Sparse Random Graphs-II

Souvik Dhara

Research Fellow, Simons Institute

Graph Limits and Processes on Networks: From Epidemics to Misinformation Boot Camp

> Considered $ER_n(\frac{\lambda}{n})$: Erdős-Renyi random graph with n vertices and edge probability $\frac{\lambda}{n}$

> Studied relation between exploration and branching processes, and showed that exploration can be dominated by a $Poisson(\lambda)$ branching process

≻ For $\lambda < 1$: Showed $\mathbb{E}[C(\nu)] = O(1)$

Theorem: Subcritical $\operatorname{ER}_{n}(\frac{\lambda}{n})$ If $\lambda < 1$, then $\frac{\max_{\nu} C(\nu)}{\log n} \xrightarrow{\mathbb{P}} \frac{1}{I_{\lambda}}, \quad \text{where } I_{\lambda} = \lambda - 1 - \log \lambda$

We proved

Theorem: Supercritical $ER_n(\frac{\lambda}{n})$

Let $C_{(i)}$:= i-th largest component of $ER_n(\frac{\lambda}{n})$. If $\lambda > 1$, then

$$\frac{C_{\scriptscriptstyle (1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda} > 0 \quad \text{and} \quad \frac{C_{\scriptscriptstyle (2)}}{n} \xrightarrow{\mathbb{P}} 0$$

We proved

Theorem: Supercritical $ER_n(\frac{\lambda}{n})$

Let $C_{(i)}$:= i-th largest component of $ER_n(\frac{\lambda}{n})$. If $\lambda > 1$, then

$$\frac{C_{\scriptscriptstyle (1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda} > 0 \quad \text{and} \quad \frac{C_{\scriptscriptstyle (2)}}{n} \xrightarrow{\mathbb{P}} 0$$

The two main ingredients to prove this were...

We proved

Theorem: Supercritical $ER_n(\frac{\lambda}{n})$

Let $C_{(i)}$:= i-th largest component of $\text{ER}_n(\frac{\lambda}{n})$. If $\lambda > 1$, then

$$\frac{C_{\scriptscriptstyle (1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda} > 0 \quad \text{and} \quad \frac{C_{\scriptscriptstyle (2)}}{n} \xrightarrow{\mathbb{P}} 0$$

The two main ingredients to prove this were ...

1 Local neighborhood approximation: Exploration from u (uniform vertex) is approximately BP whp and when BP survives, C(u) is large

We proved

Theorem: Supercritical $ER_n(\frac{\lambda}{n})$

Let $C_{(i)}$:= i-th largest component of $ER_n(\frac{\lambda}{n})$. If $\lambda > 1$, then

$$\frac{C_{\scriptscriptstyle (1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda} > 0 \quad \text{and} \quad \frac{C_{\scriptscriptstyle (2)}}{n} \xrightarrow{\mathbb{P}} 0$$

The two main ingredients to prove this were ...

- **U** Local neighborhood approximation: Exploration from u (uniform vertex) is approximately BP whp and when BP survives, C(u) is large
- **2** Two large components intersect: u₁, u₂ uniform vertices

 $\lim_{L \to \infty} \lim_{\mathfrak{n} \to \infty} \mathbb{P} \big(C(\mathfrak{u}_1) \geqslant L, C(\mathfrak{u}_2) \geqslant L, \mathfrak{u}_1 \not\leftrightarrow \mathfrak{u}_2 \big) = 0$

We proved

Theorem: Supercritical $ER_n(\frac{\lambda}{n})$

Let $C_{(i)}$:= i-th largest component of $ER_n(\frac{\lambda}{n})$. If $\lambda > 1$, then

$$\frac{C_{\scriptscriptstyle (1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda} > 0 \quad \text{and} \quad \frac{C_{\scriptscriptstyle (2)}}{n} \xrightarrow{\mathbb{P}} 0$$

The two main ingredients to prove this were ...

- **U** Local neighborhood approximation: Exploration from u (uniform vertex) is approximately BP whp and when BP survives, C(u) is large
- **2** Two large components intersect: u₁, u₂ uniform vertices

 $\lim_{L \to \infty} \lim_{\mathfrak{n} \to \infty} \mathbb{P} \big(C(\mathfrak{u}_1) \geqslant L, C(\mathfrak{u}_2) \geqslant L, \mathfrak{u}_1 \not\leftrightarrow \mathfrak{u}_2 \big) = 0$

→ Was shown by growing two neighborhoods, and they must intersect when neighborhoods become large enough $\Omega(\sqrt{n})$

Plan today

Consider other models with more realistic features, summarize results, and give heuristics for applying BP approximation technique

Percolation, Epidemics: Use Path counting to prove results on general graphs and see whether we can apply these results to sparse graphs

Using Stochastic Process Convergence in to find limits of component sizes of Random Graphs

- ➤ Global communities:
- ➤ Heterogeneous degrees:
- > Dynamically evolving graphs:

- > Global communities: Stochastic Block Model
- ➤ Heterogeneous degrees:
- > Dynamically evolving graphs:

- > Global communities: Stochastic Block Model
- > Heterogeneous degrees: Configuration Model
- > Dynamically evolving graphs:

- > Global communities: Stochastic Block Model
- > Heterogeneous degrees: Configuration Model
- > Dynamically evolving graphs: Preferential Attachment Model

Stochastic Block Model

> Model with global community structure – popular model in CS/ML for *community detection problem*

Stochastic Block Model

> Model with global community structure – popular model in CS/ML for *community detection problem*

Model description:

1. $K \ge 2$ communities, size of community $i = n_i$, where $\frac{n_i}{n} \rightarrow \rho_i$, $\rho_i > 0$

Pic source: Abbe (2018)

Stochastic Block Model

➤ Model with global community structure – popular model in CS/ML for *community detection problem*

Model description:

- 1. $K \ge 2$ communities, size of community $i = n_i$, where $\frac{n_i}{n} \rightarrow \rho_i$, $\rho_i > 0$
- 2. Edge between community i, j w.p. $\frac{P_{ij}}{n}$ ($P_{ij} \in (0,1)$), independently

Pic source: Abbe (2018)

Local neighborhood approximated by this BP

Local neighborhood approximated by this BP

> Uniform vertex u in community i w.p. ρ_i

Local neighborhood approximated by this BP

 \succ Uniform vertex u in community i w.p. ρ_i

> Poisson($\rho_j P_{ij}$) neighbors from community j

Local neighborhood approximated by this BP

- > Uniform vertex u in community i w.p. ρ_i
- > Poisson($\rho_j P_{ij}$) neighbors from community j
- ➤ Gives rise to Multi-type Branching Process

Local neighborhood approximated by this BP

 \succ Uniform vertex u in community i w.p. ρ_i

> Poisson($\rho_j P_{ij}$) neighbors from community j

➤ Gives rise to Multi-type Branching Process

Let $P_{ij}^{\star} = \rho_j P_{ij}$ and $\lambda_1(P^{\star})$ be largest eigenvalue of P^{\star} .

