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Motivation

Infection spreads over a contact network.

Question: What information about the network do we need to forecast 
an outbreak?
- So far, we saw model-dependent answers.
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Network Model and Estimation of Epidemics

Graph Limits and Processes on Networks

Erdös-Renyi: average degree Configuration model: degree sequence

1. Model the interaction between people with a network model: 
Erdos Renyi, Configuration Model, Preferential Attachment, 
Stochastic Block Model, Household Models, etc. 

2. Estimate the relevant model parameters.

Question: Can we have a model-free estimation on different 
properties of epidemics?
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Example Properties of Epidemics
Different models share similar 
qualitative properties:
oCritical probability/phase 

transition of emergence of the 
outbreak (giant)

oUniqueness of the outbreak 
(giant)

oConvergence of the size of the 
outbreak (giant)
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Increasing transmission probability

Erdos-Renyi: average degree

Configuration model: the second moment

Is there a meta theorem without assuming the underlying model or full 
knowledge of the graph?
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Recap: Simple Model of Epidemics 
(Percolation)
Initially, one node (chosen uniformly at random) 
is infected.
An infected node transmits the disease to each 
neighbor independently with probability 𝑝, and 
then recovers (and will be immune to re-
infection).

Equivalent to SIR with Constant Recovery time.
Percolation: keep each edge with probability 𝑝
(call this graph G(𝑝)). 
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: probability of transmission
: infected individual
: successful transmission
: edges of the original graph
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Definition. Directed Percolation 

o Replace each edge 𝑖, 𝑗 by directed edges 𝑖 → 𝑗 and j→ 𝑖,

o Keep directed edges independently with probability p.
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This Talk in a Nutshell

Under some assumption (expansion) on converging graphs:

The directed percolation on convergent sequence of expanders has:
o the same critical probability as the undirected percolation.
o a bow-tie structure.
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Critical probability converges to its limit.

We give an algorithm to estimate the limit.

Giant is unique, and its size converges to its limit.
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Results: Epidemics on Expanders
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Critical Probability

Graph Limits and Processes on Networks

Definition. (Critical Probability) 
Given an infinite graph 𝐺, the critical 𝑝! 𝐺 is defined as

𝑝! 𝐺 = inf 𝑝 ∈ 0,1 : ℙ" # ∃ an in/inite component in 𝐺 𝑝 > 0 .

Theorem 1. [Benjamini, Nachmias, Peres ‘09] 
Let 𝐺$ be a sequence of α-expanders, with a uniform bounded degree 𝑑, and local weak limit 𝐺. If 
𝑝 < 𝑝! 𝐺 , then for any constant 𝛽 > 0,

ℙ ∃ a component of size at least 𝛽n in 𝐺$ 𝑝 → 0 as 𝑛 → ∞
and if 𝑝 > 𝑝! 𝐺 , then there exists a constant 𝛽 > 0 such that

ℙ ∃ a component of size 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝛽n in 𝐺$ 𝑝 → 1 as 𝑛 → ∞.

Takeaway: Critical probability in convergent expanders is local, and there’s a phase transition at 𝑝! 𝐺 .
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Critical Probability
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Takeaway: Critical probability in convergent expanders is local, and there’s a phase transition at 𝑝! 𝐺 .

Definition. (Critical Probability) 
Given an infinite graph 𝐺, the critical 𝑝! 𝐺 is defined as

𝑝! 𝐺 = inf 𝑝 ∈ 0,1 : ℙ" # ∃ an in/inite component in 𝐺 𝑝 > 0 .
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Recap: Local Convergence
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Definition. (Local Convergence in Probability [Benjamini, Schramm ‘01]) 
A sequence of finite graphs {𝐺$}$∈ℕ converges locally in probability to 𝜇 if for any bounded 
continuous function 𝑓: 𝒢∗ → ℝ ,

𝔼𝒫! 𝑓 𝐺$ →
ℙ
𝔼* f ,

where in 𝔼𝒫! 𝑓 𝐺$ , we take expectation with respect to the uniform random root in 𝐺$.

