Sparse Random Graphs-II

Souvik Dhara

Research Fellow, Simons Institute

Graph Limits and Processes on Networks:
From Epidemics to Misinformation Boot Camp

Recap: Erdős-Rényi subcritical phase

$>$ Considered $E R_{n}\left(\frac{\lambda}{n}\right)$: Erdős-Renyi random graph with n vertices and edge probability $\frac{\lambda}{n}$
$>$ Studied relation between exploration and branching processes, and showed that exploration can be dominated by a Poisson (λ) branching process
$>$ For $\lambda<1$: Showed $\mathbb{E}[\mathrm{C}(v)]=\mathrm{O}(1)$

Theorem: Subcritical $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
If $\lambda<1$, then

$$
\frac{\max _{v} \mathrm{C}(v)}{\log n} \xrightarrow{\mathbb{P}} \frac{1}{\mathrm{I}_{\lambda}}, \quad \text { where } \mathrm{I}_{\lambda}=\lambda-1-\log \lambda
$$

Recap: Erdős-Rényi supercritical phase

We proved
Theorem: Supercritical $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $C_{(i)}:=i$-th largest component of $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$. If $\lambda>1$, then

$$
\frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta_{\lambda}>0 \quad \text { and } \quad \frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0
$$

Recap: Erdős-Rényi supercritical phase

We proved

Theorem: Supercritical $E R_{n}\left(\frac{\lambda}{n}\right)$
Let $C_{(i)}:=i$-th largest component of $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$. If $\lambda>1$, then

$$
\frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta_{\lambda}>0 \quad \text { and } \quad \frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0
$$

The two main ingredients to prove this were...

Recap: Erdős-Rényi supercritical phase

We proved

Theorem: Supercritical $E R_{n}\left(\frac{\lambda}{n}\right)$
Let $C_{(i)}:=i$-th largest component of $E R_{n}\left(\frac{\lambda}{n}\right)$. If $\lambda>1$, then

$$
\frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta_{\lambda}>0 \quad \text { and } \quad \frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0
$$

The two main ingredients to prove this were...
(1) Local neighborhood approximation: Exploration from u (uniform vertex) is approximately BP whp and when BP survives, $C(u)$ is large

Recap: Erdős-Rényi supercritical phase

We proved
Theorem: Supercritical $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $C_{(i)}:=i$-th largest component of $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$. If $\lambda>1$, then

$$
\frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta_{\lambda}>0 \quad \text { and } \quad \frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0
$$

The two main ingredients to prove this were...
(1) Local neighborhood approximation: Exploration from u (uniform vertex) is approximately BP whp and when BP survives, $C(u)$ is large
(2) Two large components intersect: u_{1}, u_{2} uniform vertices

$$
\lim _{L \rightarrow \infty} \lim _{n \rightarrow \infty} \mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \nleftarrow u_{2}\right)=0
$$

Recap: Erdős-Rényi supercritical phase

We proved
Theorem: Supercritical $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $C_{(i)}:=i$-th largest component of $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$. If $\lambda>1$, then

$$
\frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta_{\lambda}>0 \quad \text { and } \quad \frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0
$$

The two main ingredients to prove this were...
(1) Local neighborhood approximation: Exploration from u (uniform vertex) is approximately BP whp and when BP survives, $C(u)$ is large
(2) Two large components intersect: u_{1}, u_{2} uniform vertices

$$
\lim _{L \rightarrow \infty} \lim _{n \rightarrow \infty} \mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \nleftarrow u_{2}\right)=0
$$

\Rightarrow Was shown by growing two neighborhoods, and they must intersect when neighborhoods become large enough $\Omega(\sqrt{n})$

Plan today

$>$ Consider other models with more realistic features, summarize results, and give heuristics for applying BP approximation technique
$>$ Percolation, Epidemics: Use Path counting to prove results on general graphs and see whether we can apply these results to sparse graphs
$>$ Using Stochastic Process Convergence in to find limits of component sizes of Random Graphs

Lets start by looking at a few Random Graph models with more 'realistic' features

Lets start by looking at a few Random Graph models with more 'realistic' features
$>$ Global communities:
> Heterogeneous degrees:
$>$ Dynamically evolving graphs:

Lets start by looking at a few Random Graph models with more 'realistic' features
$>$ Global communities: Stochastic Block Model
> Heterogeneous degrees:
$>$ Dynamically evolving graphs:

Lets start by looking at a few Random Graph models with more 'realistic' features
> Global communities: Stochastic Block Model
> Heterogeneous degrees: Configuration Model
$>$ Dynamically evolving graphs:

Lets start by looking at a few Random Graph models with more 'realistic' features
> Global communities: Stochastic Block Model
$>$ Heterogeneous degrees: Configuration Model
$>$ Dynamically evolving graphs: Preferential Attachment Model

Stochastic Block Model

$>$ Model with global community structure - popular model in CS/ML for community detection problem

Stochastic Block Model

$>$ Model with global community structure - popular model in CS/ML for community detection problem

Model description:

1. $K \geqslant 2$ communities, size of community $i=n_{i}$, where $\frac{n_{i}}{n} \rightarrow \rho_{i}, \rho_{i}>0$

Stochastic Block Model

$>$ Model with global community structure - popular model in CS/ML for community detection problem

Model description:

1. $K \geqslant 2$ communities, size of community $i=n_{i}$, where $\frac{n_{i}}{n} \rightarrow \rho_{i}, \rho_{i}>0$
2. Edge between community i, j w.p. $\frac{P_{i j}}{n}\left(P_{i j} \in(0,1)\right)$, independently

Local neighborhoods of Stochastic Block Model

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP
$>$ Uniform vertex u in community i w.p. ρ_{i}

Local neighborhoods of Stochastic Block Model
Local neighborhood approximated by this BP
$>$ Uniform vertex u in community i w.p. ρ_{i}
$>$ Poisson $\left(\rho_{j} P_{i j}\right)$ neighbors from community j

Local neighborhoods of Stochastic Block Model
Local neighborhood approximated by this BP
$>$ Uniform vertex u in community i w.p. ρ_{i}
$>$ Poisson $\left(\rho_{j} P_{i j}\right)$ neighbors from community j
$>$ Gives rise to Multi-type Branching Process

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP
$>$ Uniform vertex u in community i w.p. ρ_{i}
$>$ Poisson $\left(\rho_{j} P_{i j}\right)$ neighbors from community j
$>$ Gives rise to Multi-type Branching Process

Let $P_{i j}^{\star}=\rho_{j} P_{i j}$ and $\lambda_{1}\left(P^{\star}\right)$ be largest eigenvalue of P^{\star}.

