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Background



L. Blum, M. Shub, and S. Smale [1989]

On a theory of computation and complexity over the real numbers:
NP-completeness, recursive functions and universal machines.

PR NPR

“Finally, to bring machines over R closer to the subject of
numerical analysis, it would be useful to incorporate round-
off error, condition numbers and approximate solutions into
our development.”



Finite-precision computations

Floating-point number system: F ⊂ R.

y = ± 0.b1b2 . . . bt × 2e |e| ≤ emax

Range(F) :=
[

− 2emax(1− 2−t),−2−emax−1
]

∪ {0} ∪
[

2−emax−1
, 2emax(1− 2−t)

]

.

Unit roundoff: umach := 2−t.

Rounding function: fl : Range(F) → F

for all x ∈ Range(F), fl(x) = x(1 + δ) for some δ with |δ| < umach.

Floating-point arithmetic: to ◦ ∈ {+,−,×, /} we associate

◦̃ : F× F → F

x ◦̃ y = (x ◦ y)(1 + δ) for some δ with |δ| < umach.

Unrestricted exponents: emax = ∞ (Range(F) = R).
Most analyses in the literature assume unrestricted exponents.



Stability and condition

Two factors in the accumulation of errors in a computation:

(1) How sensitive is the result of the computed function ϕ to pertur-
bations of the data d?

Condition number condϕ(d)

it depends only on ϕ and d

(2) How badly does the algorithm at hand accumulate errors?

Stability analysis

it depends on the algorithm and the dimension of d



Example 1 Linear equation solving: (A, b)
ϕ
)→ x = A−1b. Under

the assumption of unrestricted exponents, we have

condϕ(A) = κ(A) := ∥A∥∥A−1∥.

The computed (using Householder QR decomposition) solution x̃
satisfies, for some constant C,

∥x̃− x∥

∥x∥
≤ Cn3umach κ(A) + o(umach). (1)

Remark 1 Hestenes and Stiefel showed that κ(A) also plays a role
in complexity analyses.

The Condition Number Theorem
Let Σ = {non-invertible matrices}. Then

κ(A) =
∥A∥

d(A,Σ)
.
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Important remark: A wide variety of computational problems:

• decisional
• functional
• set-valued
. . .

results in a variety of condition numbers.

Condition numbers are defined “ad hoc”.



The Theory



Decision problems

Data has discrete and continuous components:

I := {0, 1}∞ × R∞.

Here

R∞ :=
∞⊔

i=0

Ri {0, 1}∞ :=
∞⊔

i=0

{0, 1}i.

Definition 1 A decision problem is a pair (A,µ) where A ⊂ I
and µ : I → [1,∞]. Here µ is the condition number.
We denote by Σ the set {(u, x) ∈ I | µ(u, x) = ∞} and we say
that elements in Σ are ill-posed.

Remark 2 Different condition numbers for the same subset A ⊂ I
define different decision problems. This is akin to the situation in
classical (i.e., both discrete and infinite-precision BSS) complexity
theory where different encodings of the intended input data define
(sometimes radically) different problems.
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Finite-precision machines, input size, and cost

Definition 2 A finite-precision BSS machine is a BSS machine
performing finite-precision computations. To define the latter, we
fix a number umach ∈ (0, 1) (the unit roundoff) and let

kmach :=

⌈
log2

1

umach

⌉
.

In a umach-computation , built-in constants, input values, and the
result of arithmetic operations, call any such number z, are sys-
tematically replaced by fl(z) satisfying

fl(z) = z(1 + δ) for some |δ| < umach. (2)

We will refer to kmach ∈ N as the precision of M .
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Complexity = dependence of cost on size.

For (u, x) ∈ {0, 1}s × Rn ⊂ I, we let length(u, x) to be s+ n and

size(u, x) := length(u, x) + ⌈log2µ(u, x)⌉.

Note that if (u, x) is ill-posed then size(u, x) = ∞ and that otherwise
size(u, x) ∈ N.

Arithmetic cost: number of steps performed before halting. We de-
note it by ar costM(u, x).

Accuracy cost: smallest value of kmach guaranteeing a correct answer.

Close to the cost in practice of operating with floating-point num-
bers since, assuming the exponents of such numbers are moderately
bounded, this cost is at most quadratic on kmach.



Clocked computations

Definition 3 Let Arith : N×N → N and Prec : N → N. A decision
problem (S,µ) is solved with cost (Arith,Prec) when there exists a
machine M satisfying the following. For every (u, x) ∈ I with
µ(u, x) < ∞ the computation of M with input (u, x) satisfies

ar costM(u, x) ≤ Arith(length(u, x), kmach).