Takeaway: the distribution of the neighborhood of a typical node converges.
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Expanders
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𝐸(𝑆, ̅𝑆)

𝑆
̅𝑆Definition. (Expanders) 

𝐺 is 𝛼-expander if 𝜙 𝐺 ≥ 𝛼, where
𝜙 𝐺 = min

+⊆- "
.(+, ̅+)

345( + ,| ̅+|)

Takeaway: If you want to isolate a large 
community from the rest of the town, you 
need to remove many connections.
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Necessity of Expansion: Same Graph Limit but 
Different Epidemics
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A collection of 5
789 $

4-regular 

random graphs, each of size log 𝑛

A 4-regular random graph 
of size𝑛
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Uniqueness of the Giant
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Theorem. [Alon, Benjamini, Stacey ‘04]
Let G5 5∈ℕ be a sequence of (possibly random) expanders of size 𝑛 with bounded maximum degree. 
Let 𝛽 > 0,  and 𝑝$ ∈ 0,1 . Then

ℙ"!(#!) ∃ more than one component of size 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝛽n in 𝐺$ 𝑝$ → 0, 𝑎𝑠 𝑛 → ∞.

Takeaway: Giant in expanders is unique.

Previous two theorems show that the existence and uniqueness of 
the giant.
But what about its size?
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Relative Size of the Giant 

Two copies of a network, with two runs of the same infection led to an 
outbreak. Can we predict the number of infected?
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Relative Size of the Giant in Expanders
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Theorem 2. [A., Borgs, Saberi ‘21]
Let G5 5∈ℕ be a sequence of (possibly random) large-set expanders with bounded average degree 
converging locally in probability to G, o ∈ 𝔊∗ with non-random distribution µ. Let C4 be the ith largest 
component. If p ≠ p: µ ,

|C;|
n
→
ℙ
ζ p .

Further,	for	all	𝑝 ∈ [0,1], |<%|
5
→
ℙ
0.

Takeaway 1: Giant in convergent expanders is unique, and its size converges to its limit.

→
ℙ

: convergence in probability in percolation and 𝜇.
ζ p := 𝔼 ",= ∼*[ℙ" # ( connected component of 𝑜 = ∞ )].

Corollary: With high probability, the final infection size is either either 𝑂(1) or Θ 𝑛 .
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Algorithmic Implication
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Input: a constant 𝑘.
1. Draw a uniform random node 𝑣.
2. Simulate an infection starting from 𝑣.
3. If 𝑣 can lead to infecting 𝑘 others:

return 1.
otherwise:

return 0. 

A run of the algorithm with 𝑘 = 4

𝑣

Theorem 3. [A., Borgs, Saberi ‘22]
Let 𝐺$ 5∈ℕ be a sequence of (possibly random) graphs converging locally in probability to (𝐺, 𝑜) ∈ 𝔊∗ with 

distribution µ,	such	that	|<&|
5
→
ℙ
ζ p .

Formally, there exists 𝑛? > 0, such that for all 𝑛 > 𝑛?, ℙ | m𝑁 𝑞? , 𝑘? − 𝜁 𝑝 ≥ 𝜖 ≤ 𝜖.

Then for any 𝜖 > 0, there exist constants 𝑞?, 𝑘? ≥ 0, such that whp 𝑞? queries to the above algorithm with 
input 𝑘? (denoted by m𝑁 𝑞? , 𝑘? ) is a 1 − 𝜖 -approximation of 𝜁 𝑝 .
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Examples of Convergent Large-set Expanders
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o Configuration Model [Molloy, Reed, Newman, Barabasi, Watts ‘11] 
o Preferential Attachment [Bollobás, Riordan ‘03]
o Household models [Ball, Sirl, Trapman. 2009, Hofstad, Leeuwaarden, 

Stegehuis. ’15 -- for configuration model]

Motif-Based Graph [Household Models]
Motifs: A collection of simple graphs of a bounded size, where each vertex has a specified external 
degrees.
ℳ@: probability distribution over motifs with total external degree d.
Motif-Based Graph: Given an external graph 𝐺ABC replace each vertex independently at random by 
a motif with the same external degree.