Local neighborhood approximated by this BP

 \succ Uniform vertex u in community i w.p. ρ_i

> Poisson($\rho_j P_{ij}$) neighbors from community j

➤ Gives rise to Multi-type Branching Process

Let $P_{ij}^{\star} = \rho_j P_{ij}$ and $\lambda_1(P^{\star})$ be largest eigenvalue of P^{\star} . Then

Fact: $\mathbb{P}(\text{BP survives}) = \zeta > 0$ when $\lambda_1(\mathbb{P}^*) > 1$

Local neighborhood approximated by this BP

- \succ Uniform vertex u in community i w.p. ρ_i
- > Poisson($\rho_j P_{ij}$) neighbors from community j
- Gives rise to Multi-type Branching Process

Let $P_{ij}^{\star} = \rho_j P_{ij}$ and $\lambda_1(P^{\star})$ be largest eigenvalue of P^{\star} . Then

Fact: $\mathbb{P}(\text{BP survives}) = \zeta > 0$ when $\lambda_1(\mathbb{P}^*) > 1$

Theorem: Giant for SBM

1. For
$$\lambda_1(\mathsf{P}^{\star}) < 1$$
: $\frac{\mathsf{C}_{(1)}}{\mathfrak{n}} \xrightarrow{\mathbb{P}} 0$
2. For $\lambda_1(\mathsf{P}^{\star}) > 1$: $\frac{\mathsf{C}_{(1)}}{\mathfrak{n}} \xrightarrow{\mathbb{P}} \zeta > 0$ and $\frac{\mathsf{C}_{(2)}}{\mathfrak{n}} \xrightarrow{\mathbb{P}} 0$ whp

Local neighborhood approximated by this BP

 \succ Uniform vertex u in community i w.p. ρ_i

> Poisson($\rho_j P_{ij}$) neighbors from community j

➤ Gives rise to Multi-type Branching Process

Let $P_{ij}^{\star} = \rho_j P_{ij}$ and $\lambda_1(P^{\star})$ be largest eigenvalue of P^{\star} . Then

Fact: $\mathbb{P}(\text{BP survives}) = \zeta > 0$ when $\lambda_1(\mathbb{P}^*) > 1$

Theorem: Giant for SBM

1. For
$$\lambda_1(\mathsf{P}^{\star}) < 1$$
: $\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} 0$
2. For $\lambda_1(\mathsf{P}^{\star}) > 1$: $\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta > 0$ and $\frac{C_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$ why

There is a more challenging and general models with continuum of colors
See foundational work of Bollobás, Janson, Riordan (2007) on general inhomogeneous random graphs

Up next: Model for degree-heterogeneous networks

Pic source: Wikimedia Commons

Up next: Model for degree-heterogeneous networks

> Such degree-heterogenous networks with hubs are common occurrences

 The degree distribution can be power-law, truncated power-law etc., but it is definitely quite far from Poisson

Pic source: Wikimedia Commons

Up next: Model for degree-heterogeneous networks

> Such degree-heterogenous networks with hubs are common occurrences

- The degree distribution can be power-law, truncated power-law etc., but it is definitely quite far from Poisson
- ➡ Need a simple, analytically tractable model Configuration Model

Pic source: Wikimedia Commons

Pic source: van der Hofstad (2017)

Canonical model to generate graphs with given degrees $\mathbf{d} = (d_1, \dots, d_n)$

 \succ Start with d_i *half-edges* to vertex i

Pic source: van der Hofstad (2017)

- Start with di half-edges to vertex i
- ➤ Pair half-edges uniformly

Pic source: van der Hofstad (2017)

- Start with di half-edges to vertex i
- ➤ Pair half-edges uniformly

Pic source: van der Hofstad (2017)

- \succ Start with d_i *half-edges* to vertex i
- ➤ Pair half-edges uniformly

Pic source: van der Hofstad (2017)

- \succ Start with d_i *half-edges* to vertex i
- ➤ Pair half-edges uniformly

Pic source: van der Hofstad (2017)

- \succ Start with d_i *half-edges* to vertex i
- ➤ Pair half-edges uniformly

Pic source: van der Hofstad (2017)

- \succ Start with d_i *half-edges* to vertex i
- ➤ Pair half-edges uniformly

Pic source: van der Hofstad (2017)

- \succ Start with d_i *half-edges* to vertex i
- ➤ Pair half-edges uniformly

Pic source: van der Hofstad (2017)

- \succ Start with d_i *half-edges* to vertex i
- > Pair half-edges uniformly

Pic source: van der Hofstad (2017)

- \succ Start with d_i *half-edges* to vertex i
- ➤ Pair half-edges uniformly
- \succ Self-loops/multi-edges may occur

Pic source: van der Hofstad (2017)

- \succ Start with d_i *half-edges* to vertex i
- \succ Pair half-edges uniformly
- ➤ Self-loops/multi-edges may occur
- ▷ Denote resulting (multi)-graph by $CM_n(d)$

Pic source: van der Hofstad (2017)

Canonical model to generate graphs with given degrees $d = (d_1, \dots, d_n)$

- Start with di half-edges to vertex i
- \succ Pair half-edges uniformly
- ➤ Self-loops/multi-edges may occur
- > Denote resulting (multi)-graph by $CM_n(d)$

Interesting Fact: Law of $CM_n(d)$ given no loops/multi-edges produced is same as Uniform distribution over all possible simple graphs with degree d

Pic source: van der Hofstad (2017)

Canonical model to generate graphs with given degrees $d = (d_1, \dots, d_n)$

- Start with di half-edges to vertex i
- ≻ Pair half-edges uniformly
- ➤ Self-loops/multi-edges may occur
- > Denote resulting (multi)-graph by $CM_n(d)$

Interesting Fact: Law of $CM_n(d)$ given no loops/multi-edges produced is same as Uniform distribution over all possible simple graphs with degree d

Brief History:

➤ Introduced by Bender and Canfield (1978), Bollobás (1980) to study uniform random regular graphs

➤ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

 $D_n:=$ degree of uniform vertex, so the distribution of D_n is the empirical degree distribution $\frac{1}{n}\sum_i\delta_{d_i}$

 $D_n:=$ degree of uniform vertex, so the distribution of D_n is the empirical degree distribution $\frac{1}{n}\sum_i\delta_{d_i}$

Regularity conditions.

