Sparse Random Graphs-I

Souvik Dhara

Graph Limits and Processes on Networks:
From Epidemics to Misinformation Boot Camp

Lets start with a few questions...

How Disease becomes Epidemic?

Lets start with a few questions...

How Disease becomes Epidemic?

What causes Internet to breakdown?

Lets start with a few questions...

How Disease becomes Epidemic?

What causes Internet to breakdown?

When does Misinformation reach a large population?

What are Random Graphs for?

These seemingly unrelated questions have a few commonalities:

What are Random Graphs for?

These seemingly unrelated questions have a few commonalities:
(1) There is an underlying large network with a complex structure

What are Random Graphs for?

These seemingly unrelated questions have a few commonalities:
(1) There is an underlying large network with a complex structure
(2) There is emergence of behavior having drastic impact, a.k.a. phase transition

What are Random Graphs for?

These seemingly unrelated questions have a few commonalities:
(1) There is an underlying large network with a complex structure
(2) There is emergence of behavior having drastic impact, a.k.a. phase transition
$>$ Random Graphs provide a simplified probabilistic representation to model these complex system.
\Rightarrow Capture structural properties (degree distribution, communities)
\Rightarrow Provide insight into emergence of different types of behavior such as phase transition

Why are Random Graphs useful?

Why are Random Graphs useful?

$>$ Random Graphs are good graphs: General graphs are too messy and Random Graph is a way to pose regularity properties

Example: Expansion, Convergence (Graphon, Local-weak)

Why are Random Graphs useful?

$>$ Random Graphs are good graphs: General graphs are too messy and Random Graph is a way to pose regularity properties

Example: Expansion, Convergence (Graphon, Local-weak)
$>$ Often reveal core properties responsible for phenomena of interest
Example: Will see how local neighborhood structure impact global properties like phase transition, typical distances

Why are Random Graphs useful?

$>$ Random Graphs are good graphs: General graphs are too messy and Random Graph is a way to pose regularity properties

Example: Expansion, Convergence (Graphon, Local-weak)
$>$ Often reveal core properties responsible for phenomena of interest
Example: Will see how local neighborhood structure impact global properties like phase transition, typical distances
$>$ Random Graphs serve to get provable guarantees for graph algorithms
Example: Heuristic algorithms for NP-hard problems such as graph partitioning, coloring

Plan

Today:
$>$ Local Branching Process approximation technique on random graphs
$>$ Explore its relation to Giant Component Problem on different models

Tomorrow:
> Applications to Percolation, Epidemics
$>$ Using Stochastic Process convergence in Random Graphs

Let's start with the most elementary yet fundamental model...

Erdős-Rényi Random Graph

Erdős-Rényi Random Graph

Definition
$>$ Given n nodes $\{1,2, \ldots, \mathrm{n}\}$

Erdős-Rényi Random Graph

Definition
$>$ Given n nodes $\{1,2, \ldots, \mathrm{n}\}$
$>$ Edge $\{i, j\}$ present w.p. p independently

Erdős-Rényi Random Graph

Definition
$>$ Given n nodes $\{1,2, \ldots, \mathrm{n}\}$
$>\operatorname{Edge}\{i, j\}$ present w.p. p independently
$>$ Denote this graph by $\mathrm{ER}_{\mathrm{n}}(\mathrm{p})$

Erdős-Rényi Random Graph

Definition
$>$ Given n nodes $\{1,2, \ldots, \mathrm{n}\}$
$>$ Edge $\{i, j\}$ present w.p. p independently
$>$ Denote this graph by $E R_{n}(p)$

Historical note:

$>$ This model was actually studied by Gilbert (1959) and heuristically by Solomonoff \& Rapoport (1951)
> Erdős \& Rényi (1959) initially worked with a slightly different model where fixed number of edges sampled uniformly. In a sequence of eight papers between 1959-1968 they laid the foundation of Random Graph theory

What are we after?

$E R_{n}(p)$ with $n=1000$

$$
p=\frac{0.5}{n}
$$

$p=\frac{2}{n}$

What are we after?

$E R_{n}(p)$ with $n=1000$

$$
p=\frac{0.5}{n}
$$

$p=\frac{2}{n}$
$>$ If $\mathrm{p}=\frac{\lambda}{n}$, then there is phase transition around $\lambda=1$
$\Rightarrow \lambda<1$: All components are small
$\Rightarrow \lambda>1$: There is a unique giant component

Local neighborhood structure of $E R_{n}\left(\frac{\lambda}{n}\right)$

> To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

Local neighborhood structure of $E R_{n}\left(\frac{\lambda}{n}\right)$

$>$ To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

Local neighborhood structure of $E R_{n}\left(\frac{\lambda}{n}\right)$

$>$ To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

Local neighborhood structure of $E R_{n}\left(\frac{\lambda}{n}\right)$

$>$ To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

Local neighborhood structure of $E R_{n}\left(\frac{\lambda}{n}\right)$

$>$ To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

$>$ Generally, each vertex at depth i explores $\operatorname{Bin}\left(n-s_{i}, \frac{\lambda}{n}\right)$ new vertices at depth $i+1$, where s_{i} is the number of vertices explored up to depth i

Local neighborhood structure of $E R_{n}\left(\frac{\lambda}{n}\right)$

$>$ To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

$>$ Generally, each vertex at depth i explores $\operatorname{Bin}\left(n-s_{i}, \frac{\lambda}{n}\right)$ new vertices at depth $i+1$, where s_{i} is the number of vertices explored up to depth i

Two obstacles come up to analyze this process

Local neighborhood structure of $E R_{n}\left(\frac{\lambda}{n}\right)$

$>$ To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

$>$ Generally, each vertex at depth i explores $\operatorname{Bin}\left(n-s_{i}, \frac{\lambda}{n}\right)$ new vertices at depth $i+1$, where s_{i} is the number of vertices explored up to depth i

