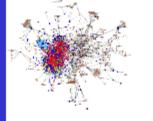


Local Convergence for Sparse Graphs

Christian Borgs, UC Berkeley

Simons Institute for the Theory of Computing Fall 2022



Introduction

<u>Questions</u>: Given a sequence G_n of graphs with $|V(G_n)| = n \rightarrow \infty$, what is the "right" notion of convergence? What is the limit?

Equivalent notions for dense graphs:

- Convergence of sampled subgraphs
- Convergence of subgraph counts
- Convergence of multi-way cuts
- Convergence of micro-canonical free energies

What about Sparse graphs, with

$$\bar{d}_n = \frac{2}{n} |\mathrm{E}(\mathbf{G}_n)|,$$

uniformly bounded for all n

Introduction

<u>Problem</u>: The dense notions are not suitable for bounded degree graphs. <u>Example</u>: If we sample x_1, x_2 uniformly at random

$$\Pr(x_1 x_2 \in E) = \frac{1}{n^2} 2|E| = \frac{1}{n} \bar{d}_n \to 0$$

Thus sampling gives empty graphs if we sample k vertices at random (with or without replacement)

Solution: Sample only one vertex, and look at local neighborhoods

<u>Def [BS'01]</u>: A sequence G_n is called locally convergent, or Benjamini-Schramm convergent if for all $R < \infty$, the distribution of the Rneighborhood around a uniformly randomly vertex $x \in V(G_n)$ is convergent

Continue on White Board

- Examples
- random vs. deterministic graphs
- unimodularity,
- Existence questions

Ex1: The sequences $\{1, 2, ..., n\}^d$ and $(\mathbb{Z}/n\mathbb{Z})^d$ converge to the rooted graph $(0, \mathbb{Z}^d)$

Ex2: Let $G_{n,d}$ be the d-regular random graph and $B_{n,d}$ be the d-regular bipartite random graph. Both sequences are BS-convergence, and converge to the infinite d-regular tree, but have very different global properties:

• MaxCut
$$(B_{n,d}) = \frac{dn}{2}$$

• MaxCut
$$(G_{n,d}) \approx \frac{dn}{4}$$

Relation to Notions from Dense Convergence

- Subgraph Convergence
- Convergence of weighted multi-way cuts
- Convergence of free energies

For simplicity, I will assume that the maximal degree of G_n is uniformly bounded by some $D < \infty$

2a) Subgraph counts

<u>Def</u>: Subgraph frequencies: Given a graph G = (V, E) with adjacency matrix A and a connected graph H on k nodes, define

$$\nu(H,G) = \frac{1}{|V|} \sum_{v_1,...,v_k \in V} \prod_{ij \in E(H)} A_{v_i v_j} \prod_{ij \notin E(H)} (1 - A_{v_i v_j})$$

where the sum goes over distinct sets of vertices

Def: Subgraph Count Convergence:

• For all finite graphs H, $\nu(H, G_n)$ converges to some $\nu(H) \in \mathbb{R}$

<u>Rem</u>: It is easy to see that for bounded degree graphs, this is equivalent to BS-convergence. We call these two notions left-convergence

<u>Multiway-cuts</u>: Given $J \in \mathbb{R}^{k \times k}$ and $\sigma: V \to [k]$ define*

$$E_{G,J}(\sigma) = \frac{1}{n} \sum_{x,y:\{x,y\}\in E} J_{\sigma(x)\sigma(y)}$$

and for $\alpha \in \Delta_k$, set

$$MinCut_{J,\alpha}(G) = \min_{\sigma} E_{G,J}(\sigma)$$

where the minimum goes over all maps $\sigma: V \rightarrow [k]$ such that

$$\left|\sigma^{-1}(\{i\})\right| - n\alpha_{i} \le 1 \text{ for all } i \in [k]$$

*) Note the different normalization by $\frac{1}{n}$

2c) Multiway Cuts

<u>Q</u>: Does left-convergence imply convergence of multi-way cuts? <u>Ex</u>: Take G_n to be $G_{n,d}$ for odd n and $B_{n,d}$ for even n. Both sequences are BS-convergent to the infinite d-regular tree.

But for d large, we have that

$$MaxCut(B_{n,d}) = \frac{dn}{2}$$
$$MaxCut(G_{n,d}) \approx \frac{dn}{4}$$

As a consequence, the multi-way cuts of G_n are not convergent. Thus left convergence does NOT imply convergence of multi-way cuts

2c) Multiway Cuts

<u>Q</u>: Does convergence of multi-way cuts imply left convergence? <u>Ex</u>: Take G_n to be

- a union of $\left\lceil \frac{n}{4} \right\rceil$ 4-cycles for odd n and
- a union of $\left\lceil \frac{n}{6} \right\rceil$ 6-cycles for even n.

Then MaxCut(G_n) = $\frac{1}{2} |V(G_n)|$

More general, it is not hard to show that all multi-way cuts of G_n are convergent. But G_n is clearly not left convergent, so convergence of multi-way cuts does NOT imply left convergence either.



