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Motivation

Why constructible sheaves ?

Provides a more natural geometric language, more expressiveness than
(first-order) logic.
It provides a (topological) generalization of quantifier elimination
(Tarski-Seidenberg). It is interesting to study quantitative/algorithmic
questions in this more general setting.
Applications in other areas (D-module theory, computational
geometry ...).
Interesting extensions of Blum-Shub-Smale complexity classes leading
to P vs NP type questions which (paradoxically) might be easier to
resolve than the classical (B-S-S) ones.
Quantitative study of sheaf cohomology might be interesting on its
own.
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Qualitative/Background

Semi-algebraic sets and maps

Semi-algebraic sets are subsets of Rn defined by Boolean formulas
whose atoms are polynomial equalities and inequalities (i.e. P = 0,
P > 0 for P 2 R[X1; : : : ;Xn ]).

A semi-algebraic map is a map X
f
�! Y between semi-algebraic sets

X and Y , is a map whose graph is a semi-algebraic set.
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Qualitative/Background

Closure of semi-algebraic sets under different operations

Easy facts (i.e. follows more-or-less from the definitions) ...
Semi-algebraic sets are closed under:

Finite unions and intersections, as well as taking complements.
Cartesian products (or more generally fibered products over
polynomial maps).
Taking pull-backs (inverse images) under polynomial maps.
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Qualitative/Background

Quantifier Elimination/ Tarski-Seidenberg

Harder fact (Tarski-Seidenberg Theorem (Tarski, 1951)) ...
Images of a semi-algebraic sets under polynomial maps are also
semi-algebraic.
Equivalently, the first order theory of the reals admits quantifier
elimination.
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Qualitative/Background

In the language of maps instead of quantifiers

Let X f
�! Y be a map (between sets).

Then there are induced maps:

2X

f9�!
f �
 �
f8�!

2Y
f9(A) := f (A)

f �(B) := f �1(B)
f8(A) := Y � f (X �A)

The pairs (f9; f �) and (f �; f8) are not quite pairs of inverses. But ...
they do satisfy adjointness relations (namely):

f9 a f � a f8

as functors between the poset categories 2X; 2Y (the objects are
subsets and arrows correspond to inclusions).
This is just a chic way of saying that for A 2 2X;B 2 2Y,
f9(A) � B , A � f �(B), and A � f �(B), f8(A) � B .
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Qualitative/Background

Tarski-Seidenberg arrow-theoretically ....

For any semi-algebraic set X, let S(X) denote the set of
semi-algebraic subsets of X.

Let X;Y be semi-algebraic sets, and X f
�! Y a polynomial map.

(Tarski-Seidenberg restated) The restrictions of the maps f 9; f �; f 8

give functors (maps)

S(X)

f9
�!
f �
 �
f8�!

S(Y)

(i.e. they carry semi-algebraic subsets to semi-algebraic subsets).
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Qualitative/Background

Triviality of semi-algebraic maps

Yet harder. More than just Tarski-Seidenberg is true...
We say that a semi-algebraic map X f

�! Y is semi-algebraically trivial, if
there exists y 2 Y, and a semi-algebraic homemorphism � : X! Xy �Y
(denoting Xy = f �1(y)) such that the following diagram is commutative.

X
�
//

f

##

Xy �Y

�Y
��

Y
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Qualitative/Background

Local triviality of semi-algebraic maps

Theorem (Hardt (1980))

Let X f
�! Y be a semi-algebraic map. Then, there is a finite partition

fYigi2I of Y into locally closed semi-algebraic subsets Yi , such that for
each i 2 I , f jf �1(Yi ) : f

�1(Yi )! Yi is semi-algebraically trivial.
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Generalization of Tarski-Seidenberg, since the image f (X) is a (disjoint)
union of a sub-collection of the Yi ’s (and so in particular semi-algebraic).
But some drawbacks ...
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best complexity upper bound known for the induced partition is doubly
exponential.
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union of a sub-collection of the Yi ’s (and so in particular semi-algebraic).
But some drawbacks ...
Homeomorphism type is difficult to quantify, undecidable to check, and the
best complexity upper bound known for the induced partition is doubly
exponential.
The formalism of “constructible sheaves” seems to be just the right
compromise.
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Qualitative/Background

Little detour – Pre-sheaves of A-modules

Let A be a fixed commutative ring. For simplicity we will soon take A = Q.

