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Motivation

Infection spreads over a contact network.

Question: What information about the network do we need to forecast
an outbreak?

- So far, we saw model-dependent answers.
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Network Model and Estimation of Epidemics

1. Model the interaction between people with a network model:

2. Estimate the relevant model parameters.

Erdos-Renyi: average degree Configuration model: degree sequence

Question: Can we have a model-free estimation on different
properties of epidemics?

Graph Limits and Processes on Networks



Example Properties of Epidemics

Different models share similar

qualitative properties: S A
oCritical probability/phase > =

transition of emergence of the
outbreak (giant)

oUniqueness of the outbreak ¥ BNl 2 A0
(giant) o, SIESS T SRS

oConvergence of the size of the
outbreak (giant)

Is there a meta theorem without assuming the underlying model or full
knowledge of the graph?
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Recap: Simple Model of Epidemics
(Percolation)

Initially, one node (chosen uniformly at random)
is infected.

An infected node transmits the disease to each
neighbor independently with probability p, and
then recovers (and will be immune to re-
infection).

P : probability of transmission
® :infected individual
—> : successful transmission

Equivalent to SIR with Constant Recovery time. | -  edges of the original graph

Percolation: keep each edge with probability p
(call this graph G(p)).
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Definition. Directed Percolation

- Replace each edge {i,j} by directed edgesi — j and j— i,
- Keep directed edges independently with probability p.
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This Talk in @ Nutshell

Under some assumption (expansion) on converging graphs:

Critical probability converges to its limit.
Giant is unique, and its size converges to its limit.
We give an algorithm to estimate the limit.

The directed percolation on convergent sequence of expanders has:

o the same critical probability as the undirected percolation.
o a bow-tie structure.



Results: Epidemics on Expanders



Critical Probability
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Critical Probability

P¢, (p)(giant exists)

P2(0) > P
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Recap: Local Convergence

I
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Expanders
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Necessity of Expansion: Same Graph Limit but
Different Epidemics

A collection of $ A-regular A 4-regular random graph

random graphs, each of size logn of size n
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Uniqueness of the Giant

Previous two theorems show that the existence and uniqueness of

the giant.
But what about its size?
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Relative Size of the Giant

Two copies of a network, with two runs of the same infection led to an
outbreak. Can we predict the number of infected?
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Relative Size of the Giant in Expanders
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Algorithmic Implication
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Examples of Convergent Large-set Expanders

o Configuration Model [Violloy, Reed, Newman, Barabasi, Watts “11]
o Preferential Attachment [Bollobas, Riordan ‘03]

o Household models [Eall, Sirl, Trapman. 2009, Hofstad, Leeuwaarden,
Stegehuis. "15 -- for configuration model]
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Directed Percolation Creates a Bow-Tie (}:()

SCC}\ Scc,

_ O
E?i'Loth

SCCy\ SCCy
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Bow-tie: From Undirected to Directed
Cascade
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Recap: What information about the network

do we need to

‘orecast an outbreak?

ithout assuming the underlying

model|or ffull knowledge of the graph-

l

|

Global property of the J { Local information of a few}

network: expansion

samples: graph limits
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Proofs

Graph Limits and Processes on Networks

22



Critical Probability is Local
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Proof: Super Critical Case p > p,.(G)

Step 0: For some € > 0 let p; = p.(G) + e besuchthat1 —p = (1 — p;)(1 — €).
Consider two copies of percolation G, (p;) and G,,(€). The union of them gives an instance of G, (p).
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Proof: Super Critical Case p > p,.(G)

Step 0: For some € > 0 let p; = p.(G) + e besuchthat1 —p = (1 — p;)(1 — €).
Consider two copies of percolation G, (p;) and G, (€). The union of them gives an instance of G, (p).

