] [Osband,Roy,2014]
"Dimension" Dependence: [Jiang,Krishnamurthy,Agarwal,Langford,Schapire,2017] [Sun,Jiang,Krishnamurthy,Agarwal,Langford,2018]

Saw algorithms designed with value and policy iteration for tabular (discrete) MDPs.

However, even if problem is tabular:

MemoryError: Unable to allocate 31.9 GiB for an array with shape (3094, 720, 1280, 3) and data type float32

$$
\begin{aligned}
& H=3 \\
& S=3094^{*} 720 \\
& A=1280
\end{aligned}
$$

To design algorithms that scale...

Function Approximation

Modelling Assumptions

Online Reinforcement Learning and Regret

Sean Sinclair
Cornell University