Definition (Pre-sheaf of A-modules)

A pre-sheaf F of A-modules over a topological space X associates to each
open subset U � X an A-module F(U), such that that for all pairs of
open subsets U;V of X, with V � U, there exists a restriction
homomorphism rU;V : F(U)! F(V) satisfying:

1 rU;U = IdF(U),
2 for U;V;W open subsets of X, with W � V � U,

rU;W = rV;W � rU;V:

(For open subsets U;V � X, V � U, and s 2 F(U), we will sometimes
denote the element rU;V(s) 2 F(V) simply by s jV.)
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Qualitative/Background

Sheaves with constant coefficients

Definition (Sheaf of A-modules)

A pre-sheaf F of A-modules on X is said to be a sheaf if it satisfies the
following two axioms. For any collection of open subsets fUigi2I of X
with U =

S
i2I Ui ;

1 if s 2 F(U) and s jUi = 0 for all i 2 I , then s = 0;
2 if for all i 2 I there exists si 2 F(Ui ) such that

si jUi\Uj = sj jUi\Uj

for all i ; j 2 I , then there exists s 2 F(U) such that s jUi = si for
each i 2 I .

Saugata Basu (Department of Mathematics Purdue University )A complexity theory of constructible sheaves October 22, 2014 12 / 39
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Qualitative/Background

Stalks of a sheaf

Definition (Stalk of a sheaf at a point)

Let F be a (pre)-sheaf of A-modules on X and x 2 X . The stalk Fx of F
at x is defined as the inductive limit

Fx = lim
�!
U3x
F(U):
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Qualitative/Background

Derived category of sheaves on X

One first considers the category whose objects are complexes of
sheaves on X , and whose morphisms are homotopy classes of
morphisms of complexes of sheaves.
One then localizes with respect to a class of arrows so that complexes
homotopic to 0 become isomorphic, to obtain the derived category
D(X ) (resp. Db(X )).
This is no longer an abelian category but a triangulated category.
Exact sequences replaced by distinguished triangles and so on...
For our purposes it is “ok” to think of an object in D(X ) as a
“complex of sheaves”.
If X = fptg, then an object in Db(X ) is represented by a bounded
complex C� of A-modules, and C� is isomorphic in the derived
category to the complex H�(C�) (with all differentials = 0).
In other words, C� �= �n2ZHn(C�)[�n ]. But this is not true in
general (i.e. if X is not a point).
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Qualitative/Background

Operations on sheaves, derived images

Let F be a sheaf on X, and G a sheaf on Y, and f : X! Y a continuous
map. Then, there exists naturally defined sheaves:

f �1(G) – a sheaf on X (pull back). (f �1 is an exact functor.)
The derived direct image denoted Rf�(F) is an object in D(Y ) (and
thus should be thought of as a complex of sheaves on Y ).
We denote for i 2 Z, Ri f�(F) the sheaf Hi (Rf�(F)) – but these
separately don’t determine Rf�(F).
In the special case when F = AX (the constant sheaf on X), Rf�(F)
is obtained by associating to each open U � Y, a complex of
A-modules obtained by taking sections of a flabby resolution of the
sheaf Af �1(U ).
In this case, for y 2 Y, the stalk Rf�(F)y is an object of the derived
category of A-modules and is isomorphic (in the derived category) to
�nH�(f �1(y);A)[�n ].
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Qualitative/Background

High school example – discriminant of a real quadratic

Logical formulation

(9X )X 2 + 2BX + C = 0
m

B2 �C � 0
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Qualitative/Background

High school example – discriminant of a real quadratic

Geometric formulation

Defining V � R3 (with coordinates X ;B ;C ) defined by
X 2 + 2BX + C = 0 and � : R3 ! R2; (x ; b; c) 7! (b; c),
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Qualitative/Background

High school example – discriminant of a real quadratic

Sheaf theoretic formulation

Denoting j : V ,! R3, consider the sheaf j�(QV ) �= QR3 jV , and its
(derived) direct image R��(j�(QV )).
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Sheaf theoretic formulation

Denoting j : V ,! R3, consider the sheaf j�(QV ) �= QR3 jV , and its
(derived) direct image R��(j�(QV )).

