A Theory of Complexity, Condition and Roundoff

Felipe Cucker

Berkeley 2014

Background

L. Blum, M. Shub, and S. Smale [1989]

On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines.

$P_{\mathbb{R}}$ $NP_{\mathbb{R}}$

"Finally, to bring machines over \mathbb{R} closer to the subject of numerical analysis, it would be useful to incorporate round-off error, condition numbers and approximate solutions into our development."

Finite-precision computations

Floating-point number system: $\mathbb{F} \subset \mathbb{R}$.

 $y = \pm 0.b_1 b_2 \dots b_t \times 2^e \qquad |e| \le \mathbf{e}_{\max}$

 $\mathsf{Range}(\mathbb{F}) := \left[-2^{\mathsf{e}_{\max}}(1-2^{-t}), -2^{-\mathsf{e}_{\max}-1} \right] \cup \{0\} \cup \left[2^{-\mathsf{e}_{\max}-1}, 2^{\mathsf{e}_{\max}}(1-2^{-t}) \right].$

 $\begin{array}{lll} \textit{Unit roundoff:} & \mathsf{u}_{\mathsf{mach}} := 2^{-t}.\\ \textit{Rounding function:} & \mathsf{fl} : \mathsf{Range}(\mathbb{F}) \to \mathbb{F}\\\\ \textit{for all } x \in \mathsf{Range}(\mathbb{F}), \ \mathsf{fl}(x) = x(1+\delta) \ \textit{for some } \delta \ \textit{with } |\delta| < \mathsf{u}_{\mathsf{mach}}.\\\\ \textit{Floating-point arithmetic:} & \mathsf{to} \circ \in \{+, -, \times, /\} \ \textit{we associate}\\\\ & \widetilde{\circ} : \mathbb{F} \times \mathbb{F} \to \mathbb{F} \end{array}$

 $x \circ y = (x \circ y)(1 + \delta)$ for some δ with $|\delta| < u_{mach}$.

Unrestricted exponents: $e_{max} = \infty$ (Range(\mathbb{F}) = \mathbb{R}). Most analyses in the literature assume unrestricted exponents.

Stability and condition

Two factors in the accumulation of errors in a computation:

(1) How sensitive is the result of the computed function φ to perturbations of the data d?

Condition number $\operatorname{cond}^{\varphi}(d)$

it depends only on φ and d

(2) How badly does the algorithm at hand accumulate errors? Stability analysis

it depends on the algorithm and the dimension of \boldsymbol{d}

Example Linear equation solving: $(A, b) \stackrel{\varphi}{\mapsto} x = A^{-1}b$. Under the assumption of unrestricted exponents, we have

$$\operatorname{cond}^{\varphi}(A) = \kappa(A) := ||A|| ||A^{-1}||.$$

The computed (using Householder QR decomposition) solution \tilde{x} satisfies, for some constant C,

$$\frac{\|\widetilde{x} - x\|}{\|x\|} \le Cn^3 \mathsf{u}_{\mathsf{mach}} \,\kappa(A) + o(\mathsf{u}_{\mathsf{mach}}). \tag{1}$$

Remark Hestenes and Stiefel showed that $\kappa(A)$ also plays a role in complexity analyses.

Important remark: A wide variety of computational problems:

- decisional
- functional
- set-valued

• • •

results in a variety of condition numbers.

Condition numbers are defined "ad hoc".

The Theory

Decision problems

Data has discrete and continuous components:

$$\mathcal{I} := \{0, 1\}^{\infty} \times \mathbb{R}^{\infty}$$

Here

$$\mathbb{R}^{\infty} := \bigsqcup_{i=0}^{\infty} \mathbb{R}^i \qquad \{0,1\}^{\infty} := \bigsqcup_{i=0}^{\infty} \{0,1\}^i.$$

Definition A *decision problem* is a pair (A, μ) where $A \subset \mathcal{I}$ and $\mu : \mathcal{I} \to [1, \infty]$. Here μ is the *condition number*. We denote by Σ the set $\{(u, x) \in \mathcal{I} \mid \mu(u, x) = \infty\}$ and we say that elements in Σ are *ill-posed*.

Remark Different condition numbers for the same subset $A \subset \mathcal{I}$ define different decision problems. This is akin to the situation in classical (i.e., both discrete and infinite-precision BSS) complexity theory where different encodings of the intended input data define (sometimes radically) different problems.

