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Motivation: Three Related Problems

Questions:
• When should we consider two large graphs to be similar?  
• What is the “correct notion” of a limit of graphs (preserving 

“essential” properties of the finite graphs in the sequence)?
• How do I non-parametrically model massive real-world 

networks data?



1) Modeling large random graphs
• A graphon is a symmetric 2-variable function over a probability space 

(Ω, 𝜇𝜇), 𝑊𝑊:Ω × Ω → 0,1 : 𝑥𝑥,𝑦𝑦 ↦ 𝑊𝑊(𝑥𝑥,𝑦𝑦)

• It generates inhomogeneous random graph 𝐺𝐺𝑛𝑛(𝑊𝑊) on by
o assigning i.i.d. features 𝑥𝑥𝑖𝑖 ∈ Ω according to 𝜇𝜇 to the vertices
o connected 𝑖𝑖 < 𝑗𝑗 independently with probability 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑊𝑊(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖)

• By Aldous- Hoover, any exchangeable family of random graphs (𝐺𝐺𝑛𝑛)𝑛𝑛≥1
can be generated by a (possibly random) graphon 𝑊𝑊



2) Notions of Similarity
Subgraph frequencies: Given a graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 with adjacency matrix 𝐴𝐴
and a graph 𝐻𝐻 on 𝑘𝑘 nodes, define

𝑡𝑡0 𝐻𝐻,𝐺𝐺 =
1

|𝑉𝑉|𝑘𝑘
�

𝑣𝑣1,…,𝑣𝑣𝑘𝑘∈𝑉𝑉

�
𝑖𝑖𝑖𝑖∈𝐸𝐸(𝐻𝐻)

𝐴𝐴𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 �
𝑖𝑖𝑖𝑖∉𝐸𝐸(𝐻𝐻)

(1 − 𝐴𝐴𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗)

Sampling: Choose 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 ∈ 𝑉𝑉 uniformly at random and output
𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑘𝑘(𝐺𝐺), the 𝑘𝑘-node graph with edge set {𝑖𝑖𝑗𝑗 ∶ 𝑥𝑥 𝑖𝑖 𝑥𝑥 𝑗𝑗 ∈ 𝐸𝐸}

Remark:  Pr 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑘𝑘 𝐺𝐺 = 𝐻𝐻 = 𝑡𝑡0 𝐻𝐻,𝐺𝐺
which shows that similarity with respect to these two notions is equivalent

𝑑𝑑𝑇𝑇𝑉𝑉 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑘𝑘 𝐺𝐺 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑘𝑘 𝐺𝐺′ =
1
2
�
𝐻𝐻

𝑡𝑡0 𝐻𝐻,𝐺𝐺 − 𝑡𝑡0 𝐻𝐻,𝐺𝐺′



2) Notions of Similarity
Two other notions:

• generalized min-cuts, 𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝐽𝐽,𝛼𝛼 𝐺𝐺

• micro-canonical free energies, 𝐹𝐹𝐽𝐽,𝛼𝛼 𝐺𝐺

both defined in terms of weighted cuts between different color 
classes for a coloring of 𝐺𝐺



2) Notions of Similarity
a) Multiway-Mincuts:

𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝐽𝐽,𝛼𝛼 𝐺𝐺 = min
𝜎𝜎

𝐸𝐸𝐺𝐺,𝐽𝐽 𝜎𝜎

where 𝛼𝛼 ∈ Δ𝑘𝑘 and the minimum is over the colorings with 𝜎𝜎−1 𝑖𝑖 =
𝑀𝑀𝛼𝛼𝑖𝑖 for all 𝑖𝑖 ∈ 𝑘𝑘
b) Micro-canonical free energy

𝐹𝐹𝐽𝐽,𝛼𝛼 𝐺𝐺 = −1
𝑛𝑛 log𝑍𝑍𝐽𝐽,𝛼𝛼 𝐺𝐺

where

𝑍𝑍𝐽𝐽,𝛼𝛼 𝐺𝐺 = �
𝜎𝜎:𝑉𝑉→[𝑘𝑘]