The stalks of R��(j�(QV )) induce a finer partition:

Saugata Basu (Department of Mathematics Purdue University )A complexity theory of constructible sheaves October 22, 2014 16 / 39



Qualitative/Background

High school example – discriminant of a real quadratic

Sheaf theoretic formulation

Denoting j : V ,! R3, consider the sheaf j�(QV ) �= QR3 jV , and its
(derived) direct image R��(j�(QV )).

The stalks of R��(j�(QV )) induce a finer partition:

(R��(j�QV ))u �= 0,
Saugata Basu (Department of Mathematics Purdue University )A complexity theory of constructible sheaves October 22, 2014 16 / 39



Qualitative/Background

High school example – discriminant of a real quadratic

Sheaf theoretic formulation

Denoting j : V ,! R3, consider the sheaf j�(QV ) �= QR3 jV , and its
(derived) direct image R��(j�(QV )).

The stalks of R��(j�(QV )) induce a finer partition:

(R��(j�QV ))u �= 0, (R��(j�QV ))v �= Q�Q,
Saugata Basu (Department of Mathematics Purdue University )A complexity theory of constructible sheaves October 22, 2014 16 / 39
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High school example – discriminant of a real quadratic

Sheaf theoretic formulation

Denoting j : V ,! R3, consider the sheaf j�(QV ) �= QR3 jV , and its
(derived) direct image R��(j�(QV )).

The stalks of R��(j�(QV )) induce a finer partition:

(R��(j�QV ))u �= 0, (R��(j�QV ))v �= Q�Q, (R��(j�QV ))w �= Q.
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Qualitative/Background

Example: Hopf vs trivial

Suppose that:

X = S3 := f(z1; z2) 2 C2 j jz1j
2 + jz2j

2 = 1g;

X0 = S1 � S2;

Y = P1
C
�= S2;

f : X! Y; (z1; z2) 7! (z1 : z2) (Hopf fibration);

g : X0 ! Y; projection to the second factor:
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Qualitative/Background

The higher derived images of the sheaves QX and QX0

under f and g

They are isomorphic !

R0f�(QX) �= QY �= R0g�(QX0);

R1f�(QX) �= QY �= R1g�(QX0):
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Qualitative/Background

But in the derived category ...

stalks are isomorphic – for all y 2 Y,

Rf�(QX)y �= Rg�(QX0)y �= Q[�1]�Q;

but ...
Rf�(QX) 6�= QY[�1]�QY �= Rg�(QX0);

and to see that they are not isomorphic one has to notice ...

H�(Y;Rf�(QX)) �= H�(S3;Q);

but ...
H�(Y;Rg�(QX0)) �= H�(S1 � S2;Q):
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Qualitative/Background

Constructible sheaves

Definition (Constructible Sheaves)

Let X be a locally closed semi-algebraic set. Following
[Kashiwara-Schapira], an object F 2 Ob(Db(X)) is said to be
constructible if it satisfies the following two conditions:
(a) There exists a finite partition X =

`
i2I Ci of X by locally closed

semi-algebraic subsets such that for j 2 Z and i 2 I , the Hj (F)jCi are
locally constant. We will call such a partition subordinate to F .

(b) For each x 2 X, the stalk Fx has the following properties:
(i) for each j 2 Z, the cohomology groups Hj (Fx) are finitely generated,

and
(ii) there exists N such that Hj (Fx) = 0 for all x 2 X and jj j > N .

We will denote the category of constructible sheaves on X by Db
sa(X), and

denote by

CS(X ) := Ob(Db
sa(X)).
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Qualitative/Background

Sheaf-theoretic version of Tarski-Seidenberg

Theorem (Kashiwara (1975), Kashiwara-Schapira (1979))

Let X f
�! Y be a continuous semi-algebraic map. Then for F 2 CS(X)

and G 2 CS(Y), then
f �1(G) 2 CS(X)

and
Rf�(F) 2 CS(Y):

More generally, the category of constructible sheaves is closed under the six
operations of Grothendieck – namely, Rf�;Rf!; f �1; f !;
;RHom – where f
is a continuous semi-algebraic map.