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP
$>$ Uniform vertex u in community i w.p. ρ_{i}
$>$ Poisson $\left(\rho_{j} P_{i j}\right)$ neighbors from community j
$>$ Gives rise to Multi-type Branching Process

Let $P_{i j}^{\star}=\rho_{j} P_{i j}$ and $\lambda_{1}\left(P^{\star}\right)$ be largest eigenvalue of P^{\star}. Then

$$
\text { Fact: } \mathbb{P}(\text { BP survives })=\zeta>0 \quad \text { when } \lambda_{1}\left(\mathrm{P}^{\star}\right)>1
$$

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP
$>$ Uniform vertex u in community i w.p. ρ_{i}
$>$ Poisson $\left(\rho_{j} P_{i j}\right)$ neighbors from community j
$>$ Gives rise to Multi-type Branching Process

Let $P_{i j}^{\star}=\rho_{j} P_{i j}$ and $\lambda_{1}\left(P^{\star}\right)$ be largest eigenvalue of P^{\star}. Then

$$
\text { Fact: } \mathbb{P}(\text { BP survives })=\zeta>0 \quad \text { when } \lambda_{1}\left(\mathrm{P}^{\star}\right)>1
$$

Theorem: Giant for SBM

1. For $\lambda_{1}\left(P^{\star}\right)<1: \frac{\mathrm{C}_{(1)}}{n} \xrightarrow{\mathbb{P}} 0$
2. For $\lambda_{1}\left(P^{\star}\right)>1: \frac{\mathrm{C}_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta>0$ and $\frac{\mathrm{C}_{(2)}}{n} \xrightarrow{\mathbb{P}} 0 \mathrm{whp}$

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP
$>$ Uniform vertex u in community i w.p. ρ_{i}
$>\operatorname{Poisson}\left(\rho_{j} P_{i j}\right)$ neighbors from community j
$>$ Gives rise to Multi-type Branching Process

Let $P_{i j}^{\star}=\rho_{j} P_{i j}$ and $\lambda_{1}\left(P^{\star}\right)$ be largest eigenvalue of P^{\star}. Then
Fact: $\mathbb{P}(B P$ survives $)=\zeta>0 \quad$ when $\lambda_{1}\left(\mathrm{P}^{\star}\right)>1$

Theorem: Giant for SBM

1. For $\lambda_{1}\left(P^{\star}\right)<1: \frac{\mathrm{C}_{(1)}}{n} \xrightarrow{\mathbb{P}} 0$
2. For $\lambda_{1}\left(P^{\star}\right)>1: \frac{\mathrm{C}_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta>0 \quad$ and $\quad \frac{\mathrm{C}_{(2)}}{n} \xrightarrow{\mathbb{P}} 0 \mathrm{whp}$
$>$ There is a more challenging and general models with continuum of colors \Rightarrow See foundational work of Bollobás, Janson, Riordan (2007) on general inhomogeneous random graphs

Up next: Model for degree-heterogeneous networks

Up next: Model for degree-heterogeneous networks

$>$ Such degree-heterogenous networks with hubs are common occurrences
\Rightarrow The degree distribution can be power-law, truncated power-law etc., but it is definitely quite far from Poisson

Up next: Model for degree-heterogeneous networks

$>$ Such degree-heterogenous networks with hubs are common occurrences
\Rightarrow The degree distribution can be power-law, truncated power-law etc., but it is definitely quite far from Poisson
\Rightarrow Need a simple, analytically tractable model - Configuration Model

Configuration Model

Canonical model to generate graphs with given degrees $d=\left(d_{1}, \ldots, d_{n}\right)$

Configuration Model

Canonical model to generate graphs with given degrees $d=\left(d_{1}, \ldots, d_{n}\right)$

$>$ Start with d_{i} half-edges to vertex i

Configuration Model

Canonical model to generate graphs with given degrees $d=\left(d_{1}, \ldots, d_{n}\right)$

$>$ Start with d_{i} half-edges to vertex i
$>$ Pair half-edges uniformly

Configuration Model

Canonical model to generate graphs with given degrees $d=\left(d_{1}, \ldots, d_{n}\right)$

$>$ Start with d_{i} half-edges to vertex i
$>$ Pair half-edges uniformly

Configuration Model

Canonical model to generate graphs with given degrees $d=\left(d_{1}, \ldots, d_{n}\right)$

$>$ Start with d_{i} half-edges to vertex i
$>$ Pair half-edges uniformly

Configuration Model

Canonical model to generate graphs with given degrees $d=\left(d_{1}, \ldots, d_{n}\right)$

$>$ Start with d_{i} half-edges to vertex i
$>$ Pair half-edges uniformly

Configuration Model

Canonical model to generate graphs with given degrees $d=\left(d_{1}, \ldots, d_{n}\right)$

$>$ Start with d_{i} half-edges to vertex i
$>$ Pair half-edges uniformly

Configuration Model

Canonical model to generate graphs with given degrees $d=\left(d_{1}, \ldots, d_{n}\right)$

$>$ Start with d_{i} half-edges to vertex i
$>$ Pair half-edges uniformly

Configuration Model

Canonical model to generate graphs with given degrees $d=\left(d_{1}, \ldots, d_{n}\right)$

$>$ Start with d_{i} half-edges to vertex i
$>$ Pair half-edges uniformly

Configuration Model

Canonical model to generate graphs with given degrees $d=\left(d_{1}, \ldots, d_{n}\right)$

$>$ Start with d_{i} half-edges to vertex i
$>$ Pair half-edges uniformly

Configuration Model

Canonical model to generate graphs with given degrees $d=\left(d_{1}, \ldots, d_{n}\right)$

$>$ Start with d_{i} half-edges to vertex i
$>$ Pair half-edges uniformly
$>$ Self-loops/multi-edges may occur

Configuration Model

Canonical model to generate graphs with given degrees $d=\left(d_{1}, \ldots, d_{n}\right)$

$>$ Start with d_{i} half-edges to vertex i
$>$ Pair half-edges uniformly
$>$ Self-loops/multi-edges may occur
$>$ Denote resulting (multi)-graph by $\mathrm{CM}_{\mathrm{n}}(\mathrm{d})$

Configuration Model

Canonical model to generate graphs with given degrees $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$

$>$ Start with d_{i} half-edges to vertex i
$>$ Pair half-edges uniformly
$>$ Self-loops/multi-edges may occur
$>$ Denote resulting (multi)-graph by $\mathrm{CM}_{\mathrm{n}}(\mathrm{d})$

Interesting Fact: Law of $\mathrm{CM}_{\mathrm{n}}(\mathrm{d})$ given no loops/multi-edges produced is same as Uniform distribution over all possible simple graphs with degree \mathbf{d}

Configuration Model

Canonical model to generate graphs with given degrees $d=\left(d_{1}, \ldots, d_{n}\right)$

$>$ Start with d_{i} half-edges to vertex i
$>$ Pair half-edges uniformly
$>$ Self-loops/multi-edges may occur
$>$ Denote resulting (multi)-graph by $\mathrm{CM}_{\mathrm{n}}(\mathrm{d})$

Interesting Fact: Law of $\mathrm{CM}_{\mathrm{n}}(\mathrm{d})$ given no loops/multi-edges produced is same as Uniform distribution over all possible simple graphs with degree \mathbf{d}

Brief History:

> Introduced by Bender and Canfield (1978), Bollobás (1980) to study uniform random regular graphs
$>$ Giant emergence studied by Molloy \& Reed $(1995,1998)$

Regularity conditions on the degree

Regularity conditions on the degree

$D_{n}:=$ degree of uniform vertex, so the distribution of D_{n} is the empirical degree distribution $\frac{1}{n} \sum_{i} \delta_{d_{i}}$

Regularity conditions on the degree
$D_{n}:=$ degree of uniform vertex, so the distribution of D_{n} is the empirical degree distribution $\frac{1}{n} \sum_{i} \delta_{d_{i}}$

Regularity conditions.
(1) Convergence of degree distribution. $D_{n} \xrightarrow{d} D$

Regularity conditions on the degree
$D_{n}:=$ degree of uniform vertex, so the distribution of D_{n} is the empirical degree distribution $\frac{1}{n} \sum_{i} \delta_{d_{i}}$

Regularity conditions.
(1) Convergence of degree distribution. $\mathrm{D}_{\mathrm{n}} \xrightarrow{\mathrm{d}} \mathrm{D}$
(2) Convergence of moment. $\mathbb{E}\left[\mathrm{D}_{\mathrm{n}}\right] \rightarrow \mathbb{E}[\mathrm{D}]<\infty$