Two obstacles come up to analyze this process
\Rightarrow Depletion of vertices

Local neighborhood structure of $E R_{n}\left(\frac{\lambda}{n}\right)$

$>$ To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

$>$ Generally, each vertex at depth i explores $\operatorname{Bin}\left(n-s_{i}, \frac{\lambda}{n}\right)$ new vertices at depth $i+1$, where s_{i} is the number of vertices explored up to depth i

Two obstacles come up to analyze this process
\Rightarrow Depletion of vertices
\Rightarrow Conflicts among new vertices

Domination by Branching Process

Let's consider a random process without Depletion and Conflicts

$>$ The object on right is a Branching Process

Domination by Branching Process

Let's consider a random process without Depletion and Conflicts

$>$ The object on right is a Branching Process

Simple Fact

Let $N_{k}=\#$ vertices at depth k for $E R_{n}\left(\frac{\lambda}{n}\right)$ exploration, and \bar{N}_{k} denotes same for Branching process. There is a coupling such that w.p. 1

$$
\mathrm{N}_{\mathrm{k}} \leqslant \overline{\mathrm{~N}}_{\mathrm{k}} \quad \forall \mathrm{k} \geqslant 0
$$

Small component sizes for $\lambda<1$

$>C(1):=$ component size of vertex 1

Small component sizes for $\lambda<1$

$>C(1):=$ component size of vertex 1
$\mathbb{E}[C(1)]$

Small component sizes for $\lambda<1$

$>\mathrm{C}(1):=$ component size of vertex 1

$$
\mathbb{E}[C(1)]=\mathbb{E}\left[\sum_{k \geqslant 1} N_{k}\right]
$$

Small component sizes for $\lambda<1$

$>\mathrm{C}(1):=$ component size of vertex 1

$$
\mathbb{E}[C(1)]=\mathbb{E}\left[\sum_{k \geqslant 1} N_{k}\right] \leqslant \mathbb{E}\left[\sum_{k \geqslant 1} \bar{N}_{k}\right]=\sum_{k \geqslant 1} \mathbb{E}\left[\bar{N}_{k}\right]
$$

Small component sizes for $\lambda<1$

$>\mathrm{C}(1):=$ component size of vertex 1

$$
\mathbb{E}[C(1)]=\mathbb{E}\left[\sum_{k \geqslant 1} N_{k}\right] \leqslant \mathbb{E}\left[\sum_{k \geqslant 1} \bar{N}_{k}\right]=\sum_{k \geqslant 1} \mathbb{E}\left[\bar{N}_{k}\right]
$$

For a Branching Process: $\mathbb{E}\left[\bar{N}_{k}\right]=\lambda^{k}$

Small component sizes for $\lambda<1$

$>\mathrm{C}(1):=$ component size of vertex 1

$$
\mathbb{E}[C(1)]=\mathbb{E}\left[\sum_{k \geqslant 1} N_{k}\right] \leqslant \mathbb{E}\left[\sum_{k \geqslant 1} \bar{N}_{k}\right]=\sum_{k \geqslant 1} \mathbb{E}\left[\bar{N}_{k}\right]=\sum_{k \geqslant 1} \lambda^{k}=\frac{1}{1-\lambda}
$$

For a Branching Process: $\mathbb{E}\left[\bar{N}_{k}\right]=\lambda^{k}$

Small component sizes for $\lambda<1$

$>\mathrm{C}(1):=$ component size of vertex 1

$$
\mathbb{E}[C(1)]=\mathbb{E}\left[\sum_{k \geqslant 1} N_{k}\right] \leqslant \mathbb{E}\left[\sum_{k \geqslant 1} \bar{N}_{k}\right]=\sum_{k \geqslant 1} \mathbb{E}\left[\bar{N}_{k}\right]=\sum_{k \geqslant 1} \lambda^{k}=\frac{1}{1-\lambda}
$$

For a Branching Process: $\mathbb{E}\left[\bar{N}_{k}\right]=\lambda^{k}$
If $\lambda<1$, then BP has size $\mathrm{O}(1)$ so expected component size is $\mathrm{O}(1)$

Small component sizes for $\lambda<1$

$>\mathrm{C}(1):=$ component size of vertex 1

$$
\mathbb{E}[C(1)]=\mathbb{E}\left[\sum_{k \geqslant 1} N_{k}\right] \leqslant \mathbb{E}\left[\sum_{k \geqslant 1} \bar{N}_{k}\right]=\sum_{k \geqslant 1} \mathbb{E}\left[\bar{N}_{k}\right]=\sum_{k \geqslant 1} \lambda^{k}=\frac{1}{1-\lambda}
$$

For a Branching Process: $\mathbb{E}\left[\bar{N}_{k}\right]=\lambda^{k}$

$$
\text { If } \lambda<1 \text {, then BP has size } \mathrm{O}(1) \text { so expected component size is } \mathrm{O}(1)
$$

Theorem: Subcritical $\mathrm{ER}_{\mathrm{n}}\left(\frac{\lambda}{n}\right)$
If $\lambda<1$, then

$$
\frac{\max _{\mathrm{u}} \mathrm{C}(\mathrm{u})}{\log \mathrm{n}} \xrightarrow{\mathbb{P}} \frac{1}{\mathrm{I}_{\lambda}}, \quad \text { where } \mathrm{I}_{\lambda}=\lambda-1-\log \lambda
$$

Small component sizes for $\lambda<1$

$>\mathrm{C}(1):=$ component size of vertex 1

$$
\mathbb{E}[C(1)]=\mathbb{E}\left[\sum_{k \geqslant 1} N_{k}\right] \leqslant \mathbb{E}\left[\sum_{k \geqslant 1} \bar{N}_{k}\right]=\sum_{k \geqslant 1} \mathbb{E}\left[\bar{N}_{k}\right]=\sum_{k \geqslant 1} \lambda^{k}=\frac{1}{1-\lambda}
$$

For a Branching Process: $\mathbb{E}\left[\bar{N}_{k}\right]=\lambda^{k}$

$$
\text { If } \lambda<1 \text {, then BP has size } \mathrm{O}(1) \text { so expected component size is } \mathrm{O}(1)
$$

