Data-Driven Decision Processes Boot Camp, 2022

Online Reinforcement Learning and Regret

Christina Lee Yu, Sean Sinclair Cornell University

"Given" an MDP, how do we find the optimal policy?

Fully Known Model

- Known transitions + rewards
- Q: Computational complexity of finding good policies?

Fully Known Model

- Known transitions + rewards
- Q: Computational complexity of finding good policies?

Stochastic Queueing Network

[Dai,Gluzman,2022] [Liu,Xie,Modiano,2019] [Shah,Xie,Xu,2020] [Zhang,Gurvich,2020]

Fully Known Model

- Known transitions + rewards
- Q: Computational complexity of finding good policies?

Value Iteration Policy Iteration

Function Approximation

[Dai,Gluzman,2022] [Liu,Xie,Modiano,2019] [Shah,Xie,Xu,2020] [Zhang,Gurvich,2020]

Second Setting

Generative Model

- Unknown transitions + rewards
- Can sample arbitrary (state, action)
- Q: Sample complexity of finding good policies?

Physics Simulators

Generative Model

- Unknown transitions + rewards
- Can sample arbitrary (state, action)
- Q: Sample complexity of finding good policies?

[Zhang,Zhang,Maguluri,2021] [Chen,Maguluri,Shakkottai,Shanmugam,2020] [Agarwal,Kakade,Yang,2020] [Srikant,Ying,2019]

Q Learning TD Learning

Generative Model

- Unknown transitions + rewards
- Can sample arbitrary (state, action)
- Q: Sample complexity of finding good policies?

[Zhang,Zhang,Maguluri,2021] [Chen,Maguluri,Shakkottai,Shanmugam,2020] [Agarwal,Kakade,Yang,2020] [Srikant,Ying,2019] Do we need another setting?

Some problems have "restricted" interaction with environment

Fully Known Model

- Known transitions + rewards
- Q: Computational complexity of finding good policies?

Generative Model

- Can sample arbitrary (state, action)
- Q: Sample complexity of finding good policies?

Optimizing drug dosages

Decide dosage for next three days

Drug dosage model

Drug dosage model

Drug dosage model

Some problems have "restricted" interaction with environment

Fully Known Model

• Fully understand interaction of medication and patient covariates

Generative Model

• Able to simulate what "would" happen for any given dosage sequence

Third Setting (this talk)

Online Model

- Can only sample trajectories under some chosen policy
- Q: Regret incurred over time compared to optimal policy
- *"Most complex"*: constrained exploration, correlated estimates,

Third Setting (this talk)

Online Model

- Can only sample trajectories under some chosen policy
- Q: Regret incurred over time compared to optimal policy
- *"Most complex"*: constrained exploration, correlated estimates,

Memory management

Complicated demand dynamics

[Ipek,Mutlu,Martinez,Caruana,2008]

Finite Horizon

A MDP is defined by: $\mathcal{M} = \{S, \mathcal{A}, r, T, s_0, H\}$		
S	State space	
${\cal A}$	Action space	
$r_h: \mathcal{S} \times \mathcal{A} \to [0, 1]$	Reward	
$T_h: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$	Transitions	
Н	Time horizon	

Policy

 $\pi_h: \mathcal{S} \to \Delta(\mathcal{A})$

Finite Horizon

 $\pi_h: \mathcal{S} \to \Delta(\mathcal{A})$ Policy

The Bellman Equations note that:

$$V_{h}^{\pi}(s) = \mathbb{E}_{A \sim \pi_{h}(s)}[r_{h}(s, A) + \mathbb{E}_{S' \sim T_{h}(\cdot | s, A)}[V_{h+1}^{\pi}(S')]]$$

$$Q_h^{\pi}(s,a) = r_h(s,a) + \mathbb{E}_{S' \sim T_h(\cdot|s,a)}[V_{h+1}^{\pi}(S')]$$

- Can only **sample trajectories** under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Unknown transition + reward

Over sequence of episodes:

- Can only sample trajectories under some chosen policy
- Q: Regret incurred over time ٠ compared to optimal policy

Unknown transition + reward

Over sequence of episodes: - Pick current policy π^k

- Can only **sample trajectories** under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Unknown transition + reward

Over sequence of episodes:

- Pick current policy π^k
- Execute over H steps (episode)

- Can only **sample trajectories** under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Unknown transition + reward

Over sequence of episodes:

- Pick current policy π^k
- Execute over *H* steps (episode)
- Collect dataset and update policy $\{(S_1^k, A_1^k, R_1^k), \dots, (S_H^k, A_H^k, R_H^k)\}$

Main Question

Online Model

- Can only **sample trajectories** under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Unknown transition + reward

Over sequence of episodes:

- Pick current policy π^k
- Execute over H steps (episode)
- Collect dataset and update policy $\{(S_1^k, A_1^k, R_1^k), \dots, (S_H^k, A_H^k, R_H^k)\}$

Horizon H = Number of dosage decisionsEpisodes K = Number of homogenous patients

Drug dosage model

Main Question

Online Model

- Can only sample trajectories under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Unknown transition + reward

Over sequence of episodes:

- Pick current policy π^k
- Execute over H steps (episode)
- Collect dataset and update policy $\{(S_1^k, A_1^k, R_1^k), \dots, (S_H^k, A_H^k, R_H^k)\}$

Goal: Minimize regret:

REGRET(K) =
$$\sum_{k=1}^{K} V_1^*(s_0) - V_1^{\pi^k}(s_0)$$

Goal: Minimize regret:

REGRET(K) =
$$\sum_{k=1}^{K} V_1^*(s_0) - V_1^{\pi^k}(s_0)$$

Theorem: If regret is sublinear in K, can obtain PAC-style sample complexity bound for learning a good policy:

 $\operatorname{Regret}(K) \le K^{1-\alpha}$

NUMBER SAMPLES(ϵ) $\leq \epsilon^{-1/\alpha}$

Compare two policies π^{Alg}, π^{Ref}

Compare two policies π^{Alg} , π^{Ref}

Two policies differ on chosen action, how much to "compensate"?

Compare two policies
$$\pi^{Alg}, \pi^{Ref}$$

Two policies differ on chosen action, how much to "compensate"?

$$Q_h^{\pi^{Alg}}(s_h, \pi^{Ref}(s_h)) - V_h^{\pi^{Alg}}(s_h)$$

Compare two policies
$$\pi^{Alg}, \pi^{Ref}$$

Compare two policies
$$\pi^{Alg}, \pi^{Ref}$$

Two policies differ on chosen action, how much to "compensate"?

$$Q_{h}^{\pi^{Alg}}(s_{h}, \pi^{Ref}(s_{h})) - V_{h}^{\pi^{Alg}}(s_{h}) = A_{h}^{\pi^{Alg}}(s_{h}, \pi^{Ref}(s_{h}))$$

"Advantage" function

Given an MDP, how do we find the optimal policy?

Fully Known Model

Two Approaches

- Known transitions + rewards
- Q: Computational complexity of finding good policies?

Value Iteration Policy Iteration

Given an MDP, how do we find the optimal policy?

Fully Known Model

- Known transitions + rewards
- Q: Computational complexity of finding good policies?

Two Approaches

Given an MDP, how do we find the optimal policy?

Online Model

Two Approaches

- Can only **sample trajectories** under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Value Based Policy Based

Given an MDP, how do we find the optimal policy?