End of “Qualitative background”. Next, “Quantitative” ....
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Quantitative/Effective

Complexity of real quantifier elimination

Long history, starting with non-elementary-recursive bound of Tarski’s
original algorithm, doubly exponential algorithm due to Collins (1975)
(and also Wuthrich (1976)) using Cylindrical Algebraic Decomposition.
For each n � 0, let �n : Rn ! R[n=2] denote the projection map
forgetting the last n � [n=2] coordinates.
A new ingredient – critical point method – gives:

Theorem (Grigoriev-Vorobjov (1988), Renegar (1992))

The complexity (both quantitative and algorithmic) of the functors

�9n ; �
8
n : S(Rn)! S(R[n=2])

is bounded singly exponentially.

Later improvements and more precise estimates by B.-Pollack-Roy
(1996) and B. (1999).
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Quantitative/Effective

Bounding the number of distinct types of fibers

Theorem (B., Vorobjov)

The semi-algebraic partition in Hardt triviality theorem has at most doubly
exponential complexity.

Unknown, whether it is actually singly exponential.
However, ...

Theorem (B., Vorobjov)

The number of homotopy types of fibers is bounded singly exponentially.
More precisely, if S � Rn � Rm is a semi-algebraic set defined by s
polynomials of degrees at most d , and � : Rn � Rm ! Rm the projection
to the second factor, then the number of homotopy types amongst the
fibers Sy;y 2 Rm (where Sy = S \ ��1(y)) is bounded by (sd)O(mn).
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Quantitative/Effective

Complexity of the direct image functor

Theorem (B. 2014)

The complexity (both quantitative and algorithmic) of the (direct image)
functor R�n ;� : CS(Rn)! CS(R[n=2]) is bounded singly exponentially.

More precisely:
Let F 2 CS(Rn) have compact support, and such that there exists a
semi-algebraic partition of Rn subordinate to F defined by the sign
conditions on s polynomials of degree at most d , then
(a) there exists a semi-algebraic partition of R[n=2] subordinate to R��(F )

having complexity (sd)n
O(1)

;
(b) and moreover there exists an algorithm to obtain this partition from

the given partition with the same complexity;
(c) if dimQ H�(Fx) � N for all x 2 Rn , then

dimQ H�((R�n ;�(F ))y) � N (sd)n
O(1)

for all y 2 R[n=2].
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Quantitative/Effective

Proof ingredients

Several ingredients recently developed for studying algorithmic and
quantitative questions in semi-algebraic geometry.
Ideas used to prove singly exponential bounds on the number of
homotopy types of the fibers of definable maps (B.-Vorobjov (2007)).
Singly exponential sized covering by contractibles (B.-Pollack-Roy
(2008)).
Delicate infinitesimal thickening and shrinking arguments.
Certain arguments using spectral sequences – Leray and
Mayer-Vietoris.
Proper base change theorem for constructible sheaves.

End of “Quantitative”. Next, “Complexity-theoretic” ....
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Complexity-theoretic

Blum-Shub-Smale complexity classes over R

Let SSS denote the (poset) category of sequences (Sn 2 S(Rm(n)))n>0
where each m(n) is a non-negative integer valued function.
We say that L 2 SSS is in PPPR, iff there exists a B-S-S machine
recognizing L in polynomial time.
Recall that we also have sequences of maps:

0
B@S(Rm)

�m;9

���!
�
�
m ��

�m;8

���!

S(R[m=2])

1
CA

m>0

:

The class PPPR is stable under taking products, unions, intersections,
and pull-backs (��m). But what about stability under �m ;9; �m ;8 ?
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Complexity-theoretic

NPNPNPR, co-NPco-NPco-NPR, PHPHPHR and all that ...

��m ; �m ;9; �m ;8 induce in a natural way the following endo-functors

SSS

�9�9�9�!
����

 �
�8
�8�8�!

SSS:
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��m ; �m ;9; �m ;8 induce in a natural way the following endo-functors

SSS

�9�9�9�!
����

 �
�8
�8�8�!

SSS:

(Aside) As mentioned before the pairs (���9;���
�); (����;���8) are not quite

pairs of inverse functors, but they form an adjoint triple:

���9 a ���� a ���8:
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��m ; �m ;9; �m ;8 induce in a natural way the following endo-functors

SSS

�9�9�9�!
����

 �
�8
�8�8�!