Regularity conditions on the degree
$D_{n}:=$ degree of uniform vertex, so the distribution of D_{n} is the empirical degree distribution $\frac{1}{n} \sum_{i} \delta_{d_{i}}$

Regularity conditions.
(1) Convergence of degree distribution. $\mathrm{D}_{\mathrm{n}} \xrightarrow{\mathrm{d}} \mathrm{D}$
(2) Convergence of moment. $\mathbb{E}\left[\mathrm{D}_{\mathrm{n}}\right] \rightarrow \mathbb{E}[\mathrm{D}]<\infty$

$$
\text { Ensures sparsity: } \mathbb{E}\left[D_{n}\right]=\frac{1}{n} \sum_{i} d_{i} \rightarrow \text { constant }
$$

Regularity conditions on the degree

$D_{n}:=$ degree of uniform vertex, so the distribution of D_{n} is the empirical degree distribution $\frac{1}{n} \sum_{i} \delta_{d_{i}}$

Regularity conditions.
(1) Convergence of degree distribution. $\mathrm{D}_{\mathrm{n}} \xrightarrow{\mathrm{d}} \mathrm{D}$
(2) Convergence of moment. $\mathbb{E}\left[\mathrm{D}_{\mathrm{n}}\right] \rightarrow \mathbb{E}[\mathrm{D}]<\infty$

$$
\text { Ensures sparsity: } \mathbb{E}\left[D_{n}\right]=\frac{1}{n} \sum_{i} d_{i} \rightarrow \text { constant }
$$

(3) $\mathbb{P}(D=2)<1$, otherwise generated graph is union of cycles

Regularity conditions on the degree

$D_{n}:=$ degree of uniform vertex, so the distribution of D_{n} is the empirical degree distribution $\frac{1}{n} \sum_{i} \delta_{d_{i}}$

Regularity conditions.
(1) Convergence of degree distribution. $\mathrm{D}_{\mathrm{n}} \xrightarrow{\mathrm{d}} \mathrm{D}$
(2) Convergence of moment. $\mathbb{E}\left[\mathrm{D}_{\mathrm{n}}\right] \rightarrow \mathbb{E}[\mathrm{D}]<\infty$

Ensures sparsity: $\mathbb{E}\left[D_{n}\right]=\frac{1}{n} \sum_{i} d_{i} \rightarrow$ constant
(3) $\mathbb{P}(D=2)<1$, otherwise generated graph is union of cycles
$>$ If the degrees are iid samples from a power-law with finite mean, then these conditions are satisfied

Regularity conditions on the degree
$D_{n}:=$ degree of uniform vertex, so the distribution of D_{n} is the empirical degree distribution $\frac{1}{n} \sum_{i} \delta_{d_{i}}$

Regularity conditions.
(1) Convergence of degree distribution. $\mathrm{D}_{\mathrm{n}} \xrightarrow{\mathrm{d}} \mathrm{D}$
(2) Convergence of moment. $\mathbb{E}\left[\mathrm{D}_{\mathrm{n}}\right] \rightarrow \mathbb{E}[\mathrm{D}]<\infty$

$$
\text { Ensures sparsity: } \mathbb{E}\left[D_{n}\right]=\frac{1}{n} \sum_{i} d_{i} \rightarrow \text { constant }
$$

(3) $\mathbb{P}(D=2)<1$, otherwise generated graph is union of cycles
$>$ If the degrees are iid samples from a power-law with finite mean, then these conditions are satisfied
$>$ Most often, one also assumes $\mathbb{E}\left[D_{n}^{2}\right] \rightarrow \mathbb{E}\left[\mathrm{D}^{2}\right]<\infty$, which ensures

$$
\liminf _{n \rightarrow \infty} \mathbb{P}\left(\mathrm{CM}_{\mathfrak{n}}(\mathbf{d}) \text { is simple }\right)>0 \quad \text { Janson }
$$

so that the results carry over to uniform graphs

Local neighborhoods of $\mathrm{CM}_{\mathrm{n}}(\mathrm{d})$

BP approximation:

Local neighborhoods of $\mathrm{CM}_{n}(\mathrm{~d})$

BP approximation:
(1) Starts D many progeny

Local neighborhoods of $\mathrm{CM}_{\mathrm{n}}(\mathrm{d})$

BP approximation:
(1) Starts D many progeny

Let $n_{l}=\#$ vertices of degree l and $\frac{n_{l}}{n} \rightarrow p_{l}$

Local neighborhoods of $\mathrm{CM}_{\mathfrak{n}}(\mathrm{d})$

BP approximation:
(1) Starts D many progeny

Let $n_{l}=\#$ vertices of degree l and $\frac{n_{l}}{n} \rightarrow p_{l}$
Next progeny is $D^{\star}-1$ with $\mathbb{P}\left(D^{\star}=k\right)=\frac{k p_{k}}{\sum_{l} l p_{l}} \quad$ Size-biased distribution

Local neighborhoods of $\mathrm{CM}_{\mathfrak{n}}(\mathrm{d})$

BP approximation:
(1) Starts D many progeny
(2) Produces $\mathrm{D}^{\star}-1$ in next step

Let $n_{l}=\#$ vertices of degree l and $\frac{n_{l}}{n} \rightarrow p_{l}$
Next progeny is $D^{\star}-1$ with $\mathbb{P}\left(D^{\star}=k\right)=\frac{k p_{k}}{\sum_{l} l p_{l}} \quad$ Size-biased distribution

Local neighborhoods of $\mathrm{CM}_{\mathfrak{n}}(\mathrm{d})$

BP approximation:
(1) Starts D many progeny
(2) Produces $\mathrm{D}^{\star}-1$ in next step

Let $n_{l}=\#$ vertices of degree l and $\frac{n_{l}}{n} \rightarrow p_{l}$
Next progeny is $D^{\star}-1$ with $\mathbb{P}\left(D^{\star}=k\right)=\frac{k p_{k}}{\sum_{l} l p_{l}} \quad$ Size-biased distribution
Now,

$$
\mathbb{E}\left[D^{\star}-1\right]=\frac{\sum_{k}(k-1) k p_{k}}{\sum_{k} k p_{k}}
$$

Local neighborhoods of $\mathrm{CM}_{\mathfrak{n}}(\mathrm{d})$

BP approximation:
(1) Starts D many progeny
(2) Produces $\mathrm{D}^{\star}-1$ in next step

Let $n_{l}=\#$ vertices of degree l and $\frac{n_{l}}{n} \rightarrow p_{l}$
Next progeny is $D^{\star}-1$ with $\mathbb{P}\left(D^{\star}=k\right)=\frac{k p_{k}}{\sum_{l} l p_{l}} \quad$ Size-biased distribution
Now,

$$
\mathbb{E}\left[D^{\star}-1\right]=\frac{\sum_{k}(k-1) k p_{k}}{\sum_{k} k p_{k}}=\frac{\mathbb{E}[D(D-1)]}{\mathbb{E}[D]}
$$

Local neighborhoods of $\mathrm{CM}_{\mathfrak{n}}(\mathrm{d})$

BP approximation:
(1) Starts D many progeny
(2) Produces $\mathrm{D}^{\star}-1$ in next step