Finite-precision machines, input size, and cost

Definition A *finite-precision BSS machine* is a BSS machine performing finite-precision computations. To define the latter, we fix a number $u_{mach} \in (0, 1)$ (the *unit roundoff*) and let

$$\mathbf{k}_{\mathsf{mach}} := \left\lceil \log_2 \frac{1}{\mathbf{u}_{\mathsf{mach}}} \right\rceil$$

In a u_{mach} -computation, built-in constants, input values, and the result of arithmetic operations, call any such number z, are systematically replaced by fl(z) satisfying

$$\mathsf{fl}(z) = z(1+\delta) \text{ for some } |\delta| < \mathsf{u}_{\mathsf{mach}}.$$
 (2)

We will refer to $k_{mach} \in \mathbb{N}$ as the *precision* of M.

Complexity = dependence of cost on size.

For $(u, x) \in \{0, 1\}^s \times \mathbb{R}^n \subset \mathcal{I}$, we let length(u, x) to be s + n and $\text{size}(u, x) := \text{length}(u, x) + \lceil \log_2 \mu(u, x) \rceil$.

Note that if (u, x) is ill-posed then size $(u, x) = \infty$ and that otherwise size $(u, x) \in \mathbb{N}$.

Arithmetic cost: number of steps performed before halting. We denote it by $\operatorname{ar_cost}_M(u, x)$.

Accuracy cost: smallest value of k_{mach} guaranteeing a correct answer.

Close to the cost in practice of operating with floating-point numbers since, assuming the exponents of such numbers are moderately bounded, this cost is at most quadratic on k_{mach} .

Clocked computations

Definition Let Arith : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and Prec : $\mathbb{N} \to \mathbb{N}$. A decision problem (S, μ) is *solved with cost* (Arith, Prec) when there exists a machine M satisfying the following. For every $(u, x) \in \mathcal{I}$ with $\mu(u, x) < \infty$ the computation of M with input (u, x) satisfies

 $\operatorname{ar_cost}_M(u, x) \leq \operatorname{Arith}(\operatorname{length}(u, x), \mathsf{k}_{\mathsf{mach}}).$

Furthermore, if

 $k_{mach} \ge \operatorname{Prec}(\operatorname{size}(u, x))$

then all computations of M correctly decide whether $(u, x) \in S$.

- (i) Computations are clocked, i.e., their arithmetic cost is bounded by a function on two parameters immediately available: length of the input data and machine precision.
- (ii) Computations are unreliable: there is no guarantee that the precision used is enough to ensure a correct output. Even for exact computations correctness is not guaranteed.

A hierarchy theorem

Proposition (Precision Hierarchy Theorem) Let $T : \mathbb{N} \to \mathbb{N}$ be time constructible and $P_1, P_2 : \mathbb{R}_+ \to \mathbb{R}_+$ such that P_2 is continuous and increasing and $P_1 < \frac{P_2}{2}$. There exists a decision problem (B, μ) which can be decided with $\operatorname{ar_cost}(u, x) \leq \mathcal{O}(T(\operatorname{length}(u, x)))$ and $\operatorname{k_{mach}} = P_2(\operatorname{size}(u, x)) + 3$, but cannot be decided with $\operatorname{k_{mach}} = P_1(\operatorname{size}(u, x))$ (no matter the arithmetic cost).

General polynomial time: the class P_{ro}

Definition A decision problem (S, μ) belongs to P_{ro} (*roundoff polynomial cost*) when there exists a finite-precision BSS machine M solving S with cost (Arith, Prec) and such that

(i) Prec is bounded by a polynomial function, and (ii) the function Arith(length(u, x), Prec(size(u, x))) is bounded by a polynomial in size(u, x), for all $(u, x) \in \mathcal{I}$.

Direct algorithms: the class P_{dir}

Definition A decision problem (S, μ) belongs to P_{dir} (*direct polynomial cost*) when there exists a machine M satisfying the following. For every $(u, x) \in \mathcal{I}$ the computation of M with input (u, x) satisfies

$$\operatorname{ar}_{-}\operatorname{cost}_{M}(u, x) \leq (\operatorname{length}(u, x))^{\mathcal{O}(1)}.$$

Furthermore, if

$$\mathsf{k}_{\mathsf{mach}} \ge (\mathsf{size}(u, x))^{\mathcal{O}(1)}$$

then all computations of M correctly decide whether $(u, x) \in S$. If correctness is ensured as soon as $k_{mach} \geq (\log \text{size}(u, x))^{\mathcal{O}(1)}$ we say that (S, μ) can be solved with *logarithmic precision*.

Examples. Deciding whether det(A) > 0, whether S is p.s.d., ...

Proposition We have $P_{dir} \subsetneq P_{ro}$.