1 Convergence of degree distribution. $D_n \xrightarrow{d} D$

 $D_n:=$ degree of uniform vertex, so the distribution of D_n is the empirical degree distribution $\frac{1}{n}\sum_i\delta_{d_i}$

Regularity conditions.

- **1** Convergence of degree distribution. $D_n \xrightarrow{d} D$
- $\label{eq:convergence} \textbf{O} \mbox{ Convergence of moment. } \mathbb{E}[D_n] \to \mathbb{E}[D] < \infty$

 $D_n:=$ degree of uniform vertex, so the distribution of D_n is the empirical degree distribution $\frac{1}{n}\sum_i\delta_{d_i}$

Regularity conditions.

- ${\rm 1} \hspace{0.1 cm} Convergence \ of \ degree \ distribution. \ D_n \xrightarrow{d} D$
- $\ensuremath{ 2 \ }$ Convergence of moment. $\mathbb{E}[D_n] \to \mathbb{E}[D] < \infty$

Ensures sparsity:
$$\mathbb{E}[D_n] = \frac{1}{n} \sum_i d_i \rightarrow \text{constant}$$

 $D_n:=$ degree of uniform vertex, so the distribution of D_n is the empirical degree distribution $\frac{1}{n}\sum_i\delta_{d_i}$

Regularity conditions.

- ${\rm 1} {\rm 0} {\rm Convergence of degree distribution. } D_n \xrightarrow{d} D$
- $\ensuremath{ 2 \ }$ Convergence of moment. $\mathbb{E}[D_n] \to \mathbb{E}[D] < \infty$

Ensures sparsity:
$$\mathbb{E}[D_n] = \frac{1}{n} \sum_i d_i \rightarrow \text{constant}$$

3 $\mathbb{P}(D = 2) < 1$, otherwise generated graph is union of cycles

 $D_n:=$ degree of uniform vertex, so the distribution of D_n is the empirical degree distribution $\frac{1}{n}\sum_i\delta_{d_i}$

Regularity conditions.

- ${\rm 1} {\rm 0} {\rm Convergence of degree distribution. } D_n \xrightarrow{d} D$
- $\ensuremath{ @ \ensuremath{ & \ensuremath{ @ \ensuremath{ & \ensuremath{ @ \ensuremath{ @ \ensuremath{ & \ens$

Ensures sparsity:
$$\mathbb{E}[D_n] = \frac{1}{n} \sum_i d_i \rightarrow \text{constant}$$

3 $\mathbb{P}(D = 2) < 1$, otherwise generated graph is union of cycles

 \succ If the degrees are iid samples from a power-law with finite mean, then these conditions are satisfied

 $D_n:=$ degree of uniform vertex, so the distribution of D_n is the empirical degree distribution $\frac{1}{n}\sum_i\delta_{d_i}$

Regularity conditions.

- ${\rm 1} {\rm 0} {\rm Convergence of degree distribution. } D_n \xrightarrow{d} D$
- $\ensuremath{ 2 \ }$ Convergence of moment. $\mathbb{E}[D_n] \to \mathbb{E}[D] < \infty$

Ensures sparsity:
$$\mathbb{E}[D_n] = \frac{1}{n} \sum_i d_i \rightarrow \text{constant}$$

3 $\mathbb{P}(D = 2) < 1$, otherwise generated graph is union of cycles

 \succ If the degrees are iid samples from a power-law with finite mean, then these conditions are satisfied

 \succ Most often, one also assumes $\mathbb{E}[D^2_n] \to \mathbb{E}[D^2] < \infty,$ which ensures

 $\liminf_{n \to \infty} \mathbb{P}(CM_n(d) \text{ is simple}) > 0 \qquad \text{Janson (2009)}$

so that the results carry over to uniform graphs

BP approximation:

BP approximation:

• Starts D many progeny

BP approximation:

• Starts D many progeny

Let $n_l = \#$ vertices of degree l and $\frac{n_l}{n} \to p_l$

BP approximation:

• Starts D many progeny

Let $n_l = \#$ vertices of degree l and $\frac{n_l}{n} \to p_l$

Next progeny is $D^* - 1$ with $\mathbb{P}(D^* = k) = \frac{kp_k}{\sum_l lp_l}$

Size-biased distribution

BP approximation:

• Starts D many progeny

2 Produces $D^* - 1$ in next step

Let $n_l = \#$ vertices of degree l and $\frac{n_l}{n} \to p_l$

Next progeny is $D^* - 1$ with $\mathbb{P}(D^* = k) = \frac{kp_k}{\sum_l lp_l}$

Size-biased distribution

BP approximation:

• Starts D many progeny

2 Produces $D^* - 1$ in next step

Let $n_l = \#$ vertices of degree l and $\frac{n_l}{n} \to p_l$

Next progeny is $D^* - 1$ with $\mathbb{P}(D^* = k) = \frac{kp_k}{\sum_l lp_l}$

Size-biased distribution

Now,

$$\mathbb{E}[D^{\star}-1] = \frac{\sum_{k} (k-1)kp_{k}}{\sum_{k} kp_{k}}$$

Now,

BP approximation:

• Starts D many progeny

 D^*-1 **2** Produces D^*-1 in next step

Let $n_l = \#$ vertices of degree l and $\frac{n_l}{n} \to p_l$

Next progeny is $D^* - 1$ with $\mathbb{P}(D^* = k) = \frac{kp_k}{\sum_l lp_l}$

Size-biased distribution

 $\mathbb{E}[\mathsf{D}^{\star}-1] = \frac{\sum_{k} (k-1) k \mathfrak{p}_{k}}{\sum_{k} k \mathfrak{p}_{k}} = \frac{\mathbb{E}[\mathsf{D}(\mathsf{D}-1)]}{\mathbb{E}[\mathsf{D}]}$