Let $n_{l}=\#$ vertices of degree l and $\frac{n_{l}}{n} \rightarrow p_{l}$
Next progeny is $D^{\star}-1$ with $\mathbb{P}\left(D^{\star}=k\right)=\frac{k p_{k}}{\sum_{l} l p_{l}} \quad$ Size-biased distribution
Now,

$$
\mathbb{E}\left[D^{\star}-1\right]=\frac{\sum_{k}(k-1) k p_{k}}{\sum_{k} k p_{k}}=\frac{\mathbb{E}[D(D-1)]}{\mathbb{E}[D]}
$$

Therefore,

$$
\mathbb{P}(\text { BP survives })=\zeta>0 \quad \text { when } v:=\frac{\mathbb{E}[\mathrm{D}(\mathrm{D}-1)]}{\mathbb{E}[\mathrm{D}]}>1
$$

Emergence of Giant for $\mathrm{CM}_{\mathfrak{n}}(\mathrm{d})$

Let $v:=\frac{\mathbb{E}[\mathrm{D}(\mathrm{D}-1)]}{\mathbb{E}[\mathrm{D}]}$
Theorem: Giant for $\mathrm{CM}_{\mathrm{n}}(\mathrm{d})$
(1) For $v<1: \frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0$ whp
(2) For $v>1: \frac{\mathrm{C}_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta>0$ and $\frac{\mathrm{C}_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$ whp

Let $v:=\frac{\mathbb{E}[\mathrm{D}(\mathrm{D}-1)]}{\mathbb{E}[\mathrm{D}]}$
Theorem: Giant for $\mathrm{CM}_{\mathrm{n}}(\mathrm{d})$
(1) For $v<1: \frac{\mathrm{C}_{(1)}}{n} \xrightarrow{\mathbb{P}} 0 \mathrm{whp}$
(2) For $v>1: \frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta>0$ and $\frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0$ whp

For the proof, there were two ingredients:

Let $v:=\frac{\mathbb{E}[\mathrm{D}(\mathrm{D}-1)]}{\mathbb{E}[\mathrm{D}]}$
Theorem: Giant for CM_{n} (d)
(1) For $v<1: \frac{\mathrm{C}_{(1)}}{n} \xrightarrow{\mathbb{P}} 0 \mathrm{whp}$
(2) For $v>1: \frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta>0$ and $\frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0$ whp

For the proof, there were two ingredients:
\Rightarrow Local neighborhood approximation - Just discussed

Emergence of Giant for $\mathrm{CM}_{\mathfrak{n}}(\mathrm{d})$

Let $v:=\frac{\mathbb{E}[\mathrm{D}(\mathrm{D}-1)]}{\mathbb{E}[\mathrm{D}]}$
Theorem: Giant for CM_{n} (d)
(1) For $v<1: \frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0 \mathrm{whp}$
(2) For $v>1: \frac{\mathrm{C}_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta>0$ and $\frac{\mathrm{C}_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$ whp

For the proof, there were two ingredients:
\Rightarrow Local neighborhood approximation - Just discussed
\Rightarrow Will skip Two large components intersect

$$
\mathbb{P}\left(\mathrm{C}\left(\mathrm{u}_{1}\right) \geqslant \mathrm{L}, \mathrm{C}\left(\mathrm{u}_{2}\right) \geqslant \mathrm{L}, \mathrm{u}_{1} \nleftarrow \mathrm{u}_{2}\right) \approx 0
$$

Can be proved using similar ideas as ER, but is more complicated ${ }^{a}$

[^0]Let $v:=\frac{\mathbb{E}[\mathrm{D}(\mathrm{D}-1)]}{\mathbb{E}[\mathrm{D}]}$
Theorem: Giant for $\mathrm{CM}_{\mathrm{n}}(\mathrm{d})$
(1) For $v<1: \frac{\mathrm{C}_{(1)}}{n} \xrightarrow{\mathbb{P}} 0 \mathrm{whp}$
(2) For $v>1: \frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta>0$ and $\frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0$ whp

Two cases with different qualitative behavior than Erdős-Rényi:

Let $v:=\frac{\mathbb{E}[\mathrm{D}(\mathrm{D}-1)]}{\mathbb{E}[\mathrm{D}]}$
Theorem: Giant for CM_{n} (d)
(1) For $v<1: \frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0$ whp
(2) For $v>1: \frac{\mathrm{C}_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta>0$ and $\frac{\mathrm{C}_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$ whp

Two cases with different qualitative behavior than Erdős-Rényi:
$>$ It may be that $v=\infty$, e.g., for power-law degree distribution with infinite variance, and giant always exists in such networks

Let $v:=\frac{\mathbb{E}[\mathrm{D}(\mathrm{D}-1)]}{\mathbb{E}[\mathrm{D}]}$
Theorem: Giant for CM_{n} (d)
(1) For $v<1: \frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0$ whp
(2) For $v>1: \frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta>0$ and $\frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0$ whp

Two cases with different qualitative behavior than Erdős-Rényi:
$>$ It may be that $v=\infty$, e.g., for power-law degree distribution with infinite variance, and giant always exists in such networks
$>$ It may be that $\zeta=1$, e.g., if $\mathbb{P}(D \geqslant 3)=1$, then BP survives w.p. 1

Model for dynamically growing networks

$>$ Around '90s, huge interest for dynamically growing networks that produce heterogeneous degree distribution

Model for dynamically growing networks

$>$ Around '90s, huge interest for dynamically growing networks that produce heterogeneous degree distribution
$>$ To model this, Barabási and Albert (1999) proposed the Preferential attachment model. Idea goes back to Yule (1925)

Model for dynamically growing networks

$>$ Around '90s, huge interest for dynamically growing networks that produce heterogeneous degree distribution
$>$ To model this, Barabási and Albert (1999) proposed the Preferential attachment model. Idea goes back to Yule (1925)
\Rightarrow Rich-get-richer principle: New vertices connect to high-degree vertices

Model for dynamically growing networks

$>$ Around '90s, huge interest for dynamically growing networks that produce heterogeneous degree distribution
$>$ To model this, Barabási and Albert (1999) proposed the Preferential attachment model. Idea goes back to Yule (1925)
\Rightarrow Rich-get-richer principle: New vertices connect to high-degree vertices
> Bollobás, Riordan, Spencer and Tusnády (2001) were to first study this model rigorously

Preferential attachment model

$>$ New vertices come with m connections

Preferential attachment model

$>$ New vertices come with m connections
(1) Start with a single vertex v_{1} with m self-loops

Preferential attachment model

$>$ New vertices come with m connections
(1) Start with a single vertex v_{1} with m self-loops
(2) At time t, v_{t} arrives with m potential connections. Let $\operatorname{deg}\left(v_{i}, t, e\right):=$ degree of v_{i} at time t after e-th edge is paired

Preferential attachment model

$>$ New vertices come with m connections
(1) Start with a single vertex v_{1} with m self-loops
(2) At time t, v_{t} arrives with m potential connections. Let $\operatorname{deg}\left(v_{i}, t, e\right):=$ degree of v_{i} at time t after e-th edge is paired

- The e edge connects with $v_{i} \neq v_{\mathrm{t}}$ w.p. $\propto \operatorname{deg}\left(v_{i}, \mathrm{t}, \mathrm{e}-1\right)$

Preferential attachment model

$>$ New vertices come with m connections
(1) Start with a single vertex v_{1} with m self-loops
(2) At time t, v_{t} arrives with m potential connections. Let $\operatorname{deg}\left(v_{i}, t, e\right):=$ degree of v_{i} at time t after e-th edge is paired

- The e edge connects with $v_{i} \neq v_{\mathrm{t}}$ w.p. $\propto \operatorname{deg}\left(v_{i}, \mathrm{t}, \mathrm{e}-1\right)$
- Connects to itself w.p. $\propto \operatorname{deg}\left(v_{i}, \mathrm{t}, \mathrm{e}-1\right)+1$