SSS:

We have the following obvious equality and inclusions:

PPPR = ����(PPPR);

PPPR � ���9(PPPR);

PPPR � ���8(PPPR):
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For historical reasons it is traditional to denote
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Complexity-theoretic

Complexity classes of constructible sheaves

Definition (Informal definition of the class PPPR)

Informally we define the class PPPR as the set of sequences�
Fn 2 CS(Rm(n))

�
n>0

such that

(a) there exists a corresponding sequence of semi-algebraic partitions of
Rm(n), subordinate to Fn , in which point location can be performed
efficiently;

(b) The Poincaré polynomial of the stalks (Fn)x;x 2 Rm(n) (i.e. the
polynomial P(Fn )x(T ) =

P
i dimi Hi ((Fn)x)T i ) can be computed

efficiently.

Saugata Basu (Department of Mathematics Purdue University )A complexity theory of constructible sheaves October 22, 2014 28 / 39



Complexity-theoretic

Complexity classes of constructible sheaves

Definition (Informal definition of the class PPPR)

Informally we define the class PPPR as the set of sequences�
Fn 2 CS(Rm(n))

�
n>0

such that

(a) there exists a corresponding sequence of semi-algebraic partitions of
Rm(n), subordinate to Fn , in which point location can be performed
efficiently;

(b) The Poincaré polynomial of the stalks (Fn)x;x 2 Rm(n) (i.e. the
polynomial P(Fn )x(T ) =

P
i dimi Hi ((Fn)x)T i ) can be computed

efficiently.

Saugata Basu (Department of Mathematics Purdue University )A complexity theory of constructible sheaves October 22, 2014 28 / 39



Complexity-theoretic

Complexity classes of constructible sheaves

Definition (Informal definition of the class PPPR)

Informally we define the class PPPR as the set of sequences�
Fn 2 CS(Rm(n))

�
n>0

such that

(a) there exists a corresponding sequence of semi-algebraic partitions of
Rm(n), subordinate to Fn , in which point location can be performed
efficiently;

(b) The Poincaré polynomial of the stalks (Fn)x;x 2 Rm(n) (i.e. the
polynomial P(Fn )x(T ) =

P
i dimi Hi ((Fn)x)T i ) can be computed

efficiently.

Saugata Basu (Department of Mathematics Purdue University )A complexity theory of constructible sheaves October 22, 2014 28 / 39



Complexity-theoretic

The class PPPR (formally))

Definition of PPPR [B. 2014]

The class PPPR of constructible sheaves consists of sequences
F =

�
Fn 2 CS(Rm(n))

�
n>0

, where m(n) is a non-negative (polynomially
bounded) function satisfying the following conditions. There exists a
non-negative (polynomially bounded) function m1(n) such that:
(a) Each Fn has compact support.
(b) For each n > 0, there is an index set In of cardinality 2m1(n), and a

semi-algebraic partition, (Sn ;i )i2In , of Rm(n) into locally closed
semi-algebraic subsets Sn ;i indexed by In , which is subordinate to Fn .

(c) For each n > 0 and each x 2 Rm(n),
(i) The dimensions dimQ Hj ((Fn)x) are bounded by 2m1(n);
(ii) Hj ((Fn)x) = 0 for all j with jj j > m1(n).
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Complexity-theoretic

The class PPPR (cont).

Definition of PPPR (cont).

The two sequences of functions (in : Rm(n) ! In)n>0, and
(pn : Rm(n) ! Z[T ;T�1]) defined by

in(x) = i 2 In ; such that, x 2 Sn ;i

pn(x) = P(Fn )x

are computable by B-S-S machines with complexity polynomial in n .

Notice that the number of bits needed to represent elements of In , and the
coefficients of P(Fn )x are bounded polynomially in n .
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Complexity-theoretic
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Complexity-theoretic

The class PPPR (cont).
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Complexity-theoretic

Example 0

Constant sheaf on compact sequences in PR

Let (Sn 2 S(Rm(n)))n>0 2 Pc
R. Let jn : Sn ,! Rn be the inclusion map.