BP approximation:

• Starts D many progeny

2 Produces $D^* - 1$ in next step

Let $n_l = \#$ vertices of degree l and $\frac{n_l}{n} \to p_l$

Next progeny is $D^* - 1$ with $\mathbb{P}(D^* = k) = \frac{kp_k}{\sum_l lp_l}$

Size-biased distribution

Now,

$$\mathbb{E}[\mathsf{D}^{\star}-1] = \frac{\sum_{k} (k-1)k\mathfrak{p}_{k}}{\sum_{k} k\mathfrak{p}_{k}} = \frac{\mathbb{E}[\mathsf{D}(\mathsf{D}-1)]}{\mathbb{E}[\mathsf{D}]}$$

Therefore,

$$\mathbb{P}(\text{BP survives}) = \zeta > 0 \quad \text{when } \nu := \frac{\mathbb{E}[D(D-1)]}{\mathbb{E}[D]} > 1$$

Let $\nu := \frac{\mathbb{E}[D(D-1)]}{\mathbb{E}[D]}$ **Theorem: Giant for** $CM_n(d)$ **()** For $\nu < 1 : \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} 0$ whp **()** For $\nu > 1 : \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta > 0$ and $\frac{C_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$ whp

Let $v := \frac{\mathbb{E}[D(D-1)]}{\mathbb{E}[D]}$ **Theorem: Giant for** $CM_n(d)$ **9** For $v < 1 : \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} 0$ whp **9** For $v > 1 : \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta > 0$ and $\frac{C_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$ whp

For the proof, there were two ingredients:

Let $\nu := \frac{\mathbb{E}[D(D-1)]}{\mathbb{E}[D]}$ **Theorem: Giant for** $CM_n(d)$ **()** For $\nu < 1 : \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} 0$ whp **()** For $\nu > 1 : \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta > 0$ and $\frac{C_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$ whp

For the proof, there were two ingredients:

Local neighborhood approximation – Just discussed

Let $\nu := \frac{\mathbb{E}[D(D-1)]}{\mathbb{E}[D]}$ **Theorem: Giant for** $CM_n(d)$ **()** For $\nu < 1 : \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} 0$ whp **()** For $\nu > 1 : \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta > 0$ and $\frac{C_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$ whp

For the proof, there were two ingredients:

- Local neighborhood approximation Just discussed
- → Will skip Two large components intersect $\mathbb{P}(C(\mathfrak{u}_1) \ge L, C(\mathfrak{u}_2) \ge L, \mathfrak{u}_1 \nleftrightarrow \mathfrak{u}_2) \approx 0$

Can be proved using similar ideas as ER, but is more complicated ^a

^asee van der Hofstad (2021): The giant in random graphs is almost local

Let $v := \frac{\mathbb{E}[D(D-1)]}{\mathbb{E}[D]}$ **Theorem: Giant for** $CM_n(d)$ **①** For $v < 1: \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} 0$ whp **②** For $v > 1: \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta > 0$ and $\frac{C_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$ whp

Two cases with different qualitative behavior than Erdős-Rényi:

Let $\nu := \frac{\mathbb{E}[D(D-1)]}{\mathbb{E}[D]}$ **Theorem: Giant for** $CM_n(\mathbf{d})$ **①** For $\nu < 1 : \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} 0$ whp **②** For $\nu > 1 : \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta > 0$ and $\frac{C_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$ whp

Two cases with different qualitative behavior than Erdős-Rényi:

> It may be that $v = \infty$, e.g., for power-law degree distribution with infinite variance, and giant always exists in such networks

Let $\nu := \frac{\mathbb{E}[D(D-1)]}{\mathbb{E}[D]}$ **Theorem: Giant for** $CM_n(\mathbf{d})$ **①** For $\nu < 1 : \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} 0$ whp **②** For $\nu > 1 : \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta > 0$ and $\frac{C_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$ whp

Two cases with different qualitative behavior than Erdős-Rényi:

> It may be that $v = \infty$, e.g., for power-law degree distribution with infinite variance, and giant always exists in such networks

≻ It may be that $\zeta = 1$, e.g., if $\mathbb{P}(D \ge 3) = 1$, then BP survives w.p. 1

> Around '90s, huge interest for dynamically growing networks that produce heterogeneous degree distribution

> Around '90s, huge interest for dynamically growing networks that produce heterogeneous degree distribution

➤ To model this, Barabási and Albert (1999) proposed the *Preferential attachment model*. Idea goes back to Yule (1925)

> Around '90s, huge interest for dynamically growing networks that produce heterogeneous degree distribution

➤ To model this, Barabási and Albert (1999) proposed the *Preferential attachment model*. Idea goes back to Yule (1925)

➡ Rich-get-richer principle: New vertices connect to high-degree vertices

> Around '90s, huge interest for dynamically growing networks that produce heterogeneous degree distribution

➤ To model this, Barabási and Albert (1999) proposed the *Preferential attachment model*. Idea goes back to Yule (1925)

➡ Rich-get-richer principle: New vertices connect to high-degree vertices

➤ Bollobás, Riordan, Spencer and Tusnády (2001) were to first study this model rigorously

Preferential attachment model

 \succ New vertices come with m connections

Preferential attachment model

 \succ New vertices come with m connections

1 Start with a single vertex v_1 with m self-loops

Preferential attachment model

- \succ New vertices come with m connections
 - **1** Start with a single vertex v_1 with m self-loops
 - At time t, vt arrives with m potential connections. Let deg(vi, t, e) := degree of vi at time t after e-th edge is paired
\succ New vertices come with m connections

- **1** Start with a single vertex v_1 with m self-loops
- At time t, vt arrives with m potential connections. Let deg(vi, t, e) := degree of vi at time t after e-th edge is paired
 - The *e* edge connects with $v_i \neq v_t$ w.p. $\propto deg(v_i, t, e-1)$