𝑒𝑒−𝑛𝑛𝐸𝐸𝐺𝐺,𝐽𝐽 𝜎𝜎

where the sum is over the colorings with  𝜎𝜎−1 𝑖𝑖 = 𝑀𝑀𝛼𝛼𝑖𝑖 for all 𝑖𝑖 ∈ 𝑘𝑘



3) Cut-Metric
Empirical Graphon of a Graph 𝐺𝐺 on 𝑀𝑀 nodes

• Replace [𝑀𝑀] by 𝑀𝑀 disjoint intervals 𝐼𝐼1, … , 𝐼𝐼𝑛𝑛 of width ⁄1 𝑀𝑀
and divide 0,1 2 into 𝑀𝑀2 squares 𝐼𝐼𝑖𝑖 × 𝐼𝐼𝑖𝑖 of side length 1/𝑀𝑀

• Set 𝑊𝑊𝐺𝐺 to 1 on the square 𝑖𝑖𝑗𝑗 if 𝑖𝑖𝑗𝑗 is an edge in 𝐺𝐺 and to 0 if not

Cut norm* of a function 𝑊𝑊: 0,1 2 → ℝ

𝑊𝑊 □ = max
𝑆𝑆,T⊂[0,1]

∫𝑆𝑆×𝑇𝑇𝑊𝑊 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

*) Equivalently, we can define 𝑊𝑊 □ by

𝑊𝑊 □ = max
𝑓𝑓, 𝑔𝑔: 0,1 →[0,1]

∫ 𝑓𝑓(𝑥𝑥)𝑊𝑊 𝑥𝑥,𝑦𝑦 𝑔𝑔(𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦



3) Cut-Metric

Cut distance of two graphons 𝑊𝑊1,𝑊𝑊2: 0,1 2 → 0,1

𝛿𝛿□ 𝑊𝑊1,𝑊𝑊2 = inf
𝜙𝜙

𝑊𝑊1
𝜙𝜙 −𝑊𝑊2 □

where the inf is over measure preserving bijections, and  

𝑊𝑊1
𝜙𝜙 𝑥𝑥,𝑦𝑦 = 𝑊𝑊1(𝜙𝜙 𝑥𝑥 ,𝜙𝜙 𝑦𝑦 )

Cut distance of two finite graphs 𝐺𝐺1,𝐺𝐺2 we set

𝛿𝛿□ 𝐺𝐺1,𝐺𝐺2 := 𝛿𝛿□ 𝑊𝑊𝐺𝐺1 ,𝑊𝑊𝐺𝐺2

= inf
𝜙𝜙

max
𝑆𝑆,T⊂[0,1]

∫𝑆𝑆×𝑇𝑇 𝑊𝑊𝐺𝐺1 𝜙𝜙(𝑥𝑥),𝜙𝜙(𝑦𝑦 ) −𝑊𝑊𝐺𝐺2 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦



4) All these notions are equivalent!

Thm: Let 𝐺𝐺𝑛𝑛 be a sequence of graphs.  Then the following are equivalent

1) For all finite graphs 𝐻𝐻, the subgraph frequencies 𝑡𝑡0 𝐻𝐻,𝐺𝐺𝑛𝑛 converge

2) For all 𝑘𝑘 ≥ 1, the distributions of 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑘𝑘(𝐺𝐺𝑛𝑛) converge

3) For all 𝑘𝑘 ≥ 1, 𝐽𝐽 ∈ ℝ𝑘𝑘×𝑘𝑘 and 𝛼𝛼 ∈ Δ𝑘𝑘, the multi-way cuts 𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝐽𝐽,𝛼𝛼 𝐺𝐺𝑛𝑛
converge

4) For all 𝑘𝑘 ≥ 1, 𝐽𝐽 ∈ ℝ𝑘𝑘×𝑘𝑘 and 𝛼𝛼 ∈ Δ𝑘𝑘, the micro-canonical free energies 
𝐹𝐹𝐽𝐽,𝛼𝛼 𝐺𝐺𝑛𝑛 converge