Blow up vertices 

𝐺$ABC

Informal Lemma. If 𝐺$ABC 5∈ℕ are convergent large-set expanders then 𝐺$ 5∈ℕ is as well.

𝐺$
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Directed Percolation Creates a Bow-Tie 
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Theorem 4. [A., Borgs, Saberi]
For a sequence of large-set expanders as in Theorem 2, +DD%

$
→
ℙ
0.

Also, if 𝑝 > 𝑝!(𝐺):
o liminf$→F

+DD&
$

≥ 𝜁G 𝑝 and +DD&
𝔼 +DD&

→
ℙ
1.

o
;
$
𝑆𝐶𝐶;I →

ℙ
𝜁 𝑝 and ;

$
𝑆𝐶𝐶;J →

ℙ
𝜁 𝑝

o For a uniform random node 𝑣 whp 𝑜𝑢𝑡 𝑣 \𝑆𝐶𝐶;I = 𝑜 𝑛 ,
and  𝑖𝑛 𝑣 \𝑆𝐶𝐶;J = 𝑜 𝑛 .

If 𝑝 < 𝑝! 𝐺 , , for a uniform random node 𝑣 whp
|=KC L |

$
→
ℙ
0, |M$ L |

$
→
ℙ
0, and |+DD&|

$
→
ℙ
0.

𝑆𝐶𝐶;J ∖ 𝑆𝐶𝐶;

𝑆𝐶𝐶;I ∖ 𝑆𝐶𝐶;

Small 
Components𝑆𝐶𝐶;

Recall. Strongly Connected 
Component (SCC)
A directed graph is SCC if there 
exists a directed path between 
any pairs of nodes.

Critical probability is the same as undirected.

The number of super-spreaders and infected is local and always the same.

An outbreak is inevitable when 𝜖𝑛 people are infected.
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Bow-tie: From Undirected to Directed 
Cascade
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Takeaway : The bow-tie structure holds when the giant in the undirected percolation is unique, and its 
relative size converges to its limit.

Theorem. [A., Borgs, Saberi]
Directed cascade on any sequence of possibly random graphs {G_n} satisfying:
a. there exists 𝑞 ∈ (0, 𝑝] and a function 𝜁: 𝑝 − 𝑞, 𝑝 → [0,1] that is left-continuous at 𝑝

such that |D&|
$
→
ℙ
𝜁(𝑝N) for all 𝑝N ∈ [𝑝 − 𝑞, 𝑝];

b. |D%|
$
→
ℙ
0 uniformly in 𝑝 − 𝑞, 𝑞 .

results in a bow-tie structure (as in Theorem 3).
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Recap: What information about the network 
do we need to forecast an outbreak?
Goal: Can we give a meta theorem without assuming the underlying 
model or full knowledge of the graph?

Graph Limits and Processes on Networks

Local information of a few 
samples: graph limits

Global property of the 
network: expansion
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Proofs
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Critical Probability is Local
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Definition. (Critical Probability) 
Given an infinite graph 𝐺, the critical 𝑝! 𝐺 is defined as

𝑝! 𝐺 = inf 𝑝 ∈ 0,1 : ℙ" # ∃ an in/inite component in 𝐺 𝑝 > 0 .

Theorem 1. [Benjamini, Nachmias, Peres ‘09] 
Let 𝐺$ be a sequence of α-expanders, with a uniform bounded degree 𝑑, and local weak limit 𝐺. If 
𝑝 < 𝑝! 𝐺 , then for any constant 𝛽 > 0,

ℙ ∃ a component of size at least 𝛽n in 𝐺$ 𝑝 → 0 as 𝑛 → ∞
and if 𝑝 > 𝑝! 𝐺 , then there exists a constant 𝛽 > 0 such that

ℙ ∃ a component of size 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝛽n in 𝐺$ 𝑝 → 1 as 𝑛 → ∞.