Theorem: Subcritical $\mathrm{ER}_{n}\left(\frac{\lambda}{n}\right)$
If $\lambda<1$, then

$$
\frac{\max _{\mathrm{u}} \mathrm{C}(\mathrm{u})}{\log \mathrm{n}} \xrightarrow{\mathbb{P}} \frac{1}{\mathrm{I}_{\lambda}}, \quad \text { where } \mathrm{I}_{\lambda}=\lambda-1-\log \lambda
$$

$>$ Proof uses Large Deviation estimates for branching process survival prob

What happens to the BP for $\lambda>1$

Lets again look at upper bounding Branching Process (BP)

What happens to the BP for $\lambda>1$

Lets again look at upper bounding Branching Process (BP)

$\lambda>1 \Longrightarrow \mathbb{P}($ BP survives up to infinite generations $)=\zeta_{\lambda}>0$

What happens to the BP for $\lambda>1$

Lets again look at upper bounding Branching Process (BP)

$$
\lambda>1 \quad \Longrightarrow \quad \mathbb{P}(B P \text { survives up to infinite generations })=\zeta_{\lambda}>0
$$

$>\zeta_{\lambda}$ satisfies is a positive solution of $1-\zeta=e^{-\lambda \zeta}$

Existence of a Giant for $\lambda>1$

$>$ For $\lambda>1, \mathbb{P}(\mathrm{BP}$ survives up to infinite generations $)=\zeta_{\lambda}>0$
$>$ As we will see, exploration and BP remain close together for a long time
\Rightarrow When BP survives, exploration continues for a long time giving rise to a large component

Existence of a Giant for $\lambda>1$

$>$ For $\lambda>1, \mathbb{P}(\mathrm{BP}$ survives up to infinite generations $)=\zeta_{\lambda}>0$
$>$ As we will see, exploration and BP remain close together for a long time
\Rightarrow When BP survives, exploration continues for a long time giving rise to a large component
$>\mathrm{C}(v)$ is large w.p. ζ_{λ}

Existence of a Giant for $\lambda>1$

$>$ For $\lambda>1, \mathbb{P}(\mathrm{BP}$ survives up to infinite generations $)=\zeta_{\lambda}>0$
$>$ As we will see, exploration and BP remain close together for a long time
\Rightarrow When BP survives, exploration continues for a long time giving rise to a large component
$>\mathrm{C}(v)$ is large w.p. $\zeta_{\lambda} \Longrightarrow \mathbb{E}[\#\{v: \mathrm{C}(v)$ is large $\}] \approx \mathrm{n} \zeta_{\lambda}$

Existence of a Giant for $\lambda>1$

$>$ For $\lambda>1, \mathbb{P}(\mathrm{BP}$ survives up to infinite generations $)=\zeta_{\lambda}>0$
$>$ As we will see, exploration and BP remain close together for a long time
\Rightarrow When BP survives, exploration continues for a long time giving rise to a large component
$>\mathrm{C}(v)$ is large w.p. $\zeta_{\lambda} \Longrightarrow \mathbb{E}[\#\{v: \mathrm{C}(v)$ is large $\}] \approx \mathrm{n} \zeta_{\lambda}$

Theorem: Supercritical $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $C_{(i)}:=i$-th largest component of $E R_{n}\left(\frac{\lambda}{n}\right)$. If $\lambda>1$, then as $n \rightarrow \infty$

$$
\begin{aligned}
\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} & \zeta_{\lambda} \quad \text { and } \quad \frac{C_{(2)}}{n} \xrightarrow{\mathbb{P}} 0 \\
& \text { A unique giant component emerges... }
\end{aligned}
$$

Moments of large component sizes

Moments of large component sizes

Lemma 1: First moment

$$
\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\}=\zeta_{\lambda}+o_{L, n}(1)
$$

Moments of large component sizes

Lemma 1: First moment

$$
\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\}=\zeta_{\lambda}+o_{L, n}(1)
$$

Lemma 2: Second moment

$$
\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\}=\zeta_{\lambda}^{2}+o_{L, n}(1)
$$

Moments of large component sizes

Lemma 1: First moment

$$
\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\}=\zeta_{\lambda}+o_{L, n}(1)
$$

Lemma 2: Second moment

$$
\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\}=\zeta_{\lambda}^{2}+o_{L, n}(1)
$$

Two lemmas directly imply

$$
\frac{C_{(1)}}{n} \approx \zeta_{\lambda} \quad \text { and } \quad \frac{C_{(2)}}{n} \approx 0
$$

which shows existence and uniqueness of giant

Moments of large component sizes

Lemma 1: First moment

$$
\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\}=\zeta_{\lambda}+o_{L, n}(1)
$$

Lemma 2: Second moment

$$
\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\}=\zeta_{\lambda}^{2}+o_{L, n}(1)
$$

Two lemmas directly imply

$$
\frac{\mathrm{C}_{(1)}}{\mathrm{n}} \approx \zeta_{\lambda} \quad \text { and } \quad \frac{\mathrm{C}_{(2)}}{\mathrm{n}} \approx 0
$$

which shows existence and uniqueness of giant
Next, prove two lemmas but before that...