5)  The sequence is a Cauchy sequence w.r.t. the cut metric



4) All these notions are equivalent!

a) Proof Idea: 

I) Prove that if 𝛿𝛿□ 𝐺𝐺,𝐺𝐺′ ≤ 𝜖𝜖, the other properties differ by at 
most a constant times 𝜖𝜖 (the constant you will get will be 
moderate, roughly proportional to 𝑘𝑘2, and the norm of 𝐽𝐽).  
These proof are relatively elementary

II) The other direction is more difficult, and often will require 𝑘𝑘 to 
be exponentially large in 1/𝜖𝜖2



4b) Bounding subgraph counts in term of 𝛿𝛿□
Lemma: If 𝐻𝐻 is a graph on 𝑘𝑘 nodes and 𝐺𝐺,𝐺𝐺𝐺 are two finite graphs, then

|𝑡𝑡0 𝐻𝐻,𝐺𝐺 − 𝑡𝑡0(𝐻𝐻,𝐺𝐺′)| ≤ 𝑘𝑘
2 𝛿𝛿□(𝐺𝐺,𝐺𝐺′)

Step 1: Use empirical graphons: Define

𝑡𝑡0 𝐻𝐻,𝑊𝑊 = � �
𝑖𝑖∈𝑉𝑉(𝐻𝐻)

𝑑𝑑𝑥𝑥𝑖𝑖 �
𝑖𝑖𝑖𝑖∈𝐸𝐸(𝐻𝐻)

𝑊𝑊(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖) �
𝑖𝑖𝑖𝑖∉𝐸𝐸(𝐻𝐻)

(1 −𝑊𝑊 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 )

Then 𝑡𝑡0 𝐻𝐻,𝐺𝐺 = 𝑡𝑡0 𝐻𝐻,𝑊𝑊𝐺𝐺 .

Proof: On the squares 𝐼𝐼𝑠𝑠 × 𝐼𝐼𝑡𝑡 the function  𝑊𝑊𝐺𝐺 is constant (and equal to 𝐴𝐴𝑠𝑠𝑡𝑡). Thus 
the integral ∫∏𝑖𝑖∈𝑉𝑉(𝐻𝐻)𝑑𝑑𝑥𝑥𝑖𝑖 becomes 𝑀𝑀−𝑘𝑘 times a sum over 𝑣𝑣1, … , 𝑣𝑣𝑘𝑘 ∈ 𝑉𝑉(𝐺𝐺), and 
𝑊𝑊 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 becomes 𝐴𝐴𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗



4b) Bounding subgraph counts in term of 𝛿𝛿□
Step 2: Prove that if 𝜙𝜙: 0,1 → 0,1 is measure preserving, 

𝑡𝑡0 𝐻𝐻,𝑊𝑊 = 𝑡𝑡0 𝐻𝐻,𝑊𝑊𝜙𝜙

Step 3: Prove

|𝑡𝑡0 𝐻𝐻,𝑊𝑊 − 𝑡𝑡0(𝐻𝐻,𝑈𝑈)| ≤ 𝑘𝑘
2 𝑊𝑊 −𝑈𝑈 □

Putting things together:

𝑡𝑡0 𝐻𝐻,𝐺𝐺 − 𝑡𝑡0 𝐻𝐻,𝐺𝐺′ = 𝑡𝑡0 𝐻𝐻,𝑊𝑊𝐺𝐺 − 𝑡𝑡0 𝐻𝐻,𝑊𝑊𝐺𝐺′ ≤ 𝑘𝑘
2 𝑊𝑊𝐺𝐺

𝜙𝜙 −𝑊𝑊𝐺𝐺′ □

Take infimum over all 𝜙𝜙
𝑡𝑡0 𝐻𝐻,𝐺𝐺 − 𝑡𝑡0 𝐻𝐻,𝐺𝐺′ ≤ 𝛿𝛿□(𝐺𝐺,𝐺𝐺′)