Notation:

 \mathcal{C} an algebraic circuit (*n* input gates, 1 output gate) $f_{\mathcal{C}}: \mathbb{R}^n \to \mathbb{R}$ function computed by the circuit

 $S_{\mathcal{C}} := \{ x \in \mathbb{R}^n \mid f_{\mathcal{C}}(x) \ge 0 \}.$

Example Instances for CircEval are algebraic circuits C together with a point $x \in \mathbb{R}^n$. The problem is to decide whether $x \in S_C$. To specify a condition number we first define

 $\varrho_{\text{eval}}(\mathcal{C}, x) := \begin{cases} \sup\{\varepsilon < 1 \mid \text{all } \varepsilon \text{-evaluations of } \mathcal{C} \text{ at } x \text{ yield } x \in S_{\mathcal{C}} \} & \text{if } x \in S_{\mathcal{C}} \\ \sup\{\varepsilon < 1 \mid \text{all } \varepsilon \text{-evaluations of } \mathcal{C} \text{ at } x \text{ yield } x \notin S_{\mathcal{C}} \} & \text{otherwise.} \end{cases}$

We then take as condition number

$$\mu_{\text{eval}}(\mathcal{C}, x) := \frac{1}{\varrho_{\text{eval}}(\mathcal{C}, x)}.$$

Nondeterministic Polynomial Cost

Problems in (all versions of) NP are sets S for which membership of an element x to S can be established through a "short" proof y.

 $NP, NP_{\mathbb{R}}$ short = small length

 NP_{ro}^{U} short = small length + small condition

 NP_{ro}^{B} short = small length + small condition + small magnitude

The class NP_{ro}^{U}

Definition A decision problem $(W, \boldsymbol{\mu}_W)$ belongs to NP_{ro}^{U} (*non-deterministic roundoff polynomial cost*) when there exist a decision problem $(B, \boldsymbol{\mu}_B)$, a machine M deciding $(B, \boldsymbol{\mu}_B)$ in P_{ro} , and polynomials p, Q, such that for $(u, x) \in \mathcal{I}$,

(i) if $(u, x) \in W$ then there exists $y^* \in \mathbb{R}^m$, such that $(u, x, y^*) \in B$, and $\log \mu_B(u, x, y^*) \leq Q(\log \mu_W(u, x))$, and

(ii) if $(u, x) \notin W$ then, for all $y \in \mathbb{R}^m$ we have $(u, x, y) \notin B$ and $\log \mu_B(u, x, y) \leq Q(\log \mu_W(u, x)).$

Here m = p(length(u, x)).

Example Instances for CircFeas are algebraic circuits C (with input variables Y_1, \ldots, Y_m). The problem is to decide whether there exists $y \in \mathbb{R}^m$ such that $y \in S_C$ (in which case, we say that C is *feasible*). We take as condition number

$$\mu_{\mathsf{feas}}(\mathcal{C}) := \frac{1}{\varrho_{\mathsf{feas}}(\mathcal{C})}$$

where

$$\varrho_{\mathsf{feas}}(\mathcal{C}) := \begin{cases} \sup_{y \in S_{\mathcal{C}}} \varrho_{\mathsf{eval}}(\mathcal{C}, y) & \text{if } \mathcal{C} \text{ is feasible,} \\ \inf_{y \in \mathbb{R}^m} \varrho_{\mathsf{eval}}(\mathcal{C}, y) & \text{otherwise.} \end{cases}$$

Note that in the feasible case, $\mu_{\text{feas}}(\mathcal{C})$ is the condition of its best conditioned solution, and in the infeasible case, it is the condition of the worst conditioned point in \mathbb{R}^m .

 $\label{eq:proposition} \textbf{Proposition} \qquad \textsf{CircFeas} \in NP_{\sf ro}^{\sf U}.$

Proposition

$$\mathrm{P}_{\mathsf{ro}} \subset \mathrm{NP}^{\mathsf{U}}_{\mathsf{ro}}$$

Definition A P_{ro} -*reduction* from (W, μ_W) to (S, μ_S) is a machine \overline{M} which, given a point $(u, x) \in \mathcal{I}$ and a number $k \in \mathbb{N}$, performs a discrete computation and returns a pair $(v, z) \in \mathcal{I}$ with $\operatorname{ar_cost}_{\overline{M}}(u, x)$ polynomially bounded on $\operatorname{length}(u, x)$ and k.

In addition, we require the existence of some D, p > 0 such that for all $k \ge D \operatorname{size}(u, x)^p$ one has

(i) $(u, x) \in W \iff (v, z) \in S$, and

(ii) $\log \mu_S(v, z)$ is polynomially bounded in $size_W(u, x)$.

If all of the above holds, we write $(W, \boldsymbol{\mu}_W) \preceq_{ro} (S, \boldsymbol{\mu}_S)$.

Proposition If $(W, \boldsymbol{\mu}_W) \preceq_{ro} (S, \boldsymbol{\mu}_S)$ and $(S, \boldsymbol{\mu}_S) \in P_{ro}$ then $(W, \boldsymbol{\mu}_W) \in P_{ro}$.