 \succ New vertices come with m connections

- **1** Start with a single vertex v_1 with m self-loops
- At time t, vt arrives with m potential connections. Let deg(vi, t, e) := degree of vi at time t after e-th edge is paired
 - ▶ The *e* edge connects with $v_i \neq v_t$ w.p. $\propto deg(v_i, t, e-1)$
 - Connects to itself w.p. $\propto deg(v_i, t, e-1) + 1$

 \succ New vertices come with m connections

- **1** Start with a single vertex v_1 with m self-loops
- At time t, vt arrives with m potential connections. Let deg(vi, t, e) := degree of vi at time t after e-th edge is paired
 - The *e* edge connects with $v_i \neq v_t$ w.p. $\propto deg(v_i, t, e-1)$
 - Connects to itself w.p. $\propto \deg(v_i, t, e-1) + 1$
- **3** After n steps, we get a graph with n vertices and nm edges

> New vertices come with m connections

- **1** Start with a single vertex v_1 with m self-loops
- At time t, vt arrives with m potential connections. Let deg(vi, t, e) := degree of vi at time t after e-th edge is paired
 - ▶ The *e* edge connects with $v_i \neq v_t$ w.p. $\propto deg(v_i, t, e-1)$
 - Connects to itself w.p. $\propto \deg(v_i, t, e-1) + 1$
- 6 After n steps, we get a graph with n vertices and nm edges

 \succ If m = 1, this process produces a tree called preferential attachment tree

> Graph is always connected, so no question of giant emergence here

Bollobás, Riordan, Spencer and Tusnády (2001)

> Graph is always connected, so no question of giant emergence here

> Interesting questions: Degree distribution, local neighborhood structure

Bollobás, Riordan, Spencer and Tusnády (2001)

 \succ Graph is always connected, so no question of giant emergence here

> Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let $P_k(n) = \frac{\text{#vertices of degree } k}{n}$.

Bollobás, Riordan, Spencer and Tusnády (2001)

 \succ Graph is always connected, so no question of giant emergence here

> Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let $P_k(n) = \frac{\text{#vertices of degree } k}{n}$. Fix $m \ge 1$.

Bollobás, Riordan, Spencer and Tusnády (2001)

- > Graph is always connected, so no question of giant emergence here
- > Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM Let $P_k(n) = \frac{\text{#vertices of degree } k}{n}$. Fix $m \ge 1$. Then $\mathbb{P}\Big(\max_k |P_k(n) - p_k| \ge C\sqrt{\frac{\log n}{n}}\Big) \to 0, \text{ as } n \to \infty,$

Bollobás, Riordan, Spencer and Tusnády (2001)

- \succ Graph is always connected, so no question of giant emergence here
- > Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM
Let
$$P_k(n) = \frac{\text{#vertices of degree } k}{n}$$
. Fix $m \ge 1$. Then
$$\mathbb{P}\left(\max_k |P_k(n) - p_k| \ge C\sqrt{\frac{\log n}{n}}\right) \to 0, \text{ as } n \to \infty,$$

where

 $p_k = ck^{-3}(1 + O(1/k))$

Bollobás, Riordan, Spencer and Tusnády (2001)

> Graph is always connected, so no question of giant emergence here

> Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM Let $P_k(n) = \frac{\text{#vertices of degree } k}{n}$. Fix $m \ge 1$. Then $\mathbb{P}\left(\max_k |P_k(n) - p_k| \ge C\sqrt{\frac{\log n}{n}}\right) \to 0$, as $n \to \infty$,

where

$$p_k=ck^{-3}(1+O(1/k))$$

Preferential Attachment produces networks with Power-law degrees

Bollobás, Riordan, Spencer and Tusnády (2001)

> Graph is always connected, so no question of giant emergence here

> Interesting questions: Degree distribution, local neighborhood structure

$$\begin{split} \text{Theorem: Degree distribution of PAM} \\ \text{Let } \mathsf{P}_k(\mathfrak{n}) &= \frac{\text{\#vertices of degree } k}{\mathfrak{n}}. \text{ Fix } \mathfrak{m} \geqslant 1. \text{ Then} \\ & \mathbb{P}\Big(\max_k |\mathsf{P}_k(\mathfrak{n}) - \mathfrak{p}_k| \geqslant C \sqrt{\frac{\log \mathfrak{n}}{\mathfrak{n}}} \Big) \to 0, \quad \text{as } \mathfrak{n} \to \infty, \end{split}$$

where

$$p_k = ck^{-3}(1+O(1/k))$$

Preferential Attachment produces networks with Power-law degrees

> Proof relies on Martingale arguments and Azuma-Hoeffding's inequality

Bollobás, Riordan, Spencer and Tusnády (2001)

Summary: Random graph models with realistic features

Global communities: Stochastic Block Model

- \succ Model with k communities of sizes $n\rho_i$, and edge probabilities depend on communities
- > Local neighborhoods are mixed Poisson Branching Processes

Summary: Random graph models with realistic features

Global communities: Stochastic Block Model

- Model with k communities of sizes npi, and edge probabilities depend on communities
- > Local neighborhoods are mixed Poisson Branching Processes

Degree-heterogeneity: Configuration Model

- > Given degrees, pair half-edges uniformly
- > Local neighborhoods are explored with a size-biased distribution

Summary: Random graph models with realistic features

Global communities: Stochastic Block Model

- Model with k communities of sizes npi, and edge probabilities depend on communities
- > Local neighborhoods are mixed Poisson Branching Processes

Degree-heterogeneity: Configuration Model

- > Given degrees, pair half-edges uniformly
- > Local neighborhoods are explored with a size-biased distribution

Dynamically evolving graphs: Preferential Attachment Model

- Vertices arrive sequentially and connects to vertices depending on degrees
- > Leads to power-law degree distribution

Next lets study Percolation problem and its relation to Epidemic threshold

Percolation: Given graph G, keep each edge w.p. p independently

Percolation: Given graph G, keep each edge w.p. p independently

Percolation: Given graph G, keep each edge w.p. p independently

> If G is complete graph then the percolated graph is Erdős-Rényi

Percolation: Given graph G, keep each edge w.p. p independently

> If G is complete graph then the percolated graph is Erdős-Rényi

Def: Percolation threshold

Let u be a uniform vertex. p_c called percolation threshold on $(G_n)_{n\geqslant 1}$ if for any $\epsilon>0$

$$\succ \text{ For } p < p_{c}(1-\varepsilon) \colon \frac{C(u)}{n} \xrightarrow{\mathbb{P}} 0$$

$$\succ \text{ For } p > p_{c}(1+\varepsilon) \colon \frac{C(u)}{n} = \Theta(1) \text{ whp}$$