Preferential attachment model

$>$ New vertices come with m connections
(1) Start with a single vertex v_{1} with m self-loops
(2) At time t, v_{t} arrives with m potential connections. Let $\operatorname{deg}\left(v_{i}, t, e\right):=$ degree of v_{i} at time t after e-th edge is paired

- The e edge connects with $v_{i} \neq v_{\mathrm{t}}$ w.p. $\propto \operatorname{deg}\left(v_{i}, \mathrm{t}, \mathrm{e}-1\right)$
- Connects to itself w.p. $\propto \operatorname{deg}\left(v_{i}, \mathrm{t}, \mathrm{e}-1\right)+1$
(3) After n steps, we get a graph with n vertices and $n m$ edges

Preferential attachment model

$>$ New vertices come with m connections
(1) Start with a single vertex v_{1} with m self-loops
(2) At time t, v_{t} arrives with m potential connections. Let $\operatorname{deg}\left(v_{i}, t, e\right):=$ degree of v_{i} at time t after e-th edge is paired

- The e edge connects with $v_{i} \neq v_{\mathrm{t}}$ w.p. $\propto \operatorname{deg}\left(v_{i}, \mathrm{t}, \mathrm{e}-1\right)$
- Connects to itself w.p. $\propto \operatorname{deg}\left(v_{i}, \mathrm{t}, \mathrm{e}-1\right)+1$
(3) After n steps, we get a graph with n vertices and $n m$ edges
$>$ If $\mathrm{m}=1$, this process produces a tree called preferential attachment tree

Preferential attachment model properties

$>$ Graph is always connected, so no question of giant emergence here

Preferential attachment model properties

$>$ Graph is always connected, so no question of giant emergence here
> Interesting questions: Degree distribution, local neighborhood structure

Preferential attachment model properties

$>$ Graph is always connected, so no question of giant emergence here
> Interesting questions: Degree distribution, local neighborhood structure
Theorem: Degree distribution of PAM
Let $\mathrm{P}_{\mathrm{k}}(\mathrm{n})=\frac{\text { \#vertices of degree } \mathrm{k}}{\mathrm{n}}$.

Preferential attachment model properties

$>$ Graph is always connected, so no question of giant emergence here
$>$ Interesting questions: Degree distribution, local neighborhood structure
Theorem: Degree distribution of PAM
Let $\mathrm{P}_{\mathrm{k}}(\mathrm{n})=\frac{\text { \#vertices of degree } \mathrm{k}}{\mathrm{n}}$. Fix $\mathrm{m} \geqslant 1$.

Preferential attachment model properties

$>$ Graph is always connected, so no question of giant emergence here
> Interesting questions: Degree distribution, local neighborhood structure
Theorem: Degree distribution of PAM
Let $P_{k}(n)=\frac{\# \text { vertices of degree } k}{n}$. Fix $m \geqslant 1$. Then

$$
\mathbb{P}\left(\max _{k}\left|P_{k}(n)-p_{k}\right| \geqslant C \sqrt{\frac{\log n}{n}}\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Preferential attachment model properties

$>$ Graph is always connected, so no question of giant emergence here
$>$ Interesting questions: Degree distribution, local neighborhood structure
Theorem: Degree distribution of PAM
Let $P_{k}(n)=\frac{\# \text { vertices of degree } k}{n}$. Fix $m \geqslant 1$. Then

$$
\mathbb{P}\left(\max _{\mathrm{k}}\left|\mathrm{P}_{\mathrm{k}}(n)-\mathrm{p}_{\mathrm{k}}\right| \geqslant C \sqrt{\frac{\log n}{n}}\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty,
$$

where

$$
p_{k}=c k^{-3}(1+\mathrm{O}(1 / k))
$$

Preferential attachment model properties

$>$ Graph is always connected, so no question of giant emergence here
> Interesting questions: Degree distribution, local neighborhood structure
Theorem: Degree distribution of PAM
Let $P_{k}(n)=\frac{\# \text { vertices of degree } k}{n}$. Fix $m \geqslant 1$. Then

$$
\mathbb{P}\left(\max _{k}\left|P_{k}(n)-p_{k}\right| \geqslant C \sqrt{\frac{\log n}{n}}\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

where

$$
\begin{aligned}
& \qquad \mathrm{p}_{\mathrm{k}}=\mathrm{ck}^{-3}(1+\mathrm{O}(1 / \mathrm{k})) \\
& \text { Preferential Attachment produces networks with Power-law degrees }
\end{aligned}
$$

Preferential attachment model properties

$>$ Graph is always connected, so no question of giant emergence here
> Interesting questions: Degree distribution, local neighborhood structure
Theorem: Degree distribution of PAM
Let $P_{k}(n)=\frac{\# \text { vertices of degree } k}{n}$. Fix $m \geqslant 1$. Then

$$
\mathbb{P}\left(\max _{k}\left|P_{k}(n)-p_{k}\right| \geqslant C \sqrt{\frac{\log n}{n}}\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty,
$$

where

$$
\begin{aligned}
& \qquad p_{k}=\mathrm{ck}^{-3}(1+\mathrm{O}(1 / \mathrm{k})) \\
& \text { Preferential Attachment produces networks with Power-law degrees }
\end{aligned}
$$

$>$ Proof relies on Martingale arguments and Azuma-Hoeffding's inequality

Summary: Random graph models with realistic features

Global communities: Stochastic Block Model
$>$ Model with k communities of sizes $\mathrm{n} \rho_{\mathrm{i}}$, and edge probabilities depend on communities
$>$ Local neighborhoods are mixed Poisson Branching Processes

Summary: Random graph models with realistic features

Global communities: Stochastic Block Model
$>$ Model with k communities of sizes $\mathrm{n} \rho_{\mathrm{i}}$, and edge probabilities depend on communities
$>$ Local neighborhoods are mixed Poisson Branching Processes

Degree-heterogeneity: Configuration Model
$>$ Given degrees, pair half-edges uniformly
$>$ Local neighborhoods are explored with a size-biased distribution

Summary: Random graph models with realistic features

Global communities: Stochastic Block Model
$>$ Model with k communities of sizes $n \rho_{\mathrm{i}}$, and edge probabilities depend on communities
$>$ Local neighborhoods are mixed Poisson Branching Processes

Degree-heterogeneity: Configuration Model
$>$ Given degrees, pair half-edges uniformly
$>$ Local neighborhoods are explored with a size-biased distribution

Dynamically evolving graphs: Preferential Attachment Model
$>$ Vertices arrive sequentially and connects to vertices depending on degrees
$>$ Leads to power-law degree distribution

Next lets study Percolation problem and its relation to Epidemic threshold

Percolation on finite networks

Percolation: Given graph G, keep each edge w.p. p independently

Percolation on finite networks

Percolation: Given graph G, keep each edge w.p. p independently

Percolation on finite networks

Percolation: Given graph G, keep each edge w.p. p independently

$>$ If G is complete graph then the percolated graph is Erdős-Rényi

Percolation on finite networks

Percolation: Given graph G, keep each edge w.p. p independently

$>$ If G is complete graph then the percolated graph is Erdős-Rényi

Def: Percolation threshold

Let u be a uniform vertex. p_{c} called percolation threshold on $\left(G_{n}\right)_{n \geqslant 1}$ if for any $\varepsilon>0$
$>$ For $p<p_{c}(1-\varepsilon): \frac{C(u)}{n} \xrightarrow{\mathbb{P}} 0$
$>$ For $p>p_{c}(1+\varepsilon): \frac{C(u)}{n}=\Theta(1)$ whp