Takeaway: Critical probability in convergent expanders is local, and there’s a phase transition at 𝑝! 𝐺 .
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Proof: Super Critical Case 𝑝 > 𝑝! 𝐺
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Step 0: For some 𝜖 > 0 let 𝑝; = 𝑝! 𝐺 + 𝜖 be such that 1 − 𝑝 = 1 − 𝑝; (1 − 𝜖).
Consider two copies of percolation 𝐺$(𝑝;) and 𝐺$(𝜖). The union of them gives an instance of 𝐺$ 𝑝 .

𝐺$(𝑝;) 𝐺$(𝜖) The original graph 𝐺$
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Proof: Super Critical Case 𝑝 > 𝑝! 𝐺
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Step 1: There exists some 𝛿 > 0 such that for all 𝐾 > 0, whp there are 𝛿𝑛 nodes with component larger 
than 𝐾 in 𝐺$(𝑝;),	i.e.,	let	ZO = nodes with component larger than 𝐾 for	all	𝑛 ≥ 𝑛P

ℙ"!(#&) 𝑍Q ≤ 𝛿𝑛 ≤ exp −
𝛿G𝑛
2𝑑GR .

Step 2 (Sprinkling): There is a path in 𝐺$(𝜖) between any two large partition of components in 𝑍Q:

ℙ"!(?) ∃ 𝐴, 𝐵 ⊆ 2S': 𝐴 , 𝐵 disconnected in 𝐺$ 𝜖 and 𝐺$ 𝑝; , |A|, 𝐵 ≥
𝛿𝑛
3 | 𝐺$(𝑝;)

≤ exp(−𝑛𝑐 T,U,@,? )

Step 3: ℙ"!(#) 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑠𝑖𝑧𝑒 U$
V

→ 1, as 𝑛 → ∞.

Step 0: For some 𝜖 > 0 let 𝑝; = 𝑝! 𝐺 + 𝜖 be such that 1 − 𝑝 = 1 − 𝑝; (1 − 𝜖).
Consider two copies of percolation 𝐺$(𝑝;) and 𝐺$(𝜖). The union of them gives an instance of 𝐺$ 𝑝 .
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Step 1: Existence of relatively large 
components

o There exists 𝛿 such that for all 𝐾 > 0:
ℙ"(#) 𝑜 connects to 𝐾 boundary ≥ 4𝛿.

o For any K, there exists n_0 such that for	all	𝑛 ≥ 𝑛P
ℙ"!(#) a uniform random node is in 𝑍Q ≥ 2𝛿.

o 𝔼[ZO] ≥ 2𝛿𝑛
o Changing the status of an edge changes the membership of at most 𝑑Qnodes in ZO.

Graph Limits and Processes on Networks

Step 1: There exists some 𝛿 > 0 such that for all 𝐾 > 0, whp there are 𝛿𝑛 nodes with component larger than 
𝐾 in 𝐺$(𝑝;),	i.e.,	let	ZO = nodes with component larger than 𝐾 for	all	𝑛 ≥ 𝑛P

ℙ"!(#&) 𝑍Q ≤ 𝛿𝑛 ≤ exp −
𝛿G𝑛
2𝑑GR .
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Step 2: Sprinkling
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𝐵𝐴 Menger’s Theorem. Let G be a finite undirected graph and A and 𝐵 two 
disjoint set of vertices. Then the minimum edge-cut between A and 𝐵 is 
equal to the number of pairwise edge-independent paths from A to 𝐵.