Online Model

• Can only **sample trajectories** under some chosen policy

• Q: Regret incurred over time compared to optimal policy

Two Approaches

Goal: Find the best "base-stock" policy:

Inventory Control

Goal: Maximize $\sup_{\theta \in \Theta} V^{\pi}$

 $\sup_{\theta \in \Theta} V^{\pi_{\theta}}(s_0)$

Goal: Maximize $\sup_{\theta \in \Theta} V^{\pi_{\theta}}(s_0) = \sup_{\theta \in \Theta} J(\theta)$

Policy Based

 $J(\theta)$

Goal: Maximize
$$\sup_{\theta \in \Theta} V^{\pi_{\theta}}(s_0) = \sup_{\theta \in \Theta} J(\theta)$$

 θ

Use existing stochastic optimization algorithms

Goal: Maximize
$$\sup_{\theta \in \Theta} V^{\pi_{\theta}}(s_0) = \sup_{\theta \in \Theta} J(\theta)$$

Use existing stochastic optimization algorithms

- Zero-Order (Gradient-Free) [Berahas,Byrd,Nocedal,2019] [Lei,Chen,Li,Zheng,2022] [Qian,Yu,2021]
- First-Order (Gradient-Based)

[Bhandari,Russo,2019]

- Second-Order (Hessian-Based)

[Wu,Mansimov,Grosse,Liao,Ba,2017]

Goal: Maximize
$$\sup_{\theta \in \Theta} V^{\pi_{\theta}}(s_0) = \sup_{\theta \in \Theta} J(\theta)$$

Primitive:

How can we compare value of two policies?

Policy Comparison

Compare two policies
$$\pi^{Alg}, \pi^{Ref}$$

Two policies differ on chosen action, how much to "compensate"?

$$Q_{h}^{\pi^{Alg}}(s_{h}, \pi^{Ref}(s_{h})) - V_{h}^{\pi^{Alg}}(s_{h}) = A_{h}^{\pi^{Alg}}(s_{h}, \pi^{Ref}(s_{h}))$$

Sum over trajectories from π^{Ref}

Policy Difference

Goal: Maximize
$$\sup_{\theta \in \Theta} V^{\pi_{\theta}}(s_0) = \sup_{\theta \in \Theta} J(\theta)$$

Policy Difference Lemma:

$$V^{\pi^{Ref}} - V^{\pi^{Alg}} = \sum_{h=1}^{H} \mathbb{E}_{(S,A) \sim \Pr_{h}^{\pi^{Ref}}} [A_{h}^{\pi^{Alg}}(S,A)]$$

Can evaluate using Monte-Carlo roll outs under current policy

Used to guarantee one-step improvement

Goal: Maximize
$$\sup_{\theta \in \Theta} V^{\pi_{\theta}}(s_0) = \sup_{\theta \in \Theta} J(\theta)$$

Use existing stochastic optimization algorithms

- Zero-Order (Gradient-Free) [Berahas,Byrd,Nocedal,2019] [Lei,Chen,Li,Zheng,2022] [Qian,Yu,2021]
- First-Order (Gradient-Based)

[Bhandari,Russo,2019]

- Second-Order (Hessian-Based)

[Wu,Mansimov,Grosse,Liao,Ba,2017]

Policy Gradient

Goal: Maximize
$$\sup_{\theta \in \Theta} V^{\pi_{\theta}}(s_0) = \sup_{\theta \in \Theta} J(\theta)$$

What even is $\nabla J(\theta)$?

Policy Gradient Theorem:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a)]$$

Can evaluate using Monte-Carlo roll outs under current policy

[Williams1992]

Restricted Policies

Goal: Maximize
$$\sup_{\theta \in \Theta} V^{\pi_{\theta}}(s_0) = \sup_{\theta \in \Theta} J(\theta)$$

Use prior domain knowledge to find restricted class of policies

[Agrawal,Jia,2019]

Restricted Policies

Goal: Maximize
$$\sup_{\theta \in \Theta} V^{\pi_{\theta}}(s_0) = \sup_{\theta \in \Theta} J(\theta)$$

Use prior domain knowledge to find restricted class of policies

Inventory Control

"Base Stock" policies are

provably near-optimal

[Agrawal,Jia,2019]

Restricted Policies

Goal: Maximize
$$\sup_{\theta \in \Theta} V^{\pi_{\theta}}(s_0) = \sup_{\theta \in \Theta} J(\theta)$$

Use prior domain knowledge to find restricted class of policies

Inventory Control

Exploit structured properties of $J(\theta)$:

- Strongly convex
- Evaluate exactly over traces

"Base Stock" policies are

provably near-optimal

[Agrawal,Jia,2019]

"Dual" Approach

Goal: Maximize $\sup_{\theta \in \Theta} V^{\pi_{\theta}}(s_0) = \sup_{\theta \in \Theta} J(\theta)$

Characterizes conditions when objective has no local maxima

Assumption 1: Differentiability / continuity of objective

Assumption 2: Closure of policy space under policy-iteration steps

[Bhandari,Russo,2019]

"Dual" Approach

Goal: Maximize $\sup_{\theta \in \Theta} V^{\pi_{\theta}}(s_0) = \sup_{\theta \in \Theta} J(\theta)$

Characterizes conditions when objective has no local maxima

Assumption 1: Differentiability / continuity of objective

Assumption 2: Closure of policy space under policy-iteration steps

Stochastic Queueing Network

Linear Quadratic Regulator

[Bhandari,Russo,2019]

Given a MDP, how do we find the optimal policy?

Online Model

- Can only **sample trajectories** under some chosen policy
- Q: Regret incurred over time compared to optimal policy

Two Approaches

Value Based

The Bellman Optimality Equations note that:

$$V_{h}^{*}(s) = \max_{a \in \mathcal{A}} Q_{h}^{*}(s, a)$$
$$Q_{h}^{*}(s, a) = r_{h}(s, a) + \mathbb{E}_{S' \sim T_{h}(\cdot | s, a)} [V_{h+1}^{*}(S')]$$

Value Based

The Bellman Optimality Equations note that:

$$V_{h}^{*}(s) = \max_{a \in \mathcal{A}} Q_{h}^{*}(s, a)$$
$$Q_{h}^{*}(s, a) = r_{h}(s, a) + \mathbb{E}_{S' \sim T_{h}(\cdot | s, a)} [V_{h+1}^{*}(S')]$$

Model-Based

• Estimate *r* and *T*

- Compute Q^*
- Play greedy w.r.t. Q^*
- Time complexity / storage scales HS²A

Model-Free

- Estimate Q^* directly
- Play greedy w.r.t. Q^*
- Better time complexity / storage (only *HSA*)

- Optimistic estimate

True value

[Simchowitz,Jamieson,2019]

Optimistic estimate

True value

[Simchowitz, Jamieson, 2019]

[Simchowitz, Jamieson, 2019]

[Simchowitz, Jamieson, 2019]

1. Optimistic Estimates

$$\overline{Q}_h(s,a) \ge Q_h^*(s,a)$$

2. Monotone non-increasing, decrease "fast enough"

$$\overline{Q}_h(s,a) - Q_h^*(s,a) \sim \frac{1}{\sqrt{t}}$$

3. Play greedy

$$\pi_h^k(s) = \operatorname{argmax}_{a \in \mathcal{A}} \overline{Q}_h(s, a)$$

[Simchowitz,Jamieson,2019]

Value Based

The Bellman Optimality Equations note that:

$$V_{h}^{*}(s) = \max_{a \in \mathcal{A}} Q_{h}^{*}(s, a)$$
$$Q_{h}^{*}(s, a) = r_{h}(s, a) + \mathbb{E}_{S' \sim T_{h}}(\cdot | s, a) [V_{h+1}^{*}(S')]$$

Model-Based

- Estimate *r* and *T*
- Compute Q^*

Play greedy w.r.t. Q^*

 Time complexity / storage scales HS²A

Model-Free

- Estimate Q^* directly
- Play greedy w.r.t. Q^*
- Better time complexity / storage (only *HSA*)

The Bellman Optimality Equations note that: $V_{h}^{*}(s) = \max_{a \in \mathcal{A}} Q_{h}^{*}(s, a)$ $Q_{h}^{*}(s, a) = r_{h}(s, a) + \mathbb{E}_{S' \sim T_{h}}(\cdot | s, a) [V_{h+1}^{*}(S')]$

