Schelling Segregation

Nicole Immorlica, Microsoft

Based on joint works with Christina Brandt, Gautam Kamath, Robert D. Kleinberg, Brendan Lucier, and M. Zadomighaddam
Theory: How do individual decisions impact population-level phenomena?
MODEL:

one-dimensional

two-dimensional
INDIVIDUAL PREFERENCES:

n nodes, two types

neighborhood = $2w + 1$ nearest neighbors, happy if at least $\tau = 0.5$ neighbors of like-type

Pr[\(\bullet = \bullet \)] = Pr[\(\bullet = \bigcirc \)] = $\frac{1}{2}$

model parameters:

- tolerance $\tau = 0.5$
- window size w
- society size n
INDIVIDUAL BEHAVIOR:

Each day, two randomly selected individuals swap nodes if both unhappy oppositely-colored.
MEASURE OF SEGREGATION:

A run is a maximal sequence of like-colored individuals.
Behavior may converge to a variety of states.
HISTORY:

Simulations: For $n = 70$ and $w = 4$, the average segregation was 12.

- **societal impact**: shifted discourse about segregation which until then had been attributed to discrimination.
- **theoretical impact**: became archetypical example of global emergent structure from simple local rules.

[Schelling’69]
HISTORY:

Approximations predict total segregation

- Stochastically stable states: In a perturbation, states minimize the number of bi-chromatic edges. [Young'01], [Zhang'04]
- Spin systems: Monochromatic with high probability as temperature approaches 0. [Bhakta, Miracle, and Randall’14]

But approximations have exponential mixing time; predictions contradict simulations.
TODAY:

The dynamics converge after poly\((n)\) steps with \(O(w)\) segregation.

The distribution of run lengths is such that for all \(\lambda > 0\), the probability a randomly selected node is in a run of length \(> \lambda w\) is bounded above by \(c^\lambda\) for some constant \(c < 1\).

[Brandt, Immorlica, Kamath, Kleinberg, 2012]
KEY STRUCTURE:

Defn. A **firewall** is a sequence of $w + 1$ consecutive individuals of the same type.

Claim: Firewalls stable with respect to dynamics.
Corollary: Segregation at most distance bt firewalls.
BIRTH OF FIREWALLS:

Simulation with $n = 10000$, $w = 10$.

Time $t = 0$
BIRTH OF FIREWALLS:

time $t = 40$

Simulation with $n = 10000, w = 10$.
BIRTH OF FIREWALLS:

time $t = 80$

Simulation with $n = 10000, w = 10$.
BIRTH OF FIREWALLS:

time $t = 120$

Simulation with $n = 10000$, $w = 10$.
BIRTH OF FIREWALLS:

time \ t = 160

Simulation with \ n = 10000, \ w = 10.
EMERGENT STRUCTURE:

Simulation with $n = 10000$, $w = 10$.

Time $t = 260$ (final)
1. Define *firewall incubators*, frequent at initialization.
2. Show firewall incubators are likely to become firewalls.

TECHNIQUE:

A ● firewall incubator, rich in ●-type nodes.

A ○ firewall incubator, rich in ○-type nodes.
Definition. The bias of a node at time t is the sum of the signs of sites in its neighborhood.
FIREWALL INCUBATORS:

Definition. A firewall incubator is a sequence of 3 sufficiently long and sufficiently biased blocks.

Diagram: A firewall incubator is represented by a sequence of symbols, indicating the structure and characteristics of the blocks involved. The diagram illustrates the concept visually, with various symbols and lines representing the different components of the incubator.
1. Define *firewall incubators*, frequent at initialization.
2. Show firewall incubators are likely to become firewalls.
1. Define *firewall incubators*, frequent at initialization.
2. Show firewall incubators are likely to become firewalls.

TECHNIQUE:

A **firewall incubator**, rich in -type nodes.