There are UT$
V

edge-disjoint paths in 𝐺$ between A and 𝐵 (expansion).
Since the average degree is bounded by 𝑑, the length of half of these 
paths is bounded by ℓ = W@

UT
. (# paths = UT$

W
)

Each path appear in 𝐺$(𝜖) with probability 𝜖ℓ.
The probability that non of the paths appear in 𝐺$(𝜖) : 1 − 𝜖ℓ ##ZC[\

Number of 𝐴 , 𝐵 partitions in 𝐺$(𝑝;) : 2
(
'

Finally: 2
!
' 1 − 𝜖

)*
+,

+,!
)
≤ exp 𝑛(;

Q
− UT

W
𝜖
)*
+,)

Step 2 (Sprinkling): There is a path in 𝐺$(𝜖) between any two large partition of components in 𝑍Q:

ℙ"!(?) ∃ 𝐴, 𝐵 ⊆ 2S': 𝐴 , 𝐵 disconnected in 𝐺$ 𝜖 and 𝐺$ 𝑝; , |A|, 𝐵 ≥
𝛿𝑛
3 | 𝐺$(𝑝;) ≤ exp(−𝑛𝑐 T,U,@,? )
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Brief History of Sprinkling

[Erdös, Rényi’60] 
[Posa’76][Ajtai, Kolmós, Szemerédi ‘82]
[Bollobás, Riordan ‘01] [Alon, Benjamini, Stacey ‘02] 
[Borgs, Chayes, van der Hofstad, Slade, Spencer ‘07]
[Benjamini, Nachmias, Peres ‘09]
[Janson, Rucinski’10] [van der Hofstad, Nachmias ‘17] 
[Krivelevich, Sudakov ’17]
[Dudek,  C.  Reiher,  A.  Ruci'nski,  and  M.  Schacht ‘20] 
[Nenadov, Trujic ’21][Easo, Hutchcroft ’21]
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Relative Size of the Giant in Expanders

Graph Limits and Processes on Networks

Theorem 2. [A., Borgs, Saberi ‘21]
Let G5 5∈ℕ be a sequence of (possibly random) large-set expanders with bounded average degree 
converging locally in probability to G, o ∈ 𝔊∗ with non-random distribution µ. Let C4 be the ith largest 
component. If p ≠ p: µ ,

|C;|
n →

ℙ
ζ p ,

Also	for	all	𝑝 ∈ [0,1], |<%|
5
→
ℙ
0.

Takeaway: Giant in convergent expanders is unique, and its size converges to its limit.

→
ℙ

: convergence in probability in percolation and 𝜇.
ζ p := 𝔼 ",= ∼*[ℙ" # ( connected component of 𝑜 = ∞ )].
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Large-set Expanders

Graph Limits and Processes on Networks

Definition. (Expander) 
𝐺 is 𝛼-expander if 𝜙 𝐺 ≥ 𝛼, where
𝜙 𝐺 = min

+⊆- "
.(+, ̅+)

345( + ,| ̅+|)

Definition. (Large-set Expander) 
𝐺 with average degree bounded by 𝑑 is 
𝛼, 𝜖, 𝑑 large-set expander if 𝜙? 𝐺 ≥ 𝛼, where 

𝜙? 𝐺 = min
+⊆- "
+ ]?$

.(+, ̅+)
345( + ,| ̅+|)

𝐸(𝑆, ̅𝑆)

𝑆
̅𝑆

Definition. (Sequence of Large-set Expander) 
A sequence of possibly random graphs G5 5∈ℕ is called a large-set expander sequence with bounded 
average degree, if there exists �𝒅 < ∞ and 𝛼 > 0 such that for all 𝜖 ∈ (0, .5), the probability that G5 is 
an 𝛼, 𝜖, 𝑑 large-set expander goes to 1 as n → ∞.
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Proof Sketch: Size of the Giant Converges
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Relative num of 
nodes in a 

component larger 
than k in 𝐺(𝑝 − 𝜖)
→^ 𝜁R(𝑝 − 𝜖)

Relative num of 
nodes in the 

largest connected 
component of 𝐺(𝑝)

Relative num of 
nodes in a 

component larger 
than 𝑘 in 𝐺 𝑝
→^ 𝜁R(𝑝)

Sprinkling 
again!