At start of episode k, have collected data: \mathcal{D}^k

The Bellman Optimality Equations note that:

$$V_{h}^{*}(s) = \max_{a \in \mathcal{A}} Q_{h}^{*}(s, a)$$
$$Q_{h}^{*}(s, a) = r_{h}(s, a) + \mathbb{E}_{S' \sim T_{h}(\cdot | s, a)}[V_{h+1}^{*}(S')]$$

At start of episode k, have collected data: \mathcal{D}^k

Estimate reward and transition via empirical: $\overline{r}_h = \overline{T}_h(\cdot \mid s, a)$

The Bellman Optimality Equations note that:

$$V_{h}^{*}(s) = \max_{a \in \mathcal{A}} Q_{h}^{*}(s, a)$$
$$Q_{h}^{*}(s, a) = r_{h}(s, a) + \mathbb{E}_{S' \sim T_{h}(\cdot | s, a)}[V_{h+1}^{*}(S')]$$

At start of episode k, have collected data: \mathcal{D}^k

Estimate reward and transition via empirical: $\overline{r}_h = \overline{T}_h(\cdot \mid s, a)$

Plug estimates into Bellman Optimality Equations

Estimate reward and transition via empirical: $\overline{r}_h = \overline{T}_h(\cdot \mid s, a)$

Plug estimates into Bellman Optimality Equations

$$\overline{V}_{h}(s) = \max_{a \in \mathcal{A}} \overline{Q}_{h}(s, a)$$
$$\overline{Q}_{h}(s, a) = \overline{r}_{h}(s, a) + \mathbb{E}_{S' \sim \overline{T}_{h}(\cdot | s, a)} [\overline{V}_{h+1}(S')] + \lambda \frac{1}{\sqrt{t}}$$
$$\pi_{h}(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \overline{Q}_{h}(s, a)$$

Estimated value iteration

 $\overline{V}_{h}(s) = \max_{a \in \mathcal{A}} \overline{Q}_{h}(s, a)$ $\overline{Q}_{h}(s, a) = \overline{r}_{h}(s, a) + \mathbb{E}_{S' \sim \overline{T}_{h}(\cdot | s, a)} [\overline{V}_{h+1}(S')] + \lambda \frac{1}{\sqrt{t}}$ $\pi_{h}(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \overline{Q}_{h}(s, a)$

True value iteration

$$V_h^*(s) = \max_{a \in \mathcal{A}} Q_h^*(s, a)$$
$$Q_h^*(s, a) = r_h(s, a) + \mathbb{E}_{S' \sim T_h(\cdot|s, a)} [V_{h+1}^*(S')]$$
$$\pi_h^*(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q_h^*(s, a)$$

Empirical value iteration with reward and transition estimates

1. Optimistic Estimates

$$\overline{Q}_h(s,a) \ge Q_h^*(s,a)$$

2. Monotone non-increasing, decrease "fast enough"

$$\overline{Q}_h(s,a) - Q_h^*(s,a) \sim \frac{1}{\sqrt{t}}$$

3. Play greedy

$$\pi_h^k(s) = \operatorname{argmax}_{a \in \mathcal{A}} \overline{Q}_h(s, a)$$

[Simchowitz,Jamieson,2019]

If horizon H = 1, estimates reduce:

$$\overline{Q}_1(s,a) = \overline{r}_1(s,a) + \lambda \frac{1}{\sqrt{t}}$$
$$\pi_1(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \overline{Q}_1(s,a)$$

If horizon H = 1, estimates reduce:

$$\overline{Q}_1(s,a) = \overline{r}_1(s,a) + \lambda \frac{1}{\sqrt{t}}$$
$$\pi_1(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \overline{Q}_1(s,a)$$

Reduces to UCB algorithm in H = 1 setting

Theorem: In a H-step MDP we have that:

$$\operatorname{Regret}(K) \le H^{3/2}\sqrt{SAK}$$

- Optimal dependence on K
- Suboptimal time + space complexity
- Dependence on H still current research