SIR infection model:

➤ An infected node spreads infection to its neighbor w.p. p

> Infected nodes are removed after one round

SIR infection model:

- ➤ An infected node spreads infection to its neighbor w.p. p
- > Infected nodes are removed after one round

> Same mechanism applies to spread of information in social networks or spread of self-replicating malware in computer systems

SIR infection model:

- ➤ An infected node spreads infection to its neighbor w.p. p
- > Infected nodes are removed after one round

➤ Same mechanism applies to spread of information in social networks or spread of self-replicating malware in computer systems

SIR infection model:

- ➤ An infected node spreads infection to its neighbor w.p. p
- > Infected nodes are removed after one round

➤ Same mechanism applies to spread of information in social networks or spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:

⇒ Suppose infection starts at vertex v

SIR infection model:

- ➤ An infected node spreads infection to its neighbor w.p. p
- > Infected nodes are removed after one round

➤ Same mechanism applies to spread of information in social networks or spread of self-replicating malware in computer systems

- ⇒ Suppose infection starts at vertex v
- Can spread through an edge with probability p

SIR infection model:

- ➤ An infected node spreads infection to its neighbor w.p. p
- > Infected nodes are removed after one round

➤ Same mechanism applies to spread of information in social networks or spread of self-replicating malware in computer systems

- ⇒ Suppose infection starts at vertex v
- ➡ Can spread through an edge with probability p
- Infection spread is same as exploration on percolated graph so that C(v) in percolated graph equals the size of finally infected vertices

SIR infection model:

- ➤ An infected node spreads infection to its neighbor w.p. p
- > Infected nodes are removed after one round

➤ Same mechanism applies to spread of information in social networks or spread of self-replicating malware in computer systems

- ⇒ Suppose infection starts at vertex v
- ➡ Can spread through an edge with probability p
- Infection spread is same as exploration on percolated graph so that C(v) in percolated graph equals the size of finally infected vertices
- ⇒ $C(\nu) \approx \zeta n$ whp \iff Infection from ν spreads to $\approx \zeta n$ population whp

SIR infection model:

- ➤ An infected node spreads infection to its neighbor w.p. p
- > Infected nodes are removed after one round

➤ Same mechanism applies to spread of information in social networks or spread of self-replicating malware in computer systems

- ⇒ Suppose infection starts at vertex v
- ➡ Can spread through an edge with probability p
- ➡ Infection spread is same as exploration on percolated graph so that C(v) in percolated graph equals the size of finally infected vertices
- C(ν) ≈ ζn whp ⇐⇒ Infection from ν spreads to ≈ ζn population whp *Finding epidemic threshold is same as finding percolation threshold...*

> For general graphs: Draief, Ganesh, Massoulié (2006)

Theorem

Suppose G is a connected graph. Let $\lambda_1(A)$ denote largest eigenvalue of adjacency matrix A.

> For general graphs: Draief, Ganesh, Massoulié (2006)

Theorem

Suppose G is a connected graph. Let $\lambda_1(A)$ denote largest eigenvalue of adjacency matrix A. For $p < \frac{1}{\lambda_1(A)}$:

$$\mathbb{E}[C(\nu)] \leqslant \frac{\sqrt{n}}{1 - p\lambda_1(A)} \quad \text{for any vertex } \nu \text{ and any graph } \mathsf{G}$$

> For general graphs: Draief, Ganesh, Massoulié (2006)

Theorem

Suppose G is a connected graph. Let $\lambda_1(A)$ denote largest eigenvalue of adjacency matrix A. For $p < \frac{1}{\lambda_1(A)}$:

$$\begin{split} \mathbb{E}[C(\nu)] \leqslant \frac{\sqrt{n}}{1 - p\lambda_1(A)} \quad \text{for any vertex ν and any graph G} \\ \implies p_c \geqslant \frac{1}{\lambda_1(A)} \end{split}$$

> For general graphs: Draief, Ganesh, Massoulié (2006)

Theorem

Suppose G is a connected graph. Let $\lambda_1(A)$ denote largest eigenvalue of adjacency matrix A. For $p < \frac{1}{\lambda_1(A)}$:

$$\mathbb{E}[C(\nu)] \leqslant \frac{\sqrt{n}}{1 - p\lambda_1(A)} \quad \text{for any vertex } \nu \text{ and any graph } G$$
$$\implies p_c \geqslant \frac{1}{\lambda_1(A)}$$

Proof: Using Path counting. On Board

> Is
$$p_c = \frac{1}{\lambda_1(A)}$$
?

▷ Is $p_c = \frac{1}{\lambda_1(A)}$? Yes, for dense graphs.

See: Bollobás, Borgs, Chayes, Riordan (2010)

▷ Is $p_c = \frac{1}{\lambda_1(A)}$? Yes, for dense graphs.

> Suppose $(G_n)_{n \ge 1}$ is a dense sequence of graphs $(\liminf \frac{\# edges}{n^2} > 0)$

See: Bollobás, Borgs, Chayes, Riordan (2010)

► Is $p_c = \frac{1}{\lambda_1(A)}$? Yes, for dense graphs.

> Suppose $(G_n)_{n \ge 1}$ is a dense sequence of graphs $(\liminf \frac{\# edges}{n^2} > 0)$

Theorem

Consider percolation on G_n w.p. $p = \min\{\frac{c}{\lambda_1(A)}, 1\}$.

See: Bollobás, Borgs, Chayes, Riordan (2010)
Percolation threshold on general dense graphs

▷ Is
$$p_c = \frac{1}{\lambda_1(A)}$$
? Yes, for dense graphs.

> Suppose $(G_n)_{n \ge 1}$ is a dense sequence of graphs ($\liminf \frac{\# edges}{n^2} > 0$)

Theorem

Consider percolation on G_n w.p. $p = \min\{\frac{c}{\lambda_1(A)}, 1\}$. Then

• If
$$c \leq 1$$
, then $\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} 0$
• If $c > 1$, then $\frac{C_{(1)}}{n} = \Theta(1)$ whp

See: Bollobás, Borgs, Chayes, Riordan (2010)

Percolation threshold on general dense graphs

▷ Is
$$p_c = \frac{1}{\lambda_1(A)}$$
? Yes, for dense graphs.