𝜁R p := 𝔼 ",= ∼*[ℙ" # ( connected component of 𝑜 ≥ 𝑘 )]. lim
R→F

𝜁R p = 𝜁(𝑝).
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Proof Sketch: Size of the Giant Converges

Graph Limits and Processes on Networks

Relative num of 
nodes in a 

component larger 
than k in 𝐺(𝑝 − 𝜖)
→^ 𝜁R(𝑝 − 𝜖)

Relative num of 
nodes in the 

largest connected 
component of 𝐺(𝑝)

Relative num of 
nodes in a 

component larger 
than 𝑘 in 𝐺 𝑝
→^ 𝜁R(𝑝)

Sprinkling 
again!

Lemma. For a sequence of graphs satisfying the assumptions of Theorem 2, 𝜁(𝑝) is continuous 
for all 𝑝 ≠ 𝑝!(𝜇). Equivalently, the limit 𝜇 is ergodic.

Converges to 𝜁(𝑝) Converges to 𝜁(𝑝 − 𝜖)

(Sourav Sarkar proved this lemma for deterministic sequence of convergent expanders in 2018.)
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Directed Percolation Creates a Bow-Tie 

Graph Limits and Processes on Networks

Theorem 3. [A., Borgs, Saberi]
For a sequence of large-set expanders as in Theorem 2, +DD%

$
→
ℙ
0.

Also, if 𝑝 > 𝑝!(𝐺):
o liminf$→F

+DD&
$

≥ 𝜁G 𝑝 and +DD&
𝔼 +DD&

→
ℙ
1.

o
;
$
𝑆𝐶𝐶;I →

ℙ
𝜁 𝑝 and ;

$
𝑆𝐶𝐶;J →

ℙ
𝜁 𝑝

o For a uniform random node 𝑣 whp 𝑜𝑢𝑡 𝑣 \𝑆𝐶𝐶;I = 𝑜 𝑛 ,
and  𝑖𝑛 𝑣 \𝑆𝐶𝐶;J = 𝑜 𝑛 .

If 𝑝 < 𝑝! 𝐺 , , for a uniform random node 𝑣 whp
|=KC L |

$
→
ℙ
0, |M$ L |

$
→
ℙ
0, and |+DD&|

$
→
ℙ
0.

𝑆𝐶𝐶;J ∖ 𝑆𝐶𝐶;

𝑆𝐶𝐶;I ∖ 𝑆𝐶𝐶;

Small 
Components𝑆𝐶𝐶;

Recall. Strongly Connected 
Component (SCC)
A directed graph is SCC if there 
exists a directed path between 
any pairs of nodes.

Critical probability is the same as undirected.

The number of super-spreaders and infected is local and always the same.

An outbreak is inevitable when 𝜖𝑛 people are infected.
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Proof Idea 1: Coupling to Undirected
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Lemma. (informal)
For a fixed, or random vertex 𝑣

ℙ_! # 𝑂𝑢𝑡 𝑣 ≥ 𝑘 = ℙ"! # ( 𝐶 𝑣 ≥ 𝑘)
Coupling two trees and using uniqueness of the giant in 𝐺$ 𝑝 one 
can derive

𝑆𝐶𝐶G = 𝑜 𝑛
for convergent sequence of large-set expanders.
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Proof Idea: Strongly Connected Component

Graph Limits and Processes on Networks

Step1. (Lower bound on 𝔼[ 𝐒𝐂𝑪𝟏 𝟐])
Couplings, plus FKG gives lower bound on expectation of 

�
M
𝑆𝐶𝐶M G =�

B
|𝑆𝐶𝐶 𝑥 |

Use 𝑆𝐶𝐶G = 𝑜 𝑛 to get a lower bound on 𝔼 𝑆𝐶𝐶; G.

Step2. (Upper bound on 𝐯𝐚𝐫 𝑺𝑪𝑪𝟏 )
Uses the sharpening of the Efron-Stein bounds by [Falik and Samorodnitsky ’07]
Bounding the influence of an edge on the size of 𝑆𝐶𝐶;
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Takeaways

On converging expanders:

Graph Limits and Processes on Networks

Critical probability, and the size of the giant converges to its limit.

We give an algorithm to estimate the limit.

Directed percolation in convergent expanders has a bow-tie structure.

Graph limits enables us to connect the discrete world to the 
continuous world. Can we find more applications?
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