4b) Bounding subgraph counts in term of 𝛿𝛿□

Step 2: Prove that  𝑡𝑡0 𝐻𝐻,𝑊𝑊 = 𝑡𝑡0 𝐻𝐻,𝑊𝑊𝜙𝜙 if 𝜙𝜙 is measure preserving 
Proof: By inspection

𝑡𝑡0 𝐻𝐻,𝑊𝑊 = � �
𝑖𝑖∈𝑉𝑉(𝐻𝐻)

𝑑𝑑𝑥𝑥𝑖𝑖 �
𝑖𝑖𝑖𝑖∈𝐸𝐸(𝐻𝐻)

𝑊𝑊(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖) �
𝑖𝑖𝑖𝑖∉𝐸𝐸(𝐻𝐻)

(1 −𝑊𝑊 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 )

Indeed, if we replace 𝑊𝑊(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖) by 

𝑊𝑊𝜙𝜙 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 = 𝑊𝑊(𝜙𝜙(𝑥𝑥𝑖𝑖),𝜙𝜙(𝑥𝑥𝑖𝑖))

this transforms the uniform random variable 𝑥𝑥𝑖𝑖 into 𝜙𝜙(𝑥𝑥𝑖𝑖) which is 
again uniform 



Step 3: We write

𝑡𝑡0 𝐻𝐻,𝑊𝑊 = � �
𝑖𝑖𝑖𝑖∈𝐸𝐸(𝐻𝐻)

𝑊𝑊(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖) �
𝑖𝑖𝑖𝑖∉𝐸𝐸(𝐻𝐻)

(1 −𝑊𝑊 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 ) = ��
𝑖𝑖<𝑖𝑖

𝑊𝑊𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖)

where

𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 = 𝑊𝑊(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖) if 𝑖𝑖𝑗𝑗 ∈ 𝐸𝐸(𝐹𝐹)

𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 = 1 −𝑊𝑊(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖) if 𝑖𝑖𝑗𝑗 ∉ 𝐸𝐸(𝐹𝐹)

Thus

𝑡𝑡0 𝐻𝐻,𝑊𝑊 − 𝑡𝑡0 𝐻𝐻,𝑈𝑈 = ��
𝑖𝑖<𝑖𝑖

𝑊𝑊𝑖𝑖𝑖𝑖 −�
𝑖𝑖<𝑖𝑖

𝑈𝑈𝑖𝑖𝑖𝑖

Changing 𝑊𝑊𝑖𝑖𝑖𝑖 to 𝑈𝑈𝑖𝑖𝑖𝑖 one at a time, we need to estimate 𝑛𝑛
2 integrals of the form

�(𝑊𝑊𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 − 𝑈𝑈𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 ) �
𝑠𝑠𝑡𝑡≠𝑖𝑖𝑖𝑖

𝑉𝑉𝑠𝑠𝑡𝑡(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑡𝑡)

where 𝑉𝑉𝑠𝑠𝑡𝑡 is either equal to 𝑊𝑊𝑠𝑠𝑡𝑡 or 𝑈𝑈𝑠𝑠𝑡𝑡



• Thus we need to estimate integrals of the form

�(𝑊𝑊𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 − 𝑈𝑈𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 ) �
𝑠𝑠𝑡𝑡≠𝑖𝑖𝑖𝑖

𝑉𝑉𝑠𝑠𝑡𝑡(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑡𝑡)

where 𝑉𝑉𝑠𝑠𝑡𝑡 is either equal to 𝑊𝑊𝑠𝑠𝑡𝑡 or 𝑈𝑈𝑠𝑠𝑡𝑡
• Each 𝑉𝑉𝑠𝑠𝑡𝑡 depends either on 𝑥𝑥𝑖𝑖 or 𝑥𝑥𝑖𝑖 or maybe neither of them, but not on both (since these terms 

appear already in the difference).