> Suppose $(G_n)_{n \ge 1}$ is a dense sequence of graphs ($\liminf \frac{\# edges}{n^2} > 0$)

Theorem

Consider percolation on G_n w.p. $p = min\{\frac{c}{\lambda_1(A)}, 1\}$. Then

• If
$$c \leq 1$$
, then $\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} 0$
• If $c > 1$, then $\frac{C_{(1)}}{n} = \Theta(1)$ whp

However, for sparse graphs, $\frac{1}{\lambda_1(A)}$ is not the right threshold...

See: Bollobás, Borgs, Chayes, Riordan (2010)

Fact: For any connected graph G

$$max\left\{\frac{1}{n}\sum_{i}d_{i},\sqrt{d_{max}}\right\}\leqslant\lambda_{1}(A)\leqslant d_{max}$$

Fact: For any connected graph G

$$max\left\{\frac{1}{n}\sum_{i}d_{i},\sqrt{d_{max}}\right\} \leqslant \lambda_{1}(A) \leqslant d_{max}$$

 $\implies \frac{1}{\lambda_1(A)} \to 0$ for sparse graphs (often like n^{-c} for power-law networks), but 'often' *percolation threshold is* $\Theta(1)$

Fact: For any connected graph G

$$max\left\{\frac{1}{n}\sum_{i}d_{i},\sqrt{d_{max}}\right\} \leqslant \lambda_{1}(A) \leqslant d_{max}$$

 $\implies \frac{1}{\lambda_1(A)} \to 0$ for sparse graphs (often like n^{-c} for power-law networks), but 'often' *percolation threshold is* $\Theta(1)$

Example:

- 1. For $\text{ER}_n(\frac{\lambda}{n})$: $p_c = \frac{1}{\lambda}$
- 2. For $CM_n(d)$: $p_c = \frac{\mathbb{E}[D]}{\mathbb{E}[D(D-1)]}$ (under regularity conditions on d)

Fact: For any connected graph G

$$max\left\{\frac{1}{n}\sum_{i}d_{i},\sqrt{d_{max}}\right\} \leqslant \lambda_{1}(A) \leqslant d_{max}$$

 $\implies \frac{1}{\lambda_1(A)} \to 0$ for sparse graphs (often like n^{-c} for power-law networks), but 'often' *percolation threshold is* $\Theta(1)$

Example:

- 1. For $\text{ER}_n(\frac{\lambda}{n})$: $p_c = \frac{1}{\lambda}$
- 2. For $CM_n(d)$: $\mathfrak{p}_c = \frac{\mathbb{E}[D]}{\mathbb{E}[D(D-1)]}$ (under regularity conditions on d)

➤ For general sparse graphs, percolation on G is always viewed as a random graph.

Fact: For any connected graph G

$$max\left\{\frac{1}{n}\sum_{i}d_{i},\sqrt{d_{max}}\right\} \leqslant \lambda_{1}(A) \leqslant d_{max}$$

 $\implies \frac{1}{\lambda_1(A)} \to 0$ for sparse graphs (often like n^{-c} for power-law networks), but 'often' *percolation threshold is* $\Theta(1)$

Example:

- 1. For $\text{ER}_n(\frac{\lambda}{n})$: $p_c = \frac{1}{\lambda}$
- 2. For $CM_n(d)$: $\mathfrak{p}_c = \frac{\mathbb{E}[D]}{\mathbb{E}[D(D-1)]}$ (under regularity conditions on d)

➢ For general sparse graphs, percolation on G is always viewed as a random graph. So, percolation threshold can be obtained by verifying

- 1. The percolated graph converges locally weakly
- 2. Two large components intersect

Finally, lets conclude with a fascinating technique that combines Random Graph theory and convergence of Stochastic Process

Erdős-Rényi (1960) showed for $\text{ER}_n(\frac{\lambda}{n})$:

 $\succ \text{ For } \lambda < 1: C_{(1)} = O(\log n) \text{ whp}$ $\succ \text{ For } \lambda > 1: \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda}$

Erdős-Rényi (1960) showed for $\text{ER}_n(\frac{\lambda}{n})$:

 \succ For $\lambda < 1$: $C_{(1)} = O(\log n)$ whp

$$\succ$$
 For $\lambda > 1$: $\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda}$

> For $\lambda = 1$: $C_{(1)} \sim n^{2/3}$, but also something very different happens...

Erdős-Rényi (1960) showed for $\text{ER}_n(\frac{\lambda}{n})$:

 \succ For $\lambda < 1$: $C_{(1)} = O(\log n)$ whp

$$\succ$$
 For $\lambda > 1$: $\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda}$

> For $\lambda = 1$: $C_{(1)} \sim n^{2/3}$, but also something very different happens...

→ All components has $C_{(1)} \sim n^{2/3}$, $C_{(2)} \sim n^{2/3}$, $C_{(3)} \sim n^{2/3}$...

Erdős-Rényi (1960) showed for $\text{ER}_n(\frac{\lambda}{n})$:

 \succ For $\lambda < 1$: $C_{(1)} = O(\log n)$ whp

$$\succ$$
 For $\lambda > 1$: $\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda}$

> For $\lambda = 1$: $C_{(1)} \sim n^{2/3}$, but also something very different happens...

- ⇒ All components has $C_{(1)} \sim n^{2/3}$, $C_{(2)} \sim n^{2/3}$, $C_{(3)} \sim n^{2/3}$...
- ➡ Limit of component sizes are non-degenerate random variable

Erdős-Rényi (1960) showed for $\text{ER}_n(\frac{\lambda}{n})$:

 \succ For $\lambda < 1$: $C_{(1)} = O(\log n)$ whp

$$\succ$$
 For $\lambda > 1$: $\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda}$

> For $\lambda = 1$: $C_{(1)} \sim n^{2/3}$, but also something very different happens...

- ⇒ All components has $C_{(1)} \sim n^{2/3}$, $C_{(2)} \sim n^{2/3}$, $C_{(3)} \sim n^{2/3}$...
- ➡ Limit of component sizes are non-degenerate random variable

Theorem: Critical $ER_n(\frac{\lambda}{n})$

For $\lambda = 1$:

$$\mathfrak{n}^{-2/3}(\mathcal{C}_{(\mathfrak{i})})_{\mathfrak{i}\geqslant 1} \xrightarrow{d} X \quad \text{in } \ell^2$$

Description of X will be clear soon...