A **firewall incubator**, rich in -type nodes.
THE BIRTH OF A FIREWALL:

To show this incubator turns into a blue firewall:

1. analyze random order of flips instead of swaps
2. argue due to bias all good events happen before too many bad events with probability $O(1/w)$.
FLIPS VERSUS SWAPS:

Swaps are random order if there is
unhappy red = # unhappy blue.
DEFINE STATE VARIABLES:

- \(\sigma \in \{-1, +1\}^{w+1} \) is a labeling of a neighborhood
- \(X_\sigma(t) = \# \) of nodes with neighborhood labeling \(\sigma \)
DEFINE STATE VARIABLES:

ring of size n

tainted nodes (initially, $w + 1$)

\[\frac{n}{L(w)} \] rings of size $L(w)$
DEFINE STATE VARIABLES:

• $\sigma \in \{-1, +1\}^{L(w)}$ is a labeling of a subring
• $X_{\sigma}(t) =$ number of nodes i such that subring containing i has label σ at time t (clockwise starting from i)
DEFINE STATE VARIABLES:

• \(\sigma \in \{-1, +1\}^{L(w)} \): labeling of a subring
• \(X_\sigma(t) \): label clockwise from \(i \) is \(\sigma \) at time \(t \)

Question. \# unhappy red – \# unhappy blue?

\[\Delta(\vec{X}) = \sum_{\sigma} u(\sigma) X_\sigma(t) \]

where \(u(\sigma) = +1 \) if starts with unhappy red, and \(u(\sigma) = -1 \) if starts with unhappy blue
CALCULATE EXPECTATION:

For all j, σ', σ'', let $a_{\sigma}(j, \sigma', \sigma'') = 1$ if swapping node 1 of σ' with node j of σ'' creates labeling σ (and correspondingly for -1).

\[
E\left[X_{\sigma}(t + 1) - X_{\sigma}(t) \middle| G_t \right] = \sum_{j, \sigma', \sigma''} 2a(j, \sigma', \sigma'') \left(\frac{X_{\sigma'}(t)}{n} \right) \left(\frac{X_{\sigma''}(t)}{n} \right) + O \left(\frac{L(w)}{n} \right)
\]
CHECK WORMALD CONDITIONS:

\[
E[X_\sigma(t + 1) - X_\sigma(t) | G_t] \\
= \sum_{j, \sigma', \sigma''} 2a(j, \sigma', \sigma'') \left(\frac{X_{\sigma'}(t)}{n} \right) \left(\frac{X_{\sigma''}(t)}{n} \right) + O \left(\frac{L(w)}{n} \right)
\]

- Bounded? \(|X_\sigma(t + 1) - X_\sigma(t)| \leq 2L(w)\)
- Lipschitz? \(f(y, \{x_\sigma\})\) bounded quadratic
SOLVING DIFF EQ:

\[
\frac{dx_\sigma(y)}{dy} = \sum 2a(...)(y)x_\sigma'(y)x_\sigma''(y)
\]

We actually only care about balance:

\[
\Delta(\tilde{\chi}) = \sum u(\sigma)x_\sigma
\]

where \(u(\sigma) = +1\) if first node is unhappy blue, and \(u(\sigma) = -1\) otherwise.
AVOIDING DIFF EQS:

Flipping labels. Let $\bar{\sigma}$ be “flip” of labeling σ and $\iota(\hat{x})$ be vector whose σ^{th} component is $x_{\bar{\sigma}}$.

1. vector $\iota(\hat{x})$ is permutation of state vector \hat{x}

2. fixed point set $\{\hat{x} | \iota(\hat{x}) = \hat{x}\}$ is
 • balanced as $x_{\sigma} = x_{\bar{\sigma}}$ and $u(\sigma) = -u(\bar{\sigma})$
 • invariant under diff eq by symmetry

3. initial state close to fixed point set w.h.p.
 and all close points have high balance
CONCLUDING BALANCE:

Theorem. For all sufficiently large n, with high probability the # of unhappy red and blue are approximately balanced for sufficiently long.

Proof Sketch. This is true of differential equation and therefore true of discrete process for as long as diff eq tracks discrete process closely.
Theorem. Average segregation is $O(w^2)$.

Proof. A block of length $O(w)$ contains an incubator with constant probability. This incubator turns into a firewall with probability $\Omega(1/w)$.

Linear result: define a stronger incubator.
EPILOGUE:

On preaching tolerance...

n nodes, two types

happy if at least $\tau = 0.5$

neighbors of like-type

Segregation exponential in w for $\tau = 0.5 - \epsilon$

[Barmpalias, Elwes, Lewis-Pye, 2014]