• If we fix all other 𝑥𝑥𝑙𝑙’s, we therefore get an integral of the form  

� 𝑊𝑊𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 − 𝑈𝑈𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖 𝑓𝑓 𝑥𝑥𝑖𝑖 𝑔𝑔 𝑥𝑥𝑖𝑖 𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑥𝑥𝑖𝑖

with 𝑓𝑓 and 𝑔𝑔 being functions with values in [0,1] (depending implicitly on the other variables, of 
course).  

• By the equivalent definition of the cut-norm the absolute value of the integral is bounded by

𝑊𝑊𝑖𝑖𝑖𝑖 −𝑈𝑈𝑖𝑖𝑖𝑖 □
= 𝑊𝑊 −𝑈𝑈 □

uniformly in the remaining variables 𝑥𝑥𝑙𝑙



• Integrating over the remaining variables and taking into account that we have to do this 𝑘𝑘
2 times to 

change all 𝑊𝑊𝑖𝑖𝑖𝑖 to 𝑈𝑈𝑖𝑖𝑖𝑖, this gives

𝑡𝑡0 𝐻𝐻,𝑊𝑊 − 𝑡𝑡0 𝐻𝐻,𝑈𝑈 ≤�
𝑖𝑖<𝑖𝑖

� �
𝑙𝑙∉ 𝑖𝑖,𝑖𝑖

𝑑𝑑𝑥𝑥𝑙𝑙 𝑊𝑊 − 𝑈𝑈 □ =
𝑘𝑘
2

𝑊𝑊 −𝑈𝑈 □



3c) Bounding 𝛿𝛿□ in terms of subgraph counts

Thm If there exists a 𝑘𝑘 s.th. 𝑑𝑑𝑇𝑇𝑉𝑉 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑘𝑘 𝐺𝐺 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑘𝑘 𝐺𝐺𝐺 ≤ 10
log2 𝑘𝑘

then

𝛿𝛿□(𝐺𝐺,𝐺𝐺′) ≤
20

log2 𝑘𝑘

Proof: it is not hard to show that for all graphons 𝑊𝑊, 𝛿𝛿□ Gk W , W →ℙ 0

Here we use a more difficult quantitative result on the expectation from 
[BCLSV’08], which says that

𝔼𝔼 𝛿𝛿□ 𝐺𝐺𝑘𝑘 𝑊𝑊 ,𝑊𝑊 ≤
5

𝑙𝑙𝑙𝑙𝑔𝑔2 𝑘𝑘



3c) Bounding 𝛿𝛿□ in terms of subgraph counts

𝛿𝛿□ 𝐺𝐺,𝐺𝐺′ ≤ 𝛿𝛿□ 𝐺𝐺,𝐺𝐺𝑘𝑘(𝑊𝑊𝐺𝐺) +𝛿𝛿□ 𝐺𝐺𝑘𝑘(𝑊𝑊𝐺𝐺),𝐺𝐺𝑘𝑘(𝑊𝑊𝐺𝐺′) + 𝛿𝛿□ 𝐺𝐺′,𝐺𝐺𝑘𝑘(𝑊𝑊𝐺𝐺′)

Taking expectations in the above bound we get

𝛿𝛿□ 𝐺𝐺,𝐺𝐺′ ≤ 10
𝑙𝑙𝑙𝑙𝑔𝑔2 𝑘𝑘

+ 𝔼𝔼 𝛿𝛿□ 𝐺𝐺𝑘𝑘 𝑊𝑊𝐺𝐺 ,𝐺𝐺𝑘𝑘 𝑊𝑊𝐺𝐺′

≤ 10
𝑙𝑙𝑙𝑙𝑔𝑔2 𝑘𝑘

+ 𝑃𝑃𝑃𝑃 𝐺𝐺𝑘𝑘 𝑊𝑊𝐺𝐺 ≠ 𝐺𝐺𝑘𝑘 𝑊𝑊𝐺𝐺′

= 10
𝑙𝑙𝑙𝑙𝑔𝑔2 𝑘𝑘

+ 𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑘𝑘 𝐺𝐺 ≠ 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑘𝑘 𝐺𝐺′ ≤ 20
𝑙𝑙𝑙𝑙𝑔𝑔2 𝑘𝑘

where we used that 𝐺𝐺𝑘𝑘 𝑊𝑊𝐺𝐺 has the same distribution as 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑘𝑘 𝐺𝐺