Furthermore, if
kmach ≥ Prec(size(u, x))

then all computations of M correctly decide whether (u, x) ∈ S.

(i) Computations are clocked, i.e., their arithmetic cost is bounded
by a function on two parameters immediately available: length
of the input data and machine precision.

(ii) Computations are unreliable: there is no guarantee that the pre-
cision used is enough to ensure a correct output. Even for exact
computations correctness is not guaranteed.
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A hierarchy theorem

Proposition 1 (Precision Hierarchy Theorem) Let T : N →
N be time constructible and P1, P2 : R+ → R+ such that P2 is
continuous and increasing and P1 < P2

2 . There exists a deci-
sion problem (B,µ) which can be decided with ar cost(u, x) ≤
O(T (length(u, x))) and kmach = P2(size(u, x)) + 3, but cannot be
decided with kmach = P1(size(u, x)) (no matter the arithmetic cost).
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General polynomial time: the class Pro

Definition 4 A decision problem (S,µ) belongs to Pro (roundoff
polynomial cost) when there exists a finite-precision BSS machine
M solving S with cost (Arith,Prec) and such that

(i) Prec is bounded by a polynomial function, and

(ii) the function Arith(length(u, x),Prec(size(u, x))) is bounded by
a polynomial in size(u, x), for all (u, x) ∈ I.
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Direct algorithms: the class Pdir

Definition 5 A decision problem (S,µ) belongs to Pdir (direct
polynomial cost) when there exists a machine M satisfying the
following. For every (u, x) ∈ I the computation of M with input
(u, x) satisfies

ar costM(u, x) ≤ (length(u, x))O(1).

Furthermore, if
kmach ≥ (size(u, x))O(1)

then all computations of M correctly decide whether (u, x) ∈ S.
If correctness is ensured as soon as kmach ≥ (log size(u, x))O(1) we
say that (S,µ) can be solved with logarithmic precision.

Examples. Deciding whether det(A) > 0, whether S is p.s.d., . . .

Proposition 2 We have Pdir ! Pro.
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Notation:

C an algebraic circuit (n input gates, 1 output gate)

fC : Rn → R function computed by the circuit

SC := {x ∈ Rn | fC(x) ≥ 0}.

Example 2 Instances for CircEval are algebraic circuits C together
with a point x ∈ Rn. The problem is to decide whether x ∈ SC.
To specify a condition number we first define

ϱeval(C, x) :=

{

sup{ε < 1 | all ε-evaluations of C at x yield x ∈ SC} if x ∈ SC

sup{ε < 1 | all ε-evaluations of C at x yield x ̸∈ SC} otherwise.

We then take as condition number

µeval(C, x) :=
1

ϱeval(C, x)
.

Cucker



Nondeterministic Polynomial Cost

Problems in (all versions of) NP are sets S for which membership of
an element x to S can be established through a “short” proof y.

NP,NPR short = small length

NPU
ro short = small length + small condition

NPB
ro short = small length + small condition + small magnitude



The class NPU
ro

Definition 6 A decision problem (W,µW ) belongs to NPU
ro (non-

deterministic roundoff polynomial cost) when there exist a decision
problem (B,µB), a machine M deciding (B,µB) in Pro, and poly-
nomials p,Q, such that for (u, x) ∈ I,

(i) if (u, x) ∈ W then there exists y∗ ∈ Rm, such that (u, x, y∗) ∈
B, and logµB(u, x, y

∗) ≤ Q(logµW (u, x)), and

(ii) if (u, x) ̸∈ W then, for all y ∈ Rm we have (u, x, y) ̸∈ B and
logµB(u, x, y) ≤ Q(logµW (u, x)).

Here m = p(length(u, x)).
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Example 3 Instances for CircFeas are algebraic circuits C (with
input variables Y1, . . . , Ym). The problem is to decide whether
there exists y ∈ Rm such that y ∈ SC (in which case, we say that
C is feasible). We take as condition number

µfeas(C) :=
1

ϱfeas(C)

where

ϱfeas(C) :=

⎧
⎨

⎩

sup
y∈SC

ϱeval(C, y) if C is feasible,

inf
y∈Rm

ϱeval(C, y) otherwise.

Note that in the feasible case, µfeas(C) is the condition of its best
conditioned solution, and in the infeasible case, it is the condition
of the worst conditioned point in Rm.

Proposition 3 CircFeas ∈ NPU
ro.