[Jaksch,Ortner,Auer,2010] [Azar,Osband,Munos,2017] [Agrawal,Jia,2017]

Regret guarantees are worst case, don't capture specific problem structure

In practice: exploration is done via ϵ exploration or bonus terms are tuned for performance

Value Based

The Bellman Optimality Equations note that:

$$V_{h}^{*}(s) = \max_{a \in \mathcal{A}} Q_{h}^{*}(s, a)$$
$$Q_{h}^{*}(s, a) = r_{h}(s, a) + \mathbb{E}_{S' \sim T_{h}(\cdot | s, a)} [V_{h+1}^{*}(S')]$$

Model-Based

- Estimate *r* and *T*
- Compute Q^*
- Play greedy w.r.t. Q^*
- Time complexity / storage scales HS²A

Model-Free

- Estimate Q^* directly
- Play greedy w.r.t. Q^*
- Better time complexity / storage (only *HSA*)

Model Free

Follows update procedure:

$$\overline{V}_{h}(s) = \max_{a \in \mathcal{A}} \overline{Q}_{h}(s, a)$$

$$\overline{Q}_{h}(S_{h}, A_{h}) = (1 - \alpha_{t})\overline{Q}_{h}(S_{h}^{k}, A_{h}^{k}) + \alpha_{t}(R + \overline{V}_{h+1}(S_{h+1}) + \lambda \frac{1}{\sqrt{t}})$$

$$\pi_{h}(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \overline{Q}_{h}(s, a)$$

Empirical fixed point iteration with exploration bonuses

[Jin,Allen-Zhu,Bubeck,Jordan,2018]

Model Free

Follows update procedure:

$$\overline{V}_{h}(s) = \max_{a \in \mathcal{A}} \overline{Q}_{h}(s, a)$$

$$\overline{Q}_{h}(S_{h}, A_{h}) = (1 - \alpha_{t})\overline{Q}_{h}(S_{h}^{k}, A_{h}^{k}) + \alpha_{t}(R + \overline{V}_{h+1}(S_{h+1}) + \lambda \frac{1}{\sqrt{t}})$$

$$\pi_{h}(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \overline{Q}_{h}(s, a)$$

Learning rate favors later updates $\alpha_t = \frac{H+1}{H+t}$

[Jin,Allen-Zhu,Bubeck,Jordan,2018]

Informal Theorem: In a H-step MDP we have that:

$$\operatorname{Regret}(K) \le H^{5/2}\sqrt{SAK}$$

- Strong relation to theory of Stochastic Approximation (Robbins Munro)
- Optimal dependence on K
- Better time + space complexity than model-based algorithms
- Dependence on H still current research

[Jin,Allen-Zhu,Bubeck,Jordan,2018]

Model Free vs Model Based

Some folklore comparisons:

Performance Model Based > Model Free

• Model Based more compute, easier implementation

• **Open Question:** Tradeoff minimax regret and storage/compute

Refined Regret Guarantees

Regret guarantees are worst case, don't capture specific problem structure

Logarithmic Regret: [Simchowitz,Jamieson,2019] [He,Zhou,Gu,2020] [Yang, Yang, Du,2021]

"Variance" Dependence:

[Zanette,Brunskill,2019]

[Sam,Cheng,Yu,2022] [Osband,Roy,2014] **"Dimension" Dependence:** [Jiang,Krishnamurthy,Agarwal,Langford,Schapire,2017] [Sun,Jiang,Krishnamurthy,Agarwal,Langford,2018]

So far:

Saw algorithms designed with value and policy iteration for tabular (discrete) MDPs.

However, even if problem is tabular:

MemoryError: Unable to allocate 31.9 GiB for an array with shape (3094, 720, 1280, 3) and data type float32

H = 3 S = 3094*720 A = 1280 So far:

To design algorithms that scale...

Function Approximation

Modelling Assumptions

Data-Driven Decision Processes Boot Camp, 2022

Online Reinforcement Learning and Regret

Sean Sinclair Cornell University