Then,
(jn ;�QSn )n>0 2 PPPR:
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Complexity-theoretic

Example 1

Systems of few quadrics
Let s > 0 be fixed, and consider for each n > 0, the compact real algebraic
set Vn � (S(

n+1
2 )�1)s � Sn defined by

Vn = f(P1; : : : ;Ps ;x) j x 2 Sn ;Pi 2 S(
n+1
2 )�1;Pi (x) = 0; 1 � i � sg:

Let �n : (S(
n+1
2 )�1)s � Sn ! (S(

n+1
2 )�1)s ,! Rs(n+1

2 ) be the projection to
the first factor composed with the natural inclusion.
Using prior results of B.-Kettner (2008), B. (2008), B.-Pasechnik-Roy
(2009):

Proposition (B. (2014))

(Vn)n>0 2PPPR,

(jn ;�QVn )n>0 2 PPPR,
�
R�n ;�(jn ;�QVn ) 2 CS(R

s(n+1
2 ))

�
n>0
2 PPPR.
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Complexity-theoretic

Example 2

Rank stratification sheaf

For each n > 0, let Vn � Sn�1 � Sn2�1 be the semi-algebraic set defined
by

Vn = f(x;A) j x 2 Rn ;A 2 Rn�n ;A � x = 0; jjAjj2 = 1; jjxjj2 = 1g:

Let �n : Rn � Rn2
! Rn2

denote the projection to the second factor
composed with the natural inclusion.

Proposition
�
R�n ;�QVn 2 CS(Rn2

)
�
n>0
2 PPPR:
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Let �n : Rn � Rn2
! Rn2

denote the projection to the second factor
composed with the natural inclusion.

Proposition
�
R�n ;�QVn 2 CS(Rn2

)
�
n>0
2 PPPR:
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Complexity-theoretic

Stability properties of PPPR

Reminiscent of the classical B-S-S complexity class PR ...
The class PPPR is stable under various sheaf operations – direct sums,
tensor products, truncation functors.
The class PPPR is also stable under the induced functor ����1.

But what about the sequence of direct image functor R��R��R�� ?
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Complexity-theoretic

Complexity classes of constructible sheaves (cont).

The functors ��1
m ;R�m ;� induce in a natural way endo-functors

CSCSCS

����1
 ��
R��R��R����!

CSCSCS:

where CSCSCS is the category of sequences (Fn 2 CS(Rm(n)))n>0 .
We have the adjunction: ����1 aR��R��R��.
Similar to the set-theoretic case, the following equality and
containment can be checked easily.

����1(PPPR) = PPPR;

PPPR �R�R�R��(PPPR):

We define: ���R as the closure of the class R�R�R��(PPPR) under the “easy”
sheaf operations (namely, truncations, tensor products, direct sums
and pull-backs), and define PHPHPHR by iteration as before.
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Complexity-theoretic

Examples of sequences in ���R

Suppose that
�
jn : Sn ,! Rm(n)

�
n>0

belong to NPc
R or to co-NPc

R.

Proposition
Then, �

jn ;�QSn 2 CS(Rm(n))
�
n>0
2 ���R:
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Complexity-theoretic

Another example

Let Vn � SNn;4�1 � Sn defined by

Vn = f(P ;x) j x 2 Sn ;P 2 SNn;4�1;P(x) = 0g;

and let �n : SNn;4�1 � Sn ! SNn;4�1 ,! RNn;4 be the projection to the
first factor composed with the natural inclusion.

Proposition

(Vn)n>0 2PPPc
R.

(�n(Vn))n>0 2NPNPNPc
R.

(jn ;�QVn )n>0 2 PPPR.�
R�n ;�(jn ;�QVn ) 2 CS(RNn;4)

�
n>0
2 �R�R�R.
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Complexity-theoretic

Conjecture and relation with the classical questions

Conjecture

PPPR 6= ���R:

Theorem (B., 2014)

PPPc
R 6= NPNPNPc

R )PPPR 6= ���R:

Possibly – using the real analog of Toda’s theorem (B.-Zell (2010)) – there
is even the stronger implication:

Theorem (?)

PPPc
R 6= PHPHPHc

R )PPPR 6= ���R:
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Complexity-theoretic

Topological complexity of the B-S-S polynomial hierarchy

The topological complexity of a semi-algebraic set S is often measured by
the sum of the Betti numbers of S with coefficients in Q, which we denote
by b(S).
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The topological complexity of a semi-algebraic set S is often measured by
the sum of the Betti numbers of S with coefficients in Q, which we denote
by b(S).
It is thus natural to extend this measure to sequences.
It follows from bounds of Olĕınik and Petrovskĭı (1949), Thom, Milnor,
B.-Pollack-Roy, Gabrielov-Vorobjov (2009) that ...
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Topological complexity of the B-S-S polynomial hierarchy

The topological complexity of a semi-algebraic set S is often measured by
the sum of the Betti numbers of S with coefficients in Q, which we denote
by b(S).
It is thus natural to extend this measure to sequences.
It follows from bounds of Olĕınik and Petrovskĭı (1949), Thom, Milnor,
B.-Pollack-Roy, Gabrielov-Vorobjov (2009) that ...