Percolation and Epidemics

SIR infection model:
$>$ An infected node spreads infection to its neighbor w.p. p
$>$ Infected nodes are removed after one round

Percolation and Epidemics

SIR infection model:

$>$ An infected node spreads infection to its neighbor w.p. p
$>$ Infected nodes are removed after one round
$>$ Same mechanism applies to spread of information in social networks or spread of self-replicating malware in computer systems

Percolation and Epidemics

SIR infection model:

$>$ An infected node spreads infection to its neighbor w.p. p
$>$ Infected nodes are removed after one round
$>$ Same mechanism applies to spread of information in social networks or spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:

Percolation and Epidemics

SIR infection model:

$>$ An infected node spreads infection to its neighbor w.p. p
$>$ Infected nodes are removed after one round
$>$ Same mechanism applies to spread of information in social networks or spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:
\Rightarrow Suppose infection starts at vertex v

Percolation and Epidemics

SIR infection model:

$>$ An infected node spreads infection to its neighbor w.p. p
$>$ Infected nodes are removed after one round
$>$ Same mechanism applies to spread of information in social networks or spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:
\Rightarrow Suppose infection starts at vertex v
\Rightarrow Can spread through an edge with probability p

Percolation and Epidemics

SIR infection model:

$>$ An infected node spreads infection to its neighbor w.p. p
$>$ Infected nodes are removed after one round
$>$ Same mechanism applies to spread of information in social networks or spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:
\Rightarrow Suppose infection starts at vertex v
\Rightarrow Can spread through an edge with probability p
\Rightarrow Infection spread is same as exploration on percolated graph so that $C(v)$ in percolated graph equals the size of finally infected vertices

Percolation and Epidemics

SIR infection model:

$>$ An infected node spreads infection to its neighbor w.p. p
$>$ Infected nodes are removed after one round
$>$ Same mechanism applies to spread of information in social networks or spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:
\Rightarrow Suppose infection starts at vertex v
\Rightarrow Can spread through an edge with probability p
\Rightarrow Infection spread is same as exploration on percolated graph so that $C(v)$ in percolated graph equals the size of finally infected vertices
$\Rightarrow \mathrm{C}(v) \approx \zeta \mathrm{n}$ whp \Longleftrightarrow Infection from v spreads to $\approx \zeta \mathrm{n}$ population whp

Percolation and Epidemics

SIR infection model:

$>$ An infected node spreads infection to its neighbor w.p. p
$>$ Infected nodes are removed after one round
$>$ Same mechanism applies to spread of information in social networks or spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:
\Rightarrow Suppose infection starts at vertex v
\Rightarrow Can spread through an edge with probability p
\Rightarrow Infection spread is same as exploration on percolated graph so that $C(v)$ in percolated graph equals the size of finally infected vertices
$\Rightarrow \mathrm{C}(v) \approx \zeta \mathrm{n}$ whp \Longleftrightarrow Infection from v spreads to $\approx \zeta \mathrm{n}$ population whp Finding epidemic threshold is same as finding percolation threshold...

Percolation threshold on general graphs

> For general graphs: Draief, Ganesh, Massoulié (2006)

Theorem

Suppose G is a connected graph. Let $\lambda_{1}(A)$ denote largest eigenvalue of adjacency matrix A.

Percolation threshold on general graphs

$>$ For general graphs: Draief, Ganesh, Massoulié (2006)

Theorem

Suppose G is a connected graph. Let $\lambda_{1}(A)$ denote largest eigenvalue of adjacency matrix A. For $p<\frac{1}{\lambda_{1}(A)}$:

$$
\mathbb{E}[C(v)] \leqslant \frac{\sqrt{n}}{1-p \lambda_{1}(A)} \quad \text { for any vertex } v \text { and any graph } G
$$

Percolation threshold on general graphs

> For general graphs: Draief, Ganesh, Massoulié (2006)

Theorem

Suppose G is a connected graph. Let $\lambda_{1}(A)$ denote largest eigenvalue of adjacency matrix A. For $p<\frac{1}{\lambda_{1}(A)}$:

$$
\begin{aligned}
\mathbb{E}[C(v)] \leqslant \frac{\sqrt{n}}{1-p \lambda_{1}(A)} \quad \text { for any vertex } v \text { and any graph } G & \\
& \Longrightarrow p_{c} \geqslant \frac{1}{\lambda_{1}(A)}
\end{aligned}
$$

Percolation threshold on general graphs

> For general graphs: Draief, Ganesh, Massoulié (2006)

Theorem

Suppose G is a connected graph. Let $\lambda_{1}(A)$ denote largest eigenvalue of adjacency matrix A. For $p<\frac{1}{\lambda_{1}(A)}$:

$$
\begin{aligned}
\mathbb{E}[C(v)] \leqslant \frac{\sqrt{n}}{1-p \lambda_{1}(A)} \quad \text { for any vertex } v \text { and any graph } G & \\
& \Longrightarrow p_{c} \geqslant \frac{1}{\lambda_{1}(A)}
\end{aligned}
$$

Proof: Using Path counting. On Board

Percolation threshold on general dense graphs
$>$ Is $p_{c}=\frac{1}{\lambda_{1}(\mathrm{~A})}$?

Percolation threshold on general dense graphs

$>$ Is $p_{c}=\frac{1}{\lambda_{1}(A)}$? Yes, for dense graphs.

Percolation threshold on general dense graphs

$>$ Is $p_{c}=\frac{1}{\lambda_{1}(A)}$? Yes, for dense graphs.
$>$ Suppose $\left(G_{n}\right)_{n \geqslant 1}$ is a dense sequence of graphs $\left(\lim \inf \frac{\text { \#edges }}{n^{2}}>0\right)$

Percolation threshold on general dense graphs

$>$ Is $p_{c}=\frac{1}{\lambda_{1}(\mathrm{~A})}$? Yes, for dense graphs.
$>$ Suppose $\left(G_{n}\right)_{n \geqslant 1}$ is a dense sequence of graphs (liminf $\left.\frac{\text { \#edges }}{n^{2}}>0\right)$

Theorem

Consider percolation on G_{n} w.p. $p=\min \left\{\frac{c}{\lambda_{1}(A)}, 1\right\}$.
$>$ Is $p_{c}=\frac{1}{\lambda_{1}(\mathrm{~A})}$? Yes, for dense graphs.
$>$ Suppose $\left(G_{n}\right)_{n \geqslant 1}$ is a dense sequence of graphs (liminf $\left.\frac{\text { \#edges }}{n^{2}}>0\right)$

Theorem

Consider percolation on G_{n} w.p. $p=\min \left\{\frac{c}{\lambda_{1}(A)}, 1\right\}$. Then
(1) If $c \leqslant 1$, then $\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} 0$
(2) If $c>1$, then $\frac{C_{(1)}}{n}=\Theta(1)$ whp

Percolation threshold on general dense graphs
$>$ Is $p_{c}=\frac{1}{\lambda_{1}(A)}$? Yes, for dense graphs.
$>$ Suppose $\left(G_{n}\right)_{n \geqslant 1}$ is a dense sequence of graphs (liminf $\left.\frac{\text { \#edges }}{n^{2}}>0\right)$

Theorem

Consider percolation on G_{n} w.p. $p=\min \left\{\frac{c}{\lambda_{1}(A)}, 1\right\}$. Then
(1) If $c \leqslant 1$, then $\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} 0$
(2) If $c>1$, then $\frac{C_{(1)}}{n}=\Theta(1)$ whp

However, for sparse graphs, $\frac{1}{\lambda_{1}(\mathrm{~A})}$ is not the right threshold...