Summary so far

• Graphons are functions 𝑊𝑊 of two variables lying in some feature space

• Given a probability distribution over features, Graphons give a natural 
random graph model 𝐺𝐺𝑛𝑛(𝑊𝑊) by connecting vertices with features 𝑥𝑥,𝑦𝑦
with probability 𝑊𝑊(𝑥𝑥,𝑦𝑦)

• If two graphs are close in the cut-metric, they have similar subgraph 
counts, distribution of sampled subgraphs, multi-way cuts, and micro 
canonical free energies, and vice versa



Outlook Graphs and Graphons

Graphs
 Vertex set 𝑉𝑉
 Adjacency matrix 𝐴𝐴:𝑉𝑉 × 𝑉𝑉 → {0,1}

Graph 
Limits

Non-Parametric 
Random Graph Models

Graphons
 Probability space Ω,ℱ, 𝜇𝜇
 Symmetric, measurable function 𝑊𝑊:Ω × Ω → [0,1]



Heuristically, the limit of black/white pattern is a grey picture on 0,1 2.

~Half graph

Random graph 𝐺𝐺𝑀𝑀,p
with 𝑆𝑆 = ⁄1 2

𝑊𝑊 ≡ �1
2~

Randomly grown uniform 
attachment graph, ordered 
by degrees

𝑊𝑊 𝑥𝑥,𝑦𝑦 =
1 − max(𝑥𝑥,𝑦𝑦)

5) Graphons as Limits in the Cut Metric



5) Graphons as Limits in the Cut Metric
Def A sequence of graphs 𝐺𝐺𝑛𝑛 converges to a graphon 𝑊𝑊: 0,1 2 → [0,1] in 
the cut metric iff

𝛿𝛿□ 𝑊𝑊𝐺𝐺𝑛𝑛 ,𝑊𝑊 → 0
Thm [BCLSV ’08,’12]: Let 𝐺𝐺𝑛𝑛 be a sequence of graphs with 𝑉𝑉 𝐺𝐺𝑛𝑛 → ∞.  
Then the following are equivalent

1) For all finite graphs 𝐻𝐻,  𝑡𝑡0 𝐻𝐻,𝐺𝐺𝑛𝑛 → 𝑡𝑡0 𝐻𝐻,𝑊𝑊
2) For all 𝑘𝑘 ≥ 1, 𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑘𝑘 𝐺𝐺𝑛𝑛 → 𝐺𝐺𝑘𝑘(𝑊𝑊) in distribution

3) 𝛿𝛿□ 𝑊𝑊𝐺𝐺𝑛𝑛 ,𝑊𝑊 → 0

The limits of 𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝐽𝐽,𝛼𝛼 𝐺𝐺 and 𝐹𝐹𝐽𝐽,𝛼𝛼 𝐺𝐺 can also expressed in terms of 𝑊𝑊, 
and convergence to these is also equivalent



5) Graphons as Limits in the Cut Metric
Def A sequence of graphs 𝐺𝐺𝑛𝑛 converges to a graphon 𝑊𝑊: 0,1 2 → [0,1] in the 
cut metric iff

𝛿𝛿□ 𝑊𝑊𝐺𝐺𝑛𝑛 ,𝑊𝑊 → 0
Questions:
1) Is there any growing sequence that converges to a graphon?
2) Can an arbitrary graphon 𝑊𝑊: 0,1 2 → [0,1] be obtained as a limit of a 

sequence of graphs
3) Given a sequence 𝐺𝐺𝑛𝑛, is there a subsequence that converges to a graphon 

𝑊𝑊?
Answer 1 + 2: For any graphon 𝑊𝑊: 0,1 2 → [0,1], the sequence of 
inhomogeneous random graphs 𝐺𝐺𝑛𝑛(𝑊𝑊) converges to 𝑊𝑊 in the cut metric
Answer 3: Yes.  This follows from the weak regularity lemma.