Theorem

Let L = (Sn 2 S(Rm(n)))n>0 2PPPR. Then, there exists a constant cL,
such that

b(Sn) � 2ncL

for all n > 0.
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Theorem

Let L = (Sn 2 S(Rm(n)))n>0 2PPPR. Then, there exists a constant cL,
such that

b(Sn) � 2ncL

for all n > 0.

One could naively hope to use such a result to distinguish PPPR from NPNPNPR,
co-NPco-NPco-NPR etc., but in fact ....
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It follows from bounds of Olĕınik and Petrovskĭı (1949), Thom, Milnor,
B.-Pollack-Roy, Gabrielov-Vorobjov (2009) that ...
One could naively hope to use such a result to distinguish PPPR from NPNPNPR,
co-NPco-NPco-NPR etc., but in fact ....

Theorem

Let L = (Sn 2 S(Rm(n)))n>0 2PHPHPHR. Then, there exists a constant cL,
such that

b(Sn) � 2ncL

for all n > 0.
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Complexity-theoretic

Topological complexity of the B-S-S polynomial hierarchy

The topological complexity of a semi-algebraic set S is often measured by
the sum of the Betti numbers of S with coefficients in Q, which we denote
by b(S).
It is thus natural to extend this measure to sequences.
It follows from bounds of Olĕınik and Petrovskĭı (1949), Thom, Milnor,
B.-Pollack-Roy, Gabrielov-Vorobjov (2009) that ...

Theorem

Let L = (Sn 2 S(Rm(n)))n>0 2PHPHPHR. Then, there exists a constant cL,
such that

b(Sn) � 2ncL

for all n > 0.

... But there might be other finer topological/geometric invariants –
perhaps, related to complexity of stratification or desingularization ....
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Complexity-theoretic

Sheaf polynomial hierarchy and topological complexity

In analogy with the set-theoretic case, it is natural to measure the
topological complexity of a constructible sheaf F 2 CS(X) by

b(F ) =
X
i

dimQHi (X;F ):

Saugata Basu (Department of Mathematics Purdue University )A complexity theory of constructible sheaves October 22, 2014 40 / 39



Complexity-theoretic

Sheaf polynomial hierarchy and topological complexity

In analogy with the set-theoretic case, it is natural to measure the
topological complexity of a constructible sheaf F 2 CS(X) by

b(F ) =
X
i

dimQHi (X;F ):

Theorem (B., 2014)

Let F = (Fn 2 CS(Rm(n)))n>0 2 PPPR. Then, there exists a constant cF,
such that

b(Fn) � 2ncF

for all n > 0.
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Complexity-theoretic

Complexity theory of constructible functions

Let X;Y be compact semi-algebraic sets, and f : X! Y a semi-algebraic
continuous map. Then, we have the following commutative diagram:

CS(X)
Rf�
//

Eu
��

CS(Y)

Eu
��

CF(X)

R
�d �
// CF(Y);

where we denote by CF(X) the set of constructible functions f : X! R
on a semi-algebraic set X.
The complexity theory of constructible functions is thus a “Euler-Poincaré
trace” of that of the category of constructible sheaves.
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Complexity-theoretic

Open problems and future directions

Study more precisely the complexity of sheaf operations.
Develop a theory of completeness which generalizes the classical
theory.
Get rid of the compactness/properness restrictions or understand
better their significance.
Role of adjointness in complexity questions ? For example, other pairs

of adjoint functors such as the pair (F
L

 � a RHom(�;F )) ? More

input from abstract category theory ?
Applications of algorithmic/quantitative sheaf theory in other areas –
such as D-modules, algebraic theory of PDE’s, computational
geometry/topology.
Study the (simpler) complexity theory of constructible functions
instead of sheaves (B-S-S analog of Valiant). This has been developed
somewhat including a theory of reduction and complete problems (B.
(2014).
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