Percolation threshold on sparse random graphs

Fact: For any connected graph G

$$
\max \left\{\frac{1}{n} \sum_{i} d_{i}, \sqrt{d_{\max }}\right\} \leqslant \lambda_{1}(A) \leqslant d_{\max }
$$

Percolation threshold on sparse random graphs

Fact: For any connected graph G

$$
\max \left\{\frac{1}{n} \sum_{i} d_{i}, \sqrt{d_{\max }}\right\} \leqslant \lambda_{1}(A) \leqslant d_{\max }
$$

$\Longrightarrow \frac{1}{\lambda_{1}(A)} \rightarrow 0$ for sparse graphs (often like n^{-c} for power-law networks),
but 'often' percolation threshold is $\Theta(1)$

Percolation threshold on sparse random graphs

Fact: For any connected graph G

$$
\max \left\{\frac{1}{n} \sum_{i} d_{i}, \sqrt{d_{\max }}\right\} \leqslant \lambda_{1}(A) \leqslant d_{\max }
$$

$\Longrightarrow \frac{1}{\lambda_{1}(A)} \rightarrow 0$ for sparse graphs (often like $n^{-\mathrm{c}}$ for power-law networks),
but 'often' percolation threshold is $\Theta(1)$

Example:

1. For $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right): p_{c}=\frac{1}{\lambda}$
2. For $\mathrm{CM}_{\mathfrak{n}}(\mathrm{d}): \mathrm{p}_{\mathrm{c}}=\frac{\mathbb{E}[\mathrm{D}]}{\mathbb{E}[\mathrm{D}(\mathrm{D}-1)]}$ (under regularity conditions on d)

Percolation threshold on sparse random graphs

Fact: For any connected graph G

$$
\max \left\{\frac{1}{n} \sum_{i} d_{i}, \sqrt{d_{\max }}\right\} \leqslant \lambda_{1}(A) \leqslant d_{\max }
$$

$\Longrightarrow \frac{1}{\lambda_{1}(A)} \rightarrow 0$ for sparse graphs (often like $n^{-\mathrm{c}}$ for power-law networks),
but 'often' percolation threshold is $\Theta(1)$

Example:

1. For $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right): p_{c}=\frac{1}{\lambda}$
2. For $\mathrm{CM}_{\mathrm{n}}(\mathrm{d}): \mathrm{p}_{\mathrm{c}}=\frac{\mathbb{E}[\mathrm{D}]}{\mathbb{E}[\mathrm{D}(\mathrm{D}-1)]}$ (under regularity conditions on d)
$>$ For general sparse graphs, percolation on G is always viewed as a random graph.

Percolation threshold on sparse random graphs

Fact: For any connected graph G

$$
\max \left\{\frac{1}{n} \sum_{i} d_{i}, \sqrt{d_{\max }}\right\} \leqslant \lambda_{1}(A) \leqslant d_{\max }
$$

$\Longrightarrow \frac{1}{\lambda_{1}(A)} \rightarrow 0$ for sparse graphs (often like n^{-c} for power-law networks), but 'often' percolation threshold is $\Theta(1)$

Example:

1. For $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right): p_{c}=\frac{1}{\lambda}$
2. For $\mathrm{CM}_{\mathfrak{n}}(\mathrm{d}): \mathrm{p}_{\mathrm{c}}=\frac{\mathbb{E}[\mathrm{D}]}{\mathbb{E}[\mathrm{D}(\mathrm{D}-1)]}$ (under regularity conditions on d)
$>$ For general sparse graphs, percolation on G is always viewed as a random graph. So, percolation threshold can be obtained by verifying
3. The percolated graph converges locally weakly
4. Two large components intersect

Finally, lets conclude with a fascinating technique that combines Random Graph theory and convergence of Stochastic Process

Back to Erdős-Rényi

Erdős-Rényi (1960) showed for $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$:
$>$ For $\lambda<1: \mathrm{C}_{(1)}=\mathrm{O}(\log n)$ whp
$>$ For $\lambda>1: \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda}$

Back to Erdős-Rényi

Erdős-Rényi (1960) showed for $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$:
$>$ For $\lambda<1: \mathrm{C}_{(1)}=\mathrm{O}(\log n)$ whp
$>$ For $\lambda>1: \frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta_{\lambda}$
$>$ For $\lambda=1: C_{(1)} \sim n^{2 / 3}$, but also something very different happens...

Back to Erdős-Rényi

Erdős-Rényi (1960) showed for $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$:
$>$ For $\lambda<1: \mathrm{C}_{(1)}=\mathrm{O}(\log n)$ whp
$>$ For $\lambda>1: \frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta_{\lambda}$
$>$ For $\lambda=1: C_{(1)} \sim n^{2 / 3}$, but also something very different happens...
\Rightarrow All components has $C_{(1)} \sim n^{2 / 3}, C_{(2)} \sim n^{2 / 3}, C_{(3)} \sim n^{2 / 3} \ldots$

Back to Erdős-Rényi

Erdős-Rényi (1960) showed for $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$:
$>$ For $\lambda<1: \mathrm{C}_{(1)}=\mathrm{O}(\log n)$ whp
$>$ For $\lambda>1: \frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda}$
$>$ For $\lambda=1: C_{(1)} \sim n^{2 / 3}$, but also something very different happens...
\Rightarrow All components has $C_{(1)} \sim n^{2 / 3}, C_{(2)} \sim n^{2 / 3}, C_{(3)} \sim n^{2 / 3} \ldots$
\Rightarrow Limit of component sizes are non-degenerate random variable

Back to Erdős-Rényi

Erdős-Rényi (1960) showed for $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$:
$>$ For $\lambda<1: \mathrm{C}_{(1)}=\mathrm{O}(\log n)$ whp
$>$ For $\lambda>1: \frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta_{\lambda}$
$>$ For $\lambda=1: C_{(1)} \sim n^{2 / 3}$, but also something very different happens...
\Rightarrow All components has $C_{(1)} \sim n^{2 / 3}, C_{(2)} \sim n^{2 / 3}, C_{(3)} \sim n^{2 / 3} \ldots$
\Rightarrow Limit of component sizes are non-degenerate random variable

Theorem: Critical $\operatorname{ER}_{\mathrm{n}}\left(\frac{\lambda}{n}\right)$
For $\lambda=1$:

$$
\mathrm{n}^{-2 / 3}\left(\mathrm{C}_{(i)}\right)_{\mathrm{i} \geqslant 1} \xrightarrow{\mathrm{~d}} \mathrm{X} \quad \text { in } \ell^{2}
$$

Description of X will be clear soon...