Proximity to upper bounding branching process

Will show: $\mathrm{N}_{\mathrm{k}} \approx \overline{\mathrm{N}}_{\mathrm{k}}$ until s vertices explored for $\mathrm{s}=\mathrm{n}^{\mathrm{a}}, \mathrm{a}<1$
Exploration and BP remain close together for a long time

Proximity to upper bounding branching process

Will show: $\mathrm{N}_{\mathrm{k}} \approx \overline{\mathrm{N}}_{\mathrm{k}}$ until s vertices explored for $\mathrm{s}=\mathrm{n}^{\mathrm{a}}, \mathrm{a}<1$
Exploration and BP remain close together for a long time

Two sources of discrepancy
(1) Depletion:

Proximity to upper bounding branching process

Will show: $\mathrm{N}_{\mathrm{k}} \approx \overline{\mathrm{N}}_{\mathrm{k}}$ until s vertices explored for $\mathrm{s}=\mathrm{n}^{\mathrm{a}}, \mathrm{a}<1$
Exploration and BP remain close together for a long time

Two sources of discrepancy
(1) Depletion: $\operatorname{Bin}\left(n-s, \frac{\lambda}{n}\right) \approx \operatorname{Poisson}(\lambda)$ for $s=o(n)$

Proximity to upper bounding branching process

Will show: $\mathrm{N}_{\mathrm{k}} \approx \overline{\mathrm{N}}_{\mathrm{k}}$ until s vertices explored for $\mathrm{s}=\mathrm{n}^{\mathrm{a}}, \mathrm{a}<1$
Exploration and BP remain close together for a long time

Two sources of discrepancy
(1) Depletion: $\operatorname{Bin}\left(n-s, \frac{\lambda}{n}\right) \approx \operatorname{Poisson}(\lambda)$ for $s=o(n)$
(2) What about conflicts?

Proximity to upper bounding branching process

Will show: $\mathrm{N}_{\mathrm{k}} \approx \overline{\mathrm{N}}_{\mathrm{k}}$ until s vertices explored for $\mathrm{s}=\mathrm{n}^{\mathrm{a}}, \mathrm{a}<1$
Exploration and BP remain close together for a long time

Two sources of discrepancy
(1) Depletion: $\operatorname{Bin}\left(n-s, \frac{\lambda}{n}\right) \approx \operatorname{Poisson}(\lambda)$ for $s=o(n)$
(2) What about conflicts?

Fact: $\mathbb{E}[\#$ conflicts $] \leqslant C \frac{\lambda^{2 k}}{n}$

Proximity to upper bounding branching process contd.

Fact: $\mathbb{E}[\#$ conflicts $] \leqslant C \frac{\lambda^{2 k}}{n}$

Proximity to upper bounding branching process contd.

Fact: $\mathbb{E}[\#$ conflicts $] \leqslant C \frac{\lambda^{2 k}}{n}$
$>$ If k is a large constant, then $\mathbb{E}[\#$ conflicts $] \approx 0 \quad$ Exploration $=B P$ w.p. ≈ 1

Proximity to upper bounding branching process contd.

Fact: $\mathbb{E}[\#$ conflicts $] \leqslant C \frac{\lambda^{2 k}}{n}$
$>$ If k is a large constant, then $\mathbb{E}[\#$ conflicts $] \approx 0 \quad$ Exploration $=B P$ w.p. ≈ 1

Proximity to upper bounding branching process contd.

Fact: $\mathbb{E}[\#$ conflicts $] \leqslant C \frac{\lambda^{2 k}}{n}$
$>$ If k is a large constant, then $\mathbb{E}[\#$ conflicts $] \approx 0 \quad$ Exploration $=B P$ w.p. ≈ 1
$>$ Let $k=a \log _{\lambda} n$ and $0 \leqslant a<1$.

Proximity to upper bounding branching process contd.

Fact: $\mathbb{E}[\#$ conflicts $] \leqslant C \frac{\lambda^{2 k}}{n}$
$>$ If k is a large constant, then $\mathbb{E}[\#$ conflicts $] \approx 0 \quad$ Exploration $=B P$ w.p. ≈ 1
$>$ Let $k=a \log _{\lambda} n$ and $0 \leqslant a<1$. Then $\lambda^{k}=n^{a}$ and

Proximity to upper bounding branching process contd.

Fact: $\mathbb{E}[\#$ conflicts $] \leqslant C \frac{\lambda^{2 k}}{n}$
$>$ If k is a large constant, then $\mathbb{E}[\#$ conflicts $] \approx 0 \quad$ Exploration $=B P$ w.p. ≈ 1
$>$ Let $\mathrm{k}=\mathrm{a} \log _{\lambda} \mathrm{n}$ and $0 \leqslant a<1$. Then $\lambda^{k}=n^{a}$ and
$\Rightarrow \mathbb{E}[\#$ conflicts $] \leqslant \mathrm{Cn}^{2 a-1}$

Proximity to upper bounding branching process contd.

Fact: $\mathbb{E}[\#$ conflicts $] \leqslant C \frac{\lambda^{2 k}}{n}$
$>$ If k is a large constant, then $\mathbb{E}[\#$ conflicts $] \approx 0 \quad$ Exploration $=B P$ w.p. ≈ 1
$>$ Let $k=a \log _{\lambda} n$ and $0 \leqslant a<1$. Then $\lambda^{k}=n^{a}$ and
$\Rightarrow \mathbb{E}[$ \#conflicts $] \leqslant \mathrm{Cn}^{2 \mathrm{a}-1}$
\Rightarrow Conditioned on BP survives for r depth (r large), $\bar{N}_{k} \approx \lambda^{k}=n^{a}$ for $k \geqslant r$

Proximity to upper bounding branching process contd.

Fact: $\mathbb{E}[\#$ conflicts $] \leqslant C \frac{\lambda^{2 k}}{n}$
$>$ If k is a large constant, then $\mathbb{E}[\#$ conflicts $] \approx 0 \quad$ Exploration $=B P$ w.p. ≈ 1
$>$ Let $k=a \log _{\lambda} n$ and $0 \leqslant a<1$. Then $\lambda^{k}=n^{a}$ and
$\Rightarrow \mathbb{E}[$ \#conflicts $] \leqslant \mathrm{Cn}^{2 \mathrm{a}-1}$
\Rightarrow Conditioned on BP survives for r depth (r large), $\bar{N}_{k} \approx \lambda^{k}=n^{a}$ for $k \geqslant r$

$$
\text { \#conflicts }=\mathrm{o}\left(\overline{\mathrm{~N}}_{\mathrm{k}}\right) \text { whp }
$$

Proximity to upper bounding branching process contd.