Definition A problem $(S, \boldsymbol{\mu}_S)$ is $\operatorname{NP}_{ro}^{U}$ -hard when for any problem $(W, \boldsymbol{\mu}_W) \in \operatorname{NP}_{ro}^{U}$ we have $(W, \boldsymbol{\mu}_W) \preceq_{ro} (S, \boldsymbol{\mu}_S)$.

It is NP_{ro}^{U} -complete when it is NP_{ro}^{U} -hard and belongs to NP_{ro}^{U} .

Theorem CircFeas is NP_{ro}^{U} -complete.

$$\label{eq:corollary} \mathbf{P}_{\mathsf{ro}} = \mathbf{N}\mathbf{P}_{\mathsf{ro}}^{\mathsf{U}} \iff \mathsf{CircFeas} \in \mathbf{P}_{\mathsf{ro}}.$$

Open Question Does one have $P_{ro} = NP_{ro}^{U}$? As usual, we believe this is not the case.

The class NP_{ro}^{B}

Given $k \in \mathbb{N}$ we consider the floating-point system F_k with

$$t = k$$
, and $e_{\max} = 2^k - 1$.

For $x \in \mathbb{R}$ we define the *magnitude* of x to be

 $\operatorname{mgt}(x) := \min\{k \ge 1 \mid x \in \operatorname{Range}(F_k)\},\$

and for $x \in \mathbb{R}^n$, $mgt(x) := max_{i \leq n} mgt(x_i)$.

Definition A decision problem $(W, \boldsymbol{\mu}_W)$ belongs to NP_{ro}^{B} (bounded non-deterministic roundoff polynomial cost) when there exist a decision problem $(B, \boldsymbol{\mu}_B)$, a machine M deciding $(B, \boldsymbol{\mu}_B)$ in P_{ro} , and polynomials p, q, Q, such that for $(u, x) \in \mathcal{I}$,

(i) if $(u, x) \in W$ then there exists $y^* \in \mathbb{R}^m$, such that $(u, x, y^*) \in B$, $\log \mu_B(u, x, y^*) \leq Q(\log \mu_W(u, x))$, and $\operatorname{mgt}(y^*) \leq q(\operatorname{size}_W(u, x))$, and

(ii) if $(u, x) \notin W$ then, for all $y \in \mathbb{R}^m$ we have $(u, x, y) \notin B$ and $\log \mu_B(u, x, y) \leq Q(\log \mu_W(u, x)).$

Here m = p(length(u, x)).

Example Instances for CircBFeas are algebraic circuits C (with input variables Y_1, \ldots, Y_m). The problem is to decide whether there exists $y \in \mathbb{R}^m$ such that $y \in S_c$. What makes this problem different from CircFeas is its condition number. Here we take

$$\mu_{\mathsf{Bfeas}}(\mathcal{C}) := \frac{1}{\varrho_{\mathsf{Bfeas}}(\mathcal{C})}$$

where

$$\varrho_{\mathsf{Bfeas}}(\mathcal{C}) := \begin{cases} \sup_{y \in S_{\mathcal{C}}} \varrho_{\mathsf{eval}}(\mathcal{C}, y) 2^{-\mathsf{mgt}(y)} & \text{if } \mathcal{C} \text{ is feasible,} \\ \inf_{y \in \mathbb{R}^m} \varrho_{\mathsf{eval}}(\mathcal{C}, y) & \text{otherwise.} \end{cases}$$

Theorem CircBFeas is NP_{ro}^{B} -complete.

 $\label{eq:corollary} \mathbf{Corollary} \qquad \mathbf{P}_{\mathsf{ro}} = \mathbf{N}\mathbf{P}_{\mathsf{ro}}^{\mathsf{B}} \iff \mathsf{Circ}\mathsf{B}\mathsf{Feas} \in \mathbf{P}_{\mathsf{ro}}.$

Exponential cost

Definition A decision problem (S, μ) belongs to EXP_{ro} (*roundoff exponential cost*) when there exists a finite-precision BSS machine M deciding S with cost (Arith, Prec) and such that

(i) Prec is bounded by a exponential function, and (ii) the function Arith(length(u, x), Prec(size(u, x))) is bounded by an exponential in size(u, x), for all $(u, x) \in \mathcal{I}$.

In both (i) and (ii) by exponential we understand a function of the kind $n \mapsto a^{n^d}$ for some a > 1 and d > 0.

Theorem CircBFeas $\in EXP_{ro}$.

Corollary $NP_{ro}^{\mathsf{B}} \subset EXP_{ro}^{|}$ and the inclusion is strict.

Open Question A major open question in this is whether NP_{ro}^{U} is included in EXP_{ro} or, equivalently, whether CircFeas belongs to EXP_{ro} . We conjecture that this question has a positive answer.