2d) Statistical Physics

<u>Def</u>: Free energy

$$F_{\mathbf{J}}(G) = -\frac{1}{n}\log Z_{\mathbf{J}}(G)$$

where $Z_{I}(G)$ is the partition function

$$Z_{\boldsymbol{J}}(\boldsymbol{G}) = \sum_{\boldsymbol{\sigma}: \boldsymbol{V} \to [\boldsymbol{k}]} e^{-nE_{\boldsymbol{G},\boldsymbol{J}}(\boldsymbol{\sigma})} = \sum_{\boldsymbol{\sigma}: \boldsymbol{V} \to [\boldsymbol{k}]} e^{-\sum_{\boldsymbol{X},\boldsymbol{Y}: \{\boldsymbol{X},\boldsymbol{Y}\} \in \boldsymbol{E}} \boldsymbol{J}_{\boldsymbol{\sigma}(\boldsymbol{X})\boldsymbol{\sigma}(\boldsymbol{Y})}}$$

and the sum is over all $\sigma: V \rightarrow [k]$

Rem: We call this right convergence

2c) Statistical Physics

<u>Q</u>: Does left convergence imply right convergence? <u>A</u>: NO. Take k = 2; $J_{11} = J_{22} = 0$ and $J_{12} = -1$. Then $-nE_{G,J}(\sigma)$ is just the cut between sets of vertices of different color, and

$$e^{MaxCut(G)} \leq Z_{J}(G) = \sum_{\sigma: V \to [k]} e^{-nE_{G,J}(\sigma)} \leq 2^{n}e^{MaxCut(G)}$$

Take the left convergent sequence G_n that is $G_{n,d}$ for odd n and $B_{n,d}$ for even n. For large d,

$$\operatorname{MaxCut}(B_{n,d}) = \frac{dn}{2} \text{ and } \operatorname{MaxCut}(G_{n,d}) \approx \frac{dn}{4}.$$

Thus the free energy, $F_{J}(G) = -\frac{1}{n} \log Z_{J}(G)$ will not converge if d is large

<u>Thm [BCKL'13]: Right Convergence implies left convergence</u>

2d) Statistical Physics

Thm [BCKL'13]: Right Convergence implies left convergence

<u>Proof Idea</u>: Recall that $F_I(G) = -\frac{1}{n} \log Z_I(G)$ where we can write $Z_I(G)$ as

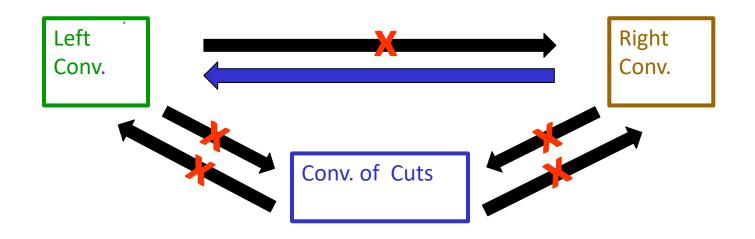
$$Z_{\boldsymbol{J}}(\boldsymbol{G}) = \sum_{\boldsymbol{\sigma}: \boldsymbol{V} \to [\boldsymbol{k}]} e^{-\sum_{x, y: \{x, y\} \in \boldsymbol{E}} \boldsymbol{J}_{\boldsymbol{\sigma}(x) \boldsymbol{\sigma}(y)}}$$

For small J, we can expand $F_J(G)$ into a convergent power series in the J_{ij} 's which converges uniformly in G as long as G has a uniform bound on the maximal degree. Using this, one can prove that for a left-convergent sequence

- the limiting free energies F_I exists, and
- can be expressed write it in terms of the limiting subgraph counts $\nu(H)$
- Finally, by comparing terms in the power series in J, one can invert this series, and determine $\nu(H)$ in terms of the limiting free energies F_I

But this implies the statement. Indeed, if it were false, we could find two subsequences converging to different subgraph frequencies $\nu(H)$ with the same limiting free energies F_J , a contradiction.

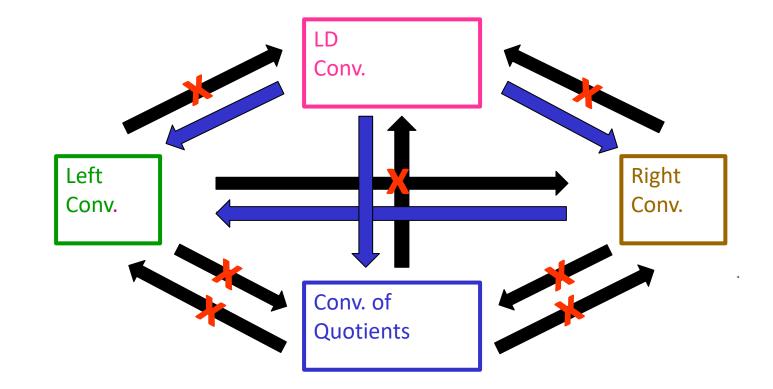
Other implications?



<u>Question</u>: is there a convergence notion which implies all of these?

<u>Answer</u>: Yes. Study random colorings, look at the distribution of all cuts, and study large deviations of these.

Summary bounded degree convergence



Thank you!

.