Fact: $\mathbb{E}[\#$ conflicts $] \leqslant C \frac{\lambda^{2 k}}{n}$
$>$ If k is a large constant, then $\mathbb{E}[\#$ conflicts $] \approx 0 \quad$ Exploration $=B P$ w.p. ≈ 1
$>$ Let $k=a \log _{\lambda} n$ and $0 \leqslant a<1$. Then $\lambda^{k}=n^{a}$ and
$\Rightarrow \mathbb{E}[$ \#conflicts $] \leqslant \mathrm{Cn}^{2 \mathrm{a}-1}$
\Rightarrow Conditioned on BP survives for r depth (r large), $\bar{N}_{k} \approx \lambda^{k}=n^{a}$ for $k \geqslant r$

$$
\text { \#conflicts }=\mathrm{o}\left(\overline{\mathrm{~N}}_{\mathrm{k}}\right) \mathrm{whp} \Longrightarrow \mathrm{~N}_{\mathrm{k}} \approx \overline{\mathrm{~N}}_{\mathrm{k}} \approx \lambda^{\mathrm{k}}
$$

Proximity to upper bounding branching process contd.

Fact: $\mathbb{E}[\#$ conflicts $] \leqslant C \frac{\lambda^{2 k}}{n}$
$>$ If k is a large constant, then $\mathbb{E}[\#$ conflicts $] \approx 0 \quad$ Exploration $=B P w . p . \approx 1$
$>$ Let $k=a \log _{\lambda} n$ and $0 \leqslant a<1$. Then $\lambda^{k}=n^{a}$ and
$\Rightarrow \mathbb{E}[\#$ conflicts $] \leqslant \mathrm{Cn}^{2 a-1}$
\Rightarrow Conditioned on BP survives for r depth (r large), $\bar{N}_{k} \approx \lambda^{k}=n^{a}$ for $k \geqslant r$

$$
\text { \#conflicts }=\mathrm{o}\left(\overline{\mathrm{~N}}_{\mathrm{k}}\right) \text { whp } \Longrightarrow \mathrm{N}_{\mathrm{k}} \approx \overline{\mathrm{~N}}_{\mathrm{k}} \approx \lambda^{\mathrm{k}}
$$

When exploration survives for long time, growth rate of N_{k} becomes exponential in λ

Proximity to upper bounding branching process contd.

Fact: $\mathbb{E}[\#$ conflicts $] \leqslant C \frac{\lambda^{2 k}}{n}$
$>$ If k is a large constant, then $\mathbb{E}[\#$ conflicts $] \approx 0 \quad$ Exploration $=B P w . p . \approx 1$
$>$ Let $k=a \log _{\lambda} n$ and $0 \leqslant a<1$. Then $\lambda^{k}=n^{a}$ and
$\Rightarrow \mathbb{E}[\#$ conflicts $] \leqslant \mathrm{Cn}^{2 a-1}$
\Rightarrow Conditioned on BP survives for r depth (r large), $\bar{N}_{k} \approx \lambda^{k}=n^{a}$ for $k \geqslant r$

$$
\text { \#conflicts }=\mathrm{o}\left(\overline{\mathrm{~N}}_{\mathrm{k}}\right) \text { whp } \Longrightarrow \mathrm{N}_{\mathrm{k}} \approx \overline{\mathrm{~N}}_{\mathrm{k}} \approx \lambda^{\mathrm{k}}
$$

When exploration survives for long time, growth rate of N_{k} becomes exponential in λ

Next, lets prove two lemmas

Proving first moment lemma

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}$

Proving first moment lemma

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}$

$$
\begin{aligned}
& \sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \\
& =\mathbb{P}(u \text { falls in a component of size } \geqslant L \mid G) \quad(u \text { is a uniform vertex })
\end{aligned}
$$

Proving first moment lemma

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}$

$$
\begin{aligned}
& \sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \\
& =\mathbb{P}(u \text { falls in a component of size } \geqslant L \mid G) \quad(u \text { is a uniform vertex) } \\
& =\mathbb{P}(C(u) \geqslant L \mid G)
\end{aligned}
$$

Proving first moment lemma

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}$

$$
\begin{aligned}
& \sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \\
& =\mathbb{P}(u \text { falls in a component of size } \geqslant L \mid G) \quad(u \text { is a uniform vertex }) \\
& =\mathbb{P}(C(u) \geqslant L \mid G)
\end{aligned}
$$

Now,

$$
\mathbb{P}(\mathrm{C}(\mathrm{u}) \geqslant \mathrm{L})
$$

Proving first moment lemma

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}$

$$
\begin{aligned}
& \sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \\
& =\mathbb{P}(u \text { falls in a component of size } \geqslant L \mid G) \quad(u \text { is a uniform vertex) } \\
& =\mathbb{P}(C(u) \geqslant L \mid G)
\end{aligned}
$$

Now,

$$
\mathbb{P}(\mathrm{C}(\mathrm{u}) \geqslant \mathrm{L}) \approx \mathbb{P}(\mathrm{BP} \geqslant \mathrm{~L}) \quad \text { (Exploration of } u=\mathrm{BP} \text { w.p. } \approx 1)
$$

Proving first moment lemma

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{\mathrm{C}_{(\mathrm{i})} \geqslant \mathrm{L}\right\} \approx \zeta_{\lambda}$

$$
\begin{aligned}
& \sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \\
& =\mathbb{P}(u \text { falls in a component of size } \geqslant L \mid G) \quad(u \text { is a uniform vertex) } \\
& =\mathbb{P}(C(u) \geqslant L \mid G)
\end{aligned}
$$

Now,

$$
\begin{array}{rlrl}
\mathbb{P}(\mathrm{C}(\mathrm{u}) \geqslant \mathrm{L}) & \approx \mathbb{P}(\mathrm{BP} \geqslant \mathrm{~L}) & & \text { (Exploration of } u=\mathrm{BP} \text { w.p. } \approx 1) \\
& \approx \mathbb{P}(\mathrm{BP} \text { survives) } & & \text { (holds for large enough } \mathrm{L}) \\
& =\zeta_{\lambda} &
\end{array}
$$