6) Graphons as Limits in the Cut Metric
Weak Regularity Lemma:
For any graphon 𝑊𝑊 and any 𝑘𝑘, there exists a 𝑘𝑘 × 𝑘𝑘 matrix 𝐵𝐵 such that 

𝛿𝛿□ 𝑊𝑊𝐵𝐵 ,𝑊𝑊 ≤
5

log2 𝑘𝑘
What does this mean?
• Any graphon can be approximated by a block graphon
• For all 𝜖𝜖, we can cover the space of graphons with a finite 𝜖𝜖-net of block 

graphons
• With some extra work, this implies that every sequence of graphons and hence 

of graphs has a subsequence converging to some graphon



7) Proof of the Weak Regularity Lemma
Partitions: 𝑃𝑃 = {𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑘𝑘} where ⋃𝑖𝑖 𝑌𝑌𝑖𝑖 = [0,1] is a partition of [0,1] into 
disjoint subsets.  𝑃𝑃 = 𝑘𝑘 is called the size of 𝑃𝑃
Averaging over partitions: 𝑊𝑊𝑃𝑃 is the block graphon that is constant on 𝑌𝑌𝑖𝑖 × 𝑌𝑌𝑖𝑖
that is obtained by averaging

𝑊𝑊𝑃𝑃 𝑥𝑥,𝑦𝑦 =
1

𝜆𝜆 𝑌𝑌𝑖𝑖 𝜆𝜆(𝑌𝑌𝑖𝑖)
�

𝑌𝑌𝑖𝑖×𝑌𝑌𝑗𝑗

𝑊𝑊 𝑥𝑥′,𝑦𝑦′ 𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦𝐺

Lemma [Frieze-Kannan ’99]: For all 𝑊𝑊: 0.1 2 → [−1,1] there exists a partition 𝑃𝑃
of [0,1] into at most 4 1/𝜖𝜖2 many classes s.th. 

𝑊𝑊 −𝑊𝑊𝑃𝑃 □ ≤ 𝜖𝜖



7) Proof of the Weak Regularity Lemma
Proof of the Frieze-Kannan Lemma:

Starting with the trivial partition 𝑃𝑃0 consisting of just one class 𝑌𝑌1 = 0,1 , we will 
successively construct partitions 𝑃𝑃𝑡𝑡 s.th. latest at 𝑡𝑡 = 1/𝜖𝜖2

𝑊𝑊 −𝑊𝑊𝑃𝑃𝑡𝑡 □
≤ 𝜖𝜖

Assume this has not happened up to step 𝑡𝑡, i.e., assume that 𝑊𝑊 −𝑊𝑊𝑃𝑃𝑡𝑡 □
> 𝜖𝜖. 

⟹ there exists 𝑆𝑆,𝑇𝑇 ⊂ 0,1 s.th. ∫𝑆𝑆×𝑇𝑇𝑊𝑊 −𝑊𝑊𝑃𝑃𝑡𝑡 > 𝜖𝜖

Let 𝑃𝑃𝑡𝑡+1 be the common refinement of 𝑃𝑃𝑡𝑡, {𝑆𝑆, 𝑆𝑆𝑐𝑐} and {𝑇𝑇,𝑇𝑇𝑐𝑐}

⟹ 𝜖𝜖 < ∫𝑆𝑆×𝑇𝑇𝑊𝑊 −𝑊𝑊𝑃𝑃𝑡𝑡 = ∫ 1𝑆𝑆×𝑇𝑇(𝑊𝑊𝑃𝑃𝑡𝑡+1−𝑊𝑊𝑃𝑃𝑡𝑡) ≤ (𝑊𝑊𝑃𝑃𝑡𝑡+1−𝑊𝑊𝑃𝑃𝑡𝑡) 2

where the second step uses that 𝑃𝑃𝑡𝑡+1 is a refinement of {𝑆𝑆, 𝑆𝑆𝑐𝑐} and {𝑇𝑇,𝑇𝑇𝑐𝑐}, and the
last one uses Cauchy-Schwarz.  