Aldous (1997)

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

 \succ Component sizes are *excursion lengths* of S_n

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

 \succ Component sizes are *excursion lengths* of S_n

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

 \succ Component sizes are *excursion lengths* of S_n

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

Key Idea:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

Proposition: $(n^{-1/3}S_n(tn^{2/3}):t \ge 0) \xrightarrow{d} (B(t) - \frac{t^2}{2}:t \ge 0)$

Proposition: $(n^{-1/3}S_n(tn^{2/3}):t \ge 0) \xrightarrow{d} (B(t) - \frac{t^2}{2}:t \ge 0)$

➤ Proof uses Martingale Functional CLT.

 $\text{Proposition: } (n^{-1/3}S_n(tn^{2/3}):t \geqslant 0) \xrightarrow{d} \left(B(t) - \tfrac{t^2}{2}:t \geqslant 0\right)$

➤ Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of S_n ,

Proposition: $(n^{-1/3}S_n(tn^{2/3}):t \ge 0) \xrightarrow{d} (B(t) - \frac{t^2}{2}:t \ge 0)$

> Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of S_n , so excursion lengths of $n^{-1/3}S_n(tn^{2/3})$ gives us $n^{-2/3} \times$ comp. size

Proposition: $(n^{-1/3}S_n(tn^{2/3}):t \ge 0) \xrightarrow{d} (B(t) - \frac{t^2}{2}:t \ge 0)$

➤ Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of S_n , so excursion lengths of $n^{-1/3}S_n(tn^{2/3})$ gives us $n^{-2/3} \times$ comp. size

$$\implies n^{-2/3}(C_{(\mathfrak{i})})_{\mathfrak{i}\geqslant 1}\xrightarrow{d} (\gamma_{\mathfrak{i}})_{\mathfrak{i}\geqslant 1},$$

where γ_i is the i-th largest excursion of $\left(B(t)-\frac{t^2}{2}:t\geqslant 0\right)$

Proposition: $(n^{-1/3}S_n(tn^{2/3}):t \ge 0) \xrightarrow{d} (B(t) - \frac{t^2}{2}:t \ge 0)$

> Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of S_n , so excursion lengths of $n^{-1/3}S_n(tn^{2/3})$ gives us $n^{-2/3} \times$ comp. size

$$\implies \mathfrak{n}^{-2/3}(C_{(\mathfrak{i})})_{\mathfrak{i}\geqslant 1}\xrightarrow{d}(\gamma_{\mathfrak{i}})_{\mathfrak{i}\geqslant 1},$$

where γ_i is the i-th largest excursion of $\left(B(t) - \frac{t^2}{2} : t \ge 0\right)$

Limit of exploration process gives limit of comp. sizes

Exploration process method contd.

Revisiting the method:
Revisiting the method:

➡ Explore graph and encode component sizes in terms of a walk

Revisiting the method:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk

Revisiting the method:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

Revisiting the method:

- ➡ Explore graph and encode component sizes in terms of a walk
- ➡ Take scaling limits of the walk
- ➡ Recover limits of component sizes from the limiting process

➤ Method also works for supercritical case. In that case the limit is deterministic. See Janson & Luczak (2007)

Percolation and Epidemics

Percolation and Epidemics

➡ Percolation can be coupled to SIR epidemics

Percolation and Epidemics

- ➡ Percolation can be coupled to SIR epidemics
- ⇒ Showed $\mathbb{E}[C(u)] \leqslant \frac{\sqrt{n}}{1-p\lambda_1(A)}$ for $p < \frac{1}{\lambda_1(A)}$ for any connected graph

Percolation and Epidemics

- ➡ Percolation can be coupled to SIR epidemics
- ⇒ Showed $\mathbb{E}[C(u)] \leqslant \frac{\sqrt{n}}{1-p\lambda_1(A)}$ for $p < \frac{1}{\lambda_1(A)}$ for any connected graph
- ⇒ $p_c = \frac{1}{\lambda_1(A)}$ for dense graph but not for sparse graphs

Percolation and Epidemics

- ➡ Percolation can be coupled to SIR epidemics
- ⇒ Showed $\mathbb{E}[C(u)] \leqslant \frac{\sqrt{n}}{1-p\lambda_1(A)}$ for $p < \frac{1}{\lambda_1(A)}$ for any connected graph
- ⇒ $p_c = \frac{1}{\lambda_1(A)}$ for dense graph but not for sparse graphs

Exploration process convergence

Percolation and Epidemics

- ➡ Percolation can be coupled to SIR epidemics
- ⇒ Showed $\mathbb{E}[C(u)] \leqslant \frac{\sqrt{n}}{1-p\lambda_1(A)}$ for $p < \frac{1}{\lambda_1(A)}$ for any connected graph
- ⇒ $p_c = \frac{1}{\lambda_1(A)}$ for dense graph but not for sparse graphs

Exploration process convergence

⇒ Used it to find non-degenerate limits of component sizes for ER_n(^λ/_n) with λ = 1

Further reading

Emergence of Giant and Random Graph Models

- 1. van der Hofstad: Random graphs and complex networks Vol 1, Vol 2
- 2. van der Hofstad: The giant in random graphs is almost local

Percolation and Epidemics

1. Draief, Ganesh, Massoulié: Thresholds for virus spread on networks

Critical behavior

- 1. Aldous: Brownian excursions, critical random graphs and the multiplicative coalescent
- 2. Dhara: *Doctoral thesis, Critical percolation on random networks with prescribed degrees* (Chapter 1 contains survey on Critical behavior)

Further reading

Emergence of Giant and Random Graph Models

- 1. van der Hofstad: Random graphs and complex networks Vol 1, Vol 2
- 2. van der Hofstad: The giant in random graphs is almost local

Percolation and Epidemics

1. Draief, Ganesh, Massoulié: Thresholds for virus spread on networks

Critical behavior

- 1. Aldous: Brownian excursions, critical random graphs and the multiplicative coalescent
- 2. Dhara: *Doctoral thesis, Critical percolation on random networks with prescribed degrees* (Chapter 1 contains survey on Critical behavior)

Thank You!