Proving first moment lemma

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{\mathrm{C}_{(\mathrm{i})} \geqslant \mathrm{L}\right\} \approx \zeta_{\lambda}$

$$
\begin{aligned}
& \left.\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}_{1} C_{(i)} \geqslant L\right\} \\
& =\mathbb{P}(u \text { falls in a component of size } \geqslant L \mid G) \quad(u \text { is a uniform vertex) } \\
& =\mathbb{P}(C(u) \geqslant L \mid G)
\end{aligned}
$$

Now,

$$
\begin{aligned}
\mathbb{P}(\mathrm{C}(\mathrm{u}) \geqslant \mathrm{L}) & \approx \mathbb{P}(\mathrm{BP} \geqslant \mathrm{~L}) & & \text { (Exploration of } u=\mathrm{BP} \text { w.p. } \approx 1) \\
& \approx \mathbb{P}(\text { BP survives }) & & \text { (holds for large enough } \mathrm{L}) \\
& =\zeta_{\lambda} & &
\end{aligned}
$$

Key fact 1: Local neighborhood of u is approximately BP whp

Proving first moment lemma

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{\mathrm{C}_{(\mathrm{i})} \geqslant \mathrm{L}\right\} \approx \zeta_{\lambda}$

$$
\begin{aligned}
& \sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \\
& =\mathbb{P}(u \text { falls in a component of size } \geqslant L \mid G) \quad(u \text { is a uniform vertex }) \\
& =\mathbb{P}(C(u) \geqslant L \mid G)
\end{aligned}
$$

Now,

$$
\begin{aligned}
\mathbb{P}(\mathrm{C}(\mathrm{u}) \geqslant \mathrm{L}) & \approx \mathbb{P}(\mathrm{BP} \geqslant \mathrm{~L}) & & \text { (Exploration of } u=\mathrm{BP} \text { w.p. } \approx 1) \\
& \approx \mathbb{P}(\text { BP survives }) & & \text { (holds for large enough } \mathrm{L}) \\
& =\zeta_{\lambda} & &
\end{aligned}
$$

Key fact 1: Local neighborhood of u is approximately BP whp
$>$ Theory of approximating local neighborhood of graphs is called Local-weak convergence (Christian's talk)

Proving second moment lemma

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}^{2}$

Proving second moment lemma

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}^{2}$

$$
\zeta_{\lambda}^{2} \approx\left(\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\}\right)^{2} \quad \text { by previous lemma }
$$

Proving second moment lemma

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}^{2}$

$$
\begin{aligned}
\zeta_{\lambda}^{2} & \approx\left(\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\}\right)^{2} \quad \text { by previous lemma } \\
& =\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\}+\sum_{i \neq j} \frac{C_{(i)} C_{(j)}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L, C_{(j)} \geqslant L\right\}
\end{aligned}
$$

Proving second moment lemma

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}^{2}$

$$
\begin{aligned}
\zeta_{\lambda}^{2} & \approx\left(\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\}\right)^{2} \quad \text { by previous lemma } \\
& =\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\}+\sum_{i \neq j} \frac{C_{(i)} C_{(j)}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L, C_{(j)} \geqslant L\right\}
\end{aligned}
$$

Take two uniform vertices $\mathfrak{u}_{1}, \mathfrak{u}_{2}$. The second term equals

$$
\mathbb{P}\left(\mathrm{C}\left(u_{1}\right) \geqslant \mathrm{L}, \mathrm{C}\left(\mathrm{u}_{2}\right) \geqslant \mathrm{L}, \mathrm{u}_{1} \nLeftarrow \mathrm{u}_{2} \mid \mathrm{G}\right)
$$

Proving second moment lemma

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}^{2}$

$$
\begin{aligned}
\zeta_{\lambda}^{2} & \approx\left(\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\left\{C_{(i)} \geqslant L\right\}\right)^{2} \quad \text { by previous lemma } \\
& =\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\}+\sum_{i \neq j} \frac{C_{(i)} C_{(j)}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L, C_{(j)} \geqslant L\right\}
\end{aligned}
$$

Take two uniform vertices $\mathfrak{u}_{1}, \mathfrak{u}_{2}$. The second term equals

$$
\mathbb{P}\left(\mathrm{C}\left(\mathbf{u}_{1}\right) \geqslant \mathrm{L}, \mathrm{C}\left(\mathrm{u}_{2}\right) \geqslant \mathrm{L}, \mathrm{u}_{1} \nLeftarrow \mathrm{u}_{2} \mid \mathrm{G}\right)
$$

Enough to show:

$$
\lim _{L \rightarrow \infty} \limsup _{n \rightarrow \infty} \mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \nleftarrow u_{2}\right)=0
$$

Two large components cannot be disjoint...

Two large components cannot be disjoint, why?

To show $\mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \nless u_{2}\right) \approx 0$, suffices to prove

$$
\mathbb{P}\left(u_{1} \not \leftrightarrow u_{2} \mid \mathrm{C}\left(u_{1}\right) \geqslant \mathrm{L}, \mathrm{C}\left(\mathrm{u}_{2}\right) \geqslant \mathrm{L}\right) \approx 0
$$

Two large components cannot be disjoint, why?

To show $\mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \nLeftarrow u_{2}\right) \approx 0$, suffices to prove

$$
\mathbb{P}\left(u_{1} \not \leftrightarrow u_{2} \mid \mathrm{C}\left(u_{1}\right) \geqslant \mathrm{L}, \mathrm{C}\left(\mathrm{u}_{2}\right) \geqslant \mathrm{L}\right) \approx 0
$$

Unfortunately, this is quite hard to show,

Two large components cannot be disjoint, why?