Proposition 4 Pro ⊂ NPU
ro.
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Definition 7 A Pro-reduction from (W,µW ) to (S,µS) is a ma-
chine M which, given a point (u, x) ∈ I and a number k ∈ N,
performs a discrete computation and returns a pair (v, z) ∈ I with
ar costM(u, x) polynomially bounded on length(u, x) and k.

In addition, we require the existence of some D, p > 0 such that
for all k ≥ D size(u, x)p one has

(i) (u, x) ∈ W ⇐⇒ (v, z) ∈ S, and

(ii) logµS(v, z) is polynomially bounded in sizeW (u, x).

If all of the above holds, we write (W,µW )≼ro(S,µS).
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Proposition 5 If (W,µW ) ≼ro (S,µS) and (S,µS) ∈ Pro then
(W,µW ) ∈ Pro.

Definition 8 A problem (S,µS) is NP
U
ro-hard when for any prob-

lem (W,µW ) ∈ NPU
ro we have (W,µW ) ≼ro (S,µS).

It is NPU
ro-complete when it is NPU

ro-hard and belongs to NPU
ro.

Theorem 1 CircFeas is NPU
ro-complete.

Corollary 1 Pro = NPU
ro ⇐⇒ CircFeas ∈ Pro.

Open Question 1 Does one have Pro = NPU
ro? As usual, we be-

lieve this is not the case.
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The class NPB
ro

Given k ∈ N we consider the floating-point system Fk with

t = k, and emax = 2k − 1.

For x ∈ R we define the magnitude of x to be

mgt(x) := min{k ≥ 1 | x ∈ Range(Fk)},

and for x ∈ Rn, mgt(x) := maxi≤nmgt(xi).



Definition 9 A decision problem (W,µW ) belongs to NPB
ro

(bounded non-deterministic roundoff polynomial cost) when there
exist a decision problem (B,µB), a machine M deciding (B,µB)
in Pro, and polynomials p, q,Q, such that for (u, x) ∈ I,

(i) if (u, x) ∈ W then there exists y∗ ∈ Rm, such that
(u, x, y∗) ∈ B, logµB(u, x, y

∗) ≤ Q(logµW (u, x)), and mgt(y∗) ≤
q(sizeW (u, x)), and

(ii) if (u, x) ̸∈ W then, for all y ∈ Rm we have (u, x, y) ̸∈ B and
logµB(u, x, y) ≤ Q(logµW (u, x)).

Here m = p(length(u, x)).

Proposition 6 CircBFeas ∈ NPB
ro.
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Example 4 Instances for CircBFeas are algebraic circuits C (with
input variables Y1, . . . , Ym). The problem is to decide whether
there exists y ∈ Rm such that y ∈ SC. What makes this problem
different from CircFeas is its condition number. Here we take

µBfeas(C) :=
1

ϱBfeas(C)

where

ϱBfeas(C) :=

⎧
⎨

⎩

sup
y∈SC

ϱeval(C, y)2
−mgt(y) if C is feasible,

inf
y∈Rm

ϱeval(C, y) otherwise.

Theorem 2 CircBFeas is NPB
ro-complete.

Corollary 2 Pro = NPB
ro ⇐⇒ CircBFeas ∈ Pro.
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Exponential cost

Definition 10 A decision problem (S,µ) belongs to EXPro

(roundoff exponential cost) when there exists a finite-precision BSS
machine M deciding S with cost (Arith,Prec) and such that

(i) Prec is bounded by a exponential function, and

(ii) the function Arith(length(u, x),Prec(size(u, x))) is bounded by
an exponential in size(u, x), for all (u, x) ∈ I.

In both (i) and (ii) by exponential we understand a function of the
kind n )→ an

d

for some a > 1 and d > 0.

If Prec is polynomially bounded we say that (S,µ) can be solved
with polynomial precision, and we write (S,µ) ∈ EXP[P]

ro .
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Proposition 7 The inclusion EXP[P]
ro ⊂ EXPro is strict.

Proposition 8 If (W,µW ) ≼ro (S,µS) and (S,µS) ∈ EXPro then
(W,µW ) ∈ EXPro. A similar statement holds for the class EXP[P]

ro .

Theorem 3 CircBFeas ∈ EXP[P]
ro .

Corollary 3 NPB
ro ⊂ EXP[P]

ro and the inclusion is strict.

Open Question 2 A major open question in this is whether NPU
ro

is included in EXPro or, equivalently, whether CircFeas belongs to
EXPro. We conjecture that this question has a positive answer.
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