Step 1: There exists some 6 > 0 such that for all K > 0, whp there are 6n nodes with component larger
than K in G,,(p,), i.e., let Zx = {nodes with component larger than K} for alln > n,

5%n
Pe p) (Zk| < 6n) < exp| — :

2d2k

Step 2 (Sprinkling): There is a path in G,,(€) between any two large partition of components in Z:

on
Pe_ (e (EI A, B € 2%k: A, B disconnected in G, (¢) and G,(p,), |A|,|B| = E Gn(pl))
= exp(_nc{a,&d,e})

: .8
Step 3: P;_ () (contams a component of size ?n) — 1, asn - oo,



Step 1: Existence of relatively large
components

o There exists § such that for all K > O:
P¢(p) (0 connects to K boundary) > 46.

o For any K, there exists n_0 such that for alln = n,
P¢_ (p) (@ uniform random node is in Zy) > 26.

o E[Zg] = 26n

o Changing the status of an edge changes the membership of at most d¥nodes in Z.
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Step 2: Sprinkling

Step 2 (Sprinkling): There is a path in G,,(€) between any two large partition of components in Z:

on
Pé. (e (EI A, B € 2%k: A, B disconnected in G, (¢) and G,(p,), |A|,|B| = 3 | Gn(pl)) < exp(—NCia5.d,})

Menger’s Theorem. Let G be a finite undirected graph and A and B two
disjoint set of vertices. Then the minimum edge-cut between A and B is

A B
/ ™ equal to the number of pairwise edge-independent paths from A to B.
\ There are %n edge-disjoint paths in G,, between A and B (expansion).
~ Since the average degree is bounded by d, the length of half of these
. 6d dan
paths is bounded by £ = 52 (# paths = — )

Each path appearin G,,(€) with probability e’.
#path
The probability that non of the paths appear in G,,(€) : (1 — e{)) paths
n

Number of A, B partitions in G,,(p;) : 2K

dan

n 6d 6d
Finally: 2x(1 — €3a) ° < exp (n(% — 6?“65_“))


https://en.wikipedia.org/wiki/Path_(graph_theory)

Brieft History of Sprinkling

Erdos, Rényi’'60]

Posa’76][Ajtai, Kolmos, Szemerédi ‘82]

Bollobas, Riordan ‘01] [Alon, Benjamini, Stacey ‘02]
Borgs, Chayes, van der Hofstad, Slade, Spencer ‘07]
Benjamini, Nachmias, Peres ‘09]

Janson, Rucinski’10] [van der Hofstad, Nachmias ‘17]
Krivelevich, Sudakov "17]

Dudek, C. Reiher, A. Ruci'nski, and M. Schacht ‘20]
‘Nenadov, Trujic '21][Easo, Hutchcroft "21]
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Relative Size of the Giant in Expanders
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Large-set Expanders
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Proof Sketch: Size of the Giant Converges

\"4

Sprinkling
again!

Relative num of . '
elative num o Relative num of Relative num of

nodes in a . nodes in a
nodes in the
component larger component larger

than k in G(») largest connected Han ki
an xin &ip component of G(p) - a_r)wp {ln(pG(pE; €)
(0 —

- 0 (p)
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Proof Sketch: Size of the Giant Converges

\"4

Sprinkling
again!
Relative num of Relative num of Relative num of
n in . '
com ?)dneesnlt Ijr er NOGESIA the e InIa
theFa)n kin G( % largest connected campshent arger
> P component of G(p) - anp nG@p—é)
=" (e(p) =" (i(p —€)
Converges to {(p) Convergesto {(p — €)

(Sourav Sarkar proved this lemma for deterministic sequence of convergent expanders in 2018.)
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Directed Percolation Creates a Bow—Tie(}Q

SCC}\ Scc,

_ O
E?i'Loth

SCCy\ SCCy

Graph Limits and Processes on Networks



Proof Idea 1: Coupling to Undirected




Proof |dea: Strongly Connected Component
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Takeaways

On converging expanders:

Critical probability, and the size of the giant converges to its limit.
We give an algorithm to estimate the limit.

Directed percolation in convergent expanders has a bow-tie structure.

Graph limits enables us to connect the discrete world to the
continuous world. Can we find more applications?
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