7) Proof of the Weak Regularity Lemma
Next we use that 𝑃𝑃𝑡𝑡+1 is a refinement of 𝑃𝑃𝑡𝑡 to get

(𝑊𝑊𝑃𝑃𝑡𝑡+1−𝑊𝑊𝑃𝑃𝑡𝑡) 2
2 = 𝑊𝑊𝑃𝑃𝑡𝑡+1 2

2
+ 𝑊𝑊𝑃𝑃𝑡𝑡 2

2 − 2∫𝑊𝑊𝑃𝑃𝑡𝑡+1𝑊𝑊𝑃𝑃𝑡𝑡

= 𝑊𝑊𝑃𝑃𝑡𝑡+1 2
2

+ 𝑊𝑊𝑃𝑃𝑡𝑡 2
2 − 2∫𝑊𝑊𝑃𝑃𝑡𝑡 𝑊𝑊𝑃𝑃𝑡𝑡 = 𝑊𝑊𝑃𝑃𝑡𝑡+1 2

2− 𝑊𝑊𝑃𝑃𝑡𝑡 2
2

We therefore have shown

𝑊𝑊𝑃𝑃𝑡𝑡+1 2
2 > 𝑊𝑊𝑃𝑃𝑡𝑡 2

2 + 𝜖𝜖2 ≥ ⋯ ≥ 𝑊𝑊𝑃𝑃0 2
2 + (𝑡𝑡 + 1)𝜖𝜖2≥ (𝑡𝑡 + 1)𝜖𝜖2

Since the l.h.s. is bounded by 1, this produces a contradiction if (𝑡𝑡 + 1)𝜖𝜖2≥ 1, 
showing that latest when 𝑡𝑡 = 1/𝜖𝜖2 ,

𝑊𝑊 −𝑊𝑊𝑃𝑃𝑡𝑡 □
≤ 𝜖𝜖,

as claimed



7) Proof of the Weak Regularity Lemma
Remarks:

1. It is easy to transform a partition into an equi-paritition, i.e., a partition whose 
classes have all the same measure, by subdividing the given partition into smaller 
pieces.  All this will do is change the constants involved.  Being generous with 
these constants, one gets a bound on the number of classes of 225/𝜖𝜖2, or 
equivalently, an error of 5/ log2𝑘𝑘 in terms of the number of classes 𝑘𝑘

2. This shows that for each 𝑊𝑊: 0.1 2 → [−1,1] there exists a partition 𝑃𝑃 into 𝑘𝑘
classes such that 

𝑊𝑊 −𝑊𝑊𝑃𝑃 □ ≤
5

log2𝑘𝑘

Applying measure preserving transformations, this then will give a partition into 
successive intervals of length 1/𝑘𝑘, which means that 𝑊𝑊𝑃𝑃 becomes a standard 
block Graphon 𝑊𝑊𝐵𝐵 where 𝐵𝐵 is a 𝑘𝑘 × 𝑘𝑘 matrix, as claimed earlier.



Summary

• Graphons are functions 𝑊𝑊 of two variables lying in some feature space

• Given a probability distribution over features, Graphons give a natural random 
graph model 𝐺𝐺𝑛𝑛(𝑊𝑊) by connecting vertices with features 𝑥𝑥,𝑦𝑦 with probability 
𝑊𝑊(𝑥𝑥,𝑦𝑦)

• If two graphs are close in the cut-metric, they have similar subgraph counts, 
distribution of sampled subgraphs, multi-way cuts, and micro canonical free 
energies, and vice versa

• A Cauchy sequence in the cut metric converges to a graphon, and the limiting 
subgraph counts, distribution of sampled subgraphs, multi-way cuts, and micro 
canonical free energies can be expressed in terms of the limiting graphon



Thank you!
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