Exploration process method

Key Idea:

\Rightarrow Explore graph and encode component sizes in terms of a walk

Exploration process method

Key Idea:

\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

Exploration process method

Key Idea:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

$>$ Component sizes are excursion lengths of S_{n}

Exploration process method

Key Idea:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

$>$ Component sizes are excursion lengths of S_{n}

Exploration process method

Key Idea:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

$>$ Component sizes are excursion lengths of S_{n}

Exploration process method

Key Idea:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

$>$ Component sizes are excursion lengths of S_{n}

Exploration process method

Key Idea:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

$>$ Component sizes are excursion lengths of S_{n}

Exploration process method

Key Idea:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

$>$ Component sizes are excursion lengths of S_{n}

Exploration process method

Key Idea:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

$>$ Component sizes are excursion lengths of S_{n}

Exploration process method

Key Idea:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

$>$ Component sizes are excursion lengths of S_{n}

Exploration process method

Key Idea:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

$>$ Component sizes are excursion lengths of S_{n}

Exploration process method

Key Idea:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

$>$ Component sizes are excursion lengths of S_{n}

Exploration process method

Key Idea:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

$>$ Component sizes are excursion lengths of S_{n}

Exploration process method

Key Idea:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

$>$ Component sizes are excursion lengths of S_{n}

Exploration process method

Key Idea:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

$>$ Component sizes are excursion lengths of S_{n}

Exploration process method

Key Idea:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

$>$ Component sizes are excursion lengths of S_{n}

Limit of the exploration process

Proposition: $\left(n^{-1 / 3} S_{n}\left(\mathrm{tn}^{2 / 3}\right): t \geqslant 0\right) \xrightarrow{d}\left(B(t)-\frac{t^{2}}{2}: t \geqslant 0\right)$

Limit of the exploration process

Proposition: $\left(n^{-1 / 3} S_{n}\left(\mathrm{tn}^{2 / 3}\right): t \geqslant 0\right) \xrightarrow{d}\left(B(t)-\frac{t^{2}}{2}: t \geqslant 0\right)$
$>$ Proof uses Martingale Functional CLT.

Limit of the exploration process

Proposition: $\left(n^{-1 / 3} S_{n}\left(\mathrm{tn}^{2 / 3}\right): t \geqslant 0\right) \xrightarrow{d}\left(B(t)-\frac{t^{2}}{2}: t \geqslant 0\right)$
$>$ Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of S_{n},

Limit of the exploration process

Proposition: $\left(n^{-1 / 3} S_{n}\left(\mathrm{tn}^{2 / 3}\right): t \geqslant 0\right) \xrightarrow{d}\left(B(t)-\frac{t^{2}}{2}: t \geqslant 0\right)$
$>$ Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of S_{n}, so excursion lengths of $n^{-1 / 3} S_{n}\left(t n^{2 / 3}\right)$ gives us $n^{-2 / 3} \times$ comp. size

Limit of the exploration process

Proposition: $\left(n^{-1 / 3} S_{n}\left(\mathrm{tn}^{2 / 3}\right): t \geqslant 0\right) \xrightarrow{d}\left(B(t)-\frac{t^{2}}{2}: t \geqslant 0\right)$
$>$ Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of S_{n}, so excursion lengths of $n^{-1 / 3} S_{n}\left(\mathrm{tn}^{2 / 3}\right)$ gives us $n^{-2 / 3} \times$ comp. size

$$
\Longrightarrow n^{-2 / 3}\left(C_{(i)}\right)_{i \geqslant 1} \xrightarrow{d}\left(\gamma_{i}\right)_{i \geqslant 1},
$$

where γ_{i} is the i-th largest excursion of $\left(B(t)-\frac{t^{2}}{2}: t \geqslant 0\right)$

Limit of the exploration process

Proposition: $\left(n^{-1 / 3} S_{n}\left(\mathrm{tn}^{2 / 3}\right): t \geqslant 0\right) \xrightarrow{d}\left(B(t)-\frac{t^{2}}{2}: t \geqslant 0\right)$
$>$ Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of S_{n}, so excursion lengths of $n^{-1 / 3} S_{n}\left(t n^{2 / 3}\right)$ gives us $n^{-2 / 3} \times$ comp. size

$$
\Longrightarrow n^{-2 / 3}\left(C_{(i)}\right)_{i \geqslant 1} \xrightarrow{d}\left(\gamma_{i}\right)_{i \geqslant 1},
$$

where γ_{i} is the i-th largest excursion of $\left(B(t)-\frac{t^{2}}{2}: t \geqslant 0\right)$
Limit of exploration process gives limit of comp. sizes

Exploration process method contd.

Revisiting the method:

Exploration process method contd.

Revisiting the method:
\Rightarrow Explore graph and encode component sizes in terms of a walk

Exploration process method contd.

Revisiting the method:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk

Exploration process method contd.

Revisiting the method:
\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process

Exploration process method contd.

Revisiting the method:

\Rightarrow Explore graph and encode component sizes in terms of a walk
\Rightarrow Take scaling limits of the walk
\Rightarrow Recover limits of component sizes from the limiting process
$>$ Method also works for supercritical case. In that case the limit is deterministic. See Janson \& Luczak (2007)

Summary

Percolation and Epidemics

Summary

Percolation and Epidemics

\Rightarrow Percolation can be coupled to SIR epidemics

Summary

Percolation and Epidemics

\Rightarrow Percolation can be coupled to SIR epidemics
\Rightarrow Showed $\mathbb{E}[C(u)] \leqslant \frac{\sqrt{n}}{1-\mathrm{p} \lambda_{1}(A)}$ for $p<\frac{1}{\lambda_{1}(A)}$ for any connected graph

Summary

Percolation and Epidemics

\Rightarrow Percolation can be coupled to SIR epidemics
\Rightarrow Showed $\mathbb{E}[C(u)] \leqslant \frac{\sqrt{n}}{1-p \lambda_{1}(A)}$ for $p<\frac{1}{\lambda_{1}(A)}$ for any connected graph
$\Rightarrow p_{c}=\frac{1}{\lambda_{1}(A)}$ for dense graph but not for sparse graphs

Summary

Percolation and Epidemics

\Rightarrow Percolation can be coupled to SIR epidemics
\Rightarrow Showed $\mathbb{E}[C(u)] \leqslant \frac{\sqrt{n}}{1-p \lambda_{1}(A)}$ for $p<\frac{1}{\lambda_{1}(A)}$ for any connected graph
$\Rightarrow p_{c}=\frac{1}{\lambda_{1}(A)}$ for dense graph but not for sparse graphs

Exploration process convergence

Summary

Percolation and Epidemics

\Rightarrow Percolation can be coupled to SIR epidemics
\Rightarrow Showed $\mathbb{E}[C(u)] \leqslant \frac{\sqrt{n}}{1-p \lambda_{1}(A)}$ for $p<\frac{1}{\lambda_{1}(A)}$ for any connected graph
$\Rightarrow p_{c}=\frac{1}{\lambda_{1}(A)}$ for dense graph but not for sparse graphs

Exploration process convergence
\Rightarrow Used it to find non-degenerate limits of component sizes for $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$ with $\lambda=1$

Further reading

Emergence of Giant and Random Graph Models

1. van der Hofstad: Random graphs and complex networks Vol 1, Vol 2
2. van der Hofstad: The giant in random graphs is almost local

Percolation and Epidemics

1. Draief, Ganesh, Massoulié: Thresholds for virus spread on networks

Critical behavior

1. Aldous: Brownian excursions, critical random graphs and the multiplicative coalescent
2. Dhara: Doctoral thesis, Critical percolation on random networks with prescribed degrees (Chapter 1 contains survey on Critical behavior)

Further reading

Emergence of Giant and Random Graph Models

1. van der Hofstad: Random graphs and complex networks Vol 1, Vol 2
2. van der Hofstad: The giant in random graphs is almost local

Percolation and Epidemics

1. Draief, Ganesh, Massoulié: Thresholds for virus spread on networks

Critical behavior

1. Aldous: Brownian excursions, critical random graphs and the multiplicative coalescent
2. Dhara: Doctoral thesis, Critical percolation on random networks with prescribed degrees (Chapter 1 contains survey on Critical behavior)

Thank You!

[^0]: ${ }^{a}$ see van der Hofstad (2021): The giant in random graphs is almost local