To show $\mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \nLeftarrow u_{2}\right) \approx 0$, suffices to prove

$$
\mathbb{P}\left(u_{1} \not \leftrightarrow u_{2} \mid \mathrm{C}\left(u_{1}\right) \geqslant \mathrm{L}, \mathrm{C}\left(\mathrm{u}_{2}\right) \geqslant \mathrm{L}\right) \approx 0
$$

Unfortunately, this is quite hard to show,
Idea: Replace the conditioning event by $\left\{\partial_{\mathrm{r}}\left(u_{1}\right), \partial_{\mathrm{r}}\left(u_{2}\right) \neq \varnothing\right\}$

To show $\mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \nLeftarrow u_{2}\right) \approx 0$, suffices to prove

$$
\mathbb{P}\left(u_{1} \not \leftrightarrow u_{2} \mid \mathrm{C}\left(u_{1}\right) \geqslant \mathrm{L}, \mathrm{C}\left(\mathrm{u}_{2}\right) \geqslant \mathrm{L}\right) \approx 0
$$

Unfortunately, this is quite hard to show,
Idea: Replace the conditioning event by $\left\{\partial_{\mathrm{r}}\left(u_{1}\right), \partial_{\mathrm{r}}\left(u_{2}\right) \neq \varnothing\right\}$

$>\left\{\partial_{\mathrm{r}}\left(\mathrm{u}_{1}\right), \partial_{\mathrm{r}}\left(\mathrm{u}_{2}\right) \neq \varnothing\right\} \approx\left\{\mathrm{C}\left(\mathrm{u}_{1}\right), \mathrm{C}\left(\mathrm{u}_{2}\right) \geqslant \mathrm{L}\right\}$ in prob. for some large r

To show $\mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \nLeftarrow u_{2}\right) \approx 0$, suffices to prove

$$
\mathbb{P}\left(u_{1} \not \leftrightarrow u_{2} \mid \mathrm{C}\left(u_{1}\right) \geqslant \mathrm{L}, \mathrm{C}\left(\mathrm{u}_{2}\right) \geqslant \mathrm{L}\right) \approx 0
$$

Unfortunately, this is quite hard to show,
Idea: Replace the conditioning event by $\left\{\partial_{\mathrm{r}}\left(u_{1}\right), \partial_{\mathrm{r}}\left(u_{2}\right) \neq \varnothing\right\}$

$>\left\{\partial_{\mathrm{r}}\left(\mathrm{u}_{1}\right), \partial_{\mathrm{r}}\left(\mathrm{u}_{2}\right) \neq \varnothing\right\} \approx\left\{\mathrm{C}\left(\mathrm{u}_{1}\right), \mathrm{C}\left(\mathrm{u}_{2}\right) \geqslant \mathrm{L}\right\}$ in prob. for some large r
$>$ Advantage with conditioning on $\left\{\partial_{r}\left(u_{1}\right), \partial_{r}\left(u_{2}\right) \neq \varnothing\right\}$ is we can now explore rest of the graph

Two large components cannot be disjoint, why?

$>$ Condition on $\left\{\partial_{\mathrm{r}}\left(\mathrm{u}_{1}\right), \partial_{\mathrm{r}}\left(\mathrm{u}_{2}\right) \neq \varnothing\right\}$ for large r

Two large components cannot be disjoint, why?

$>$ Condition on $\left\{\partial_{\mathrm{r}}\left(\mathfrak{u}_{1}\right), \partial_{\mathrm{r}}\left(\mathfrak{u}_{2}\right) \neq \varnothing\right\}$ for large r
$>$ Recall: After exploration survives up to r, further growth is exponential

Two large components cannot be disjoint, why?

$>$ Condition on $\left\{\partial_{\mathrm{r}}\left(\mathrm{u}_{1}\right), \partial_{\mathrm{r}}\left(\mathrm{u}_{2}\right) \neq \varnothing\right\}$ for large r
$>$ Recall: After exploration survives up to r, further growth is exponential
$>$ Grow u_{1} neighborhood up to k_{1} s.t. boundary size $N_{k_{1}} \approx \lambda^{k_{1}}=\omega_{n} \sqrt{n}$

Two large components cannot be disjoint, why?

$>$ Condition on $\left\{\partial_{\mathrm{r}}\left(\mathrm{u}_{1}\right), \partial_{\mathrm{r}}\left(\mathrm{u}_{2}\right) \neq \varnothing\right\}$ for large r
$>$ Recall: After exploration survives up to r, further growth is exponential
$>$ Grow u_{1} neighborhood up to k_{1} s.t. boundary size $N_{k_{1}} \approx \lambda^{k_{1}}=\omega_{n} \sqrt{n}$
$>$ Grow u_{2} neighborhood s.t. boundary size is \sqrt{n}

Two large components cannot be disjoint, why?

$>$ Condition on $\left\{\partial_{r}\left(u_{1}\right), \partial_{r}\left(u_{2}\right) \neq \varnothing\right\}$ for large r
$>$ Recall: After exploration survives up to r, further growth is exponential
$>$ Grow u_{1} neighborhood up to k_{1} s.t. boundary size $N_{k_{1}} \approx \lambda^{k_{1}}=\omega_{n} \sqrt{n}$
$>$ Grow u_{2} neighborhood s.t. boundary size is \sqrt{n}
$\mathbb{P}($ no edge between boundaries $)=\left(1-\frac{\lambda}{n}\right)^{\omega_{n} \sqrt{n} \times \sqrt{n}} \approx e^{-\lambda \omega_{n}} \rightarrow 0$

Two large components cannot be disjoint, why?

$>$ Condition on $\left\{\partial_{\mathrm{r}}\left(\mathrm{u}_{1}\right), \partial_{\mathrm{r}}\left(\mathrm{u}_{2}\right) \neq \varnothing\right\}$ for large r
$>$ Recall: After exploration survives up to r, further growth is exponential
$>$ Grow u_{1} neighborhood up to k_{1} s.t. boundary size $N_{k_{1}} \approx \lambda^{k_{1}}=\omega_{n} \sqrt{n}$
$>$ Grow u_{2} neighborhood s.t. boundary size is \sqrt{n}
$\mathbb{P}($ no edge between boundaries $)=\left(1-\frac{\lambda}{n}\right)^{\omega_{n} \sqrt{n} \times \sqrt{n}} \approx e^{-\lambda \omega_{n}} \rightarrow 0$

$$
\Longrightarrow \mathbb{P}\left(u_{1} \nleftarrow u_{2} \mid \partial_{r}\left(u_{1}\right), \partial_{r}\left(u_{1}\right) \neq \varnothing\right) \approx 0
$$

Two large components cannot be disjoint, why?

$>$ Condition on $\left\{\partial_{\mathrm{r}}\left(\mathrm{u}_{1}\right), \partial_{\mathrm{r}}\left(\mathrm{u}_{2}\right) \neq \varnothing\right\}$ for large r
$>$ Recall: After exploration survives up to r, further growth is exponential
$>$ Grow u_{1} neighborhood up to k_{1} s.t. boundary size $N_{k_{1}} \approx \lambda^{k_{1}}=\omega_{n} \sqrt{n}$
$>$ Grow u_{2} neighborhood s.t. boundary size is \sqrt{n}
$\mathbb{P}($ no edge between boundaries $)=\left(1-\frac{\lambda}{n}\right)^{\omega_{n} \sqrt{n} \times \sqrt{n}} \approx e^{-\lambda \omega_{n}} \rightarrow 0$

$$
\Longrightarrow \mathbb{P}\left(u_{1} \not \leftrightarrow u_{2} \mid \partial_{r}\left(u_{1}\right), \partial_{r}\left(u_{1}\right) \neq \varnothing\right) \approx 0
$$

Takeaway: If there are two components with large boundary, we can grow them until boundary has size \sqrt{n} and then they intersect

Proving second moment lemma contd

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}^{2}$

Proving second moment lemma contd

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}^{2}$
$>$ Reduced to prove

$$
\lim _{L \rightarrow \infty} \limsup _{n \rightarrow \infty} \mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \nless u_{2}\right)=0
$$

Two large components cannot be disjoint...

Proving second moment lemma contd

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}^{2}$
$>$ Reduced to prove

$$
\lim _{L \rightarrow \infty} \limsup _{n \rightarrow \infty} \mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \nless u_{2}\right)=0
$$

Two large components cannot be disjoint...
$>$ Reduced to prove

$$
\mathbb{P}\left(u_{1} \not \leftrightarrow u_{2} \mid \partial_{r}\left(u_{1}\right), \partial_{r}\left(u_{2}\right) \neq \varnothing\right) \approx 0
$$

Proving second moment lemma contd

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}^{2}$
$>$ Reduced to prove

$$
\lim _{L \rightarrow \infty} \limsup _{n \rightarrow \infty} \mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \nleftarrow u_{2}\right)=0
$$

Two large components cannot be disjoint...
$>$ Reduced to prove

$$
\mathbb{P}\left(u_{1} \not \leftrightarrow u_{2} \mid \partial_{r}\left(u_{1}\right), \partial_{r}\left(u_{2}\right) \neq \varnothing\right) \approx 0
$$

$>$ Proved this by growing both the neihborhoods of u_{1}, u_{2} and they intersect when the boundary size grows to size \sqrt{n}

Proving second moment lemma contd

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}^{2}$
$>$ Reduced to prove

$$
\lim _{L \rightarrow \infty} \limsup _{n \rightarrow \infty} \mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \nless u_{2}\right)=0
$$

Two large components cannot be disjoint...
$>$ Reduced to prove

$$
\mathbb{P}\left(u_{1} \not \leftrightarrow u_{2} \mid \partial_{r}\left(u_{1}\right), \partial_{r}\left(u_{2}\right) \neq \varnothing\right) \approx 0
$$

$>$ Proved this by growing both the neihborhoods of u_{1}, u_{2} and they intersect when the boundary size grows to size \sqrt{n}

Completes the proof of Lemma 2

Proving second moment lemma contd

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}^{2}}{n^{2}} \mathbb{1}\left\{C_{(i)} \geqslant L\right\} \approx \zeta_{\lambda}^{2}$
$>$ Reduced to prove
Key fact 2: $\lim _{\mathrm{L} \rightarrow \infty} \limsup _{\mathrm{n} \rightarrow \infty} \mathbb{P}\left(\mathrm{C}\left(\mathrm{u}_{1}\right) \geqslant \mathrm{L}, \mathrm{C}\left(\mathrm{u}_{2}\right) \geqslant \mathrm{L}, \mathrm{u}_{1} \nLeftarrow \mathrm{u}_{2}\right)=0$
Two large components cannot be disjoint...
$>$ Reduced to prove

$$
\mathbb{P}\left(u_{1} \not \leftrightarrow u_{2} \mid \partial_{r}\left(u_{1}\right), \partial_{r}\left(u_{2}\right) \neq \varnothing\right) \approx 0
$$

$>$ Proved this by growing both the neihborhoods of u_{1}, u_{2} and they intersect when the boundary size grows to size \sqrt{n}

Completes the proof of Lemma 2

Summary: Giant for Erdős-Rényi

We proved

Theorem: Supercritical $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $C_{(i)}:=i$-th largest component of $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$. If $\lambda>1$, then

$$
\frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta_{\lambda} \quad \text { and } \quad \frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0
$$

Summary: Giant for Erdős-Rényi

We proved

Theorem: Supercritical $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $C_{(i)}:=i$-th largest component of $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$. If $\lambda>1$, then

$$
\frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta_{\lambda} \quad \text { and } \quad \frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0
$$

The two main ingredients to prove this were...

Summary: Giant for Erdős-Rényi

We proved

Theorem: Supercritical $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $C_{(i)}:=i$-th largest component of $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$. If $\lambda>1$, then

$$
\frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta_{\lambda} \quad \text { and } \quad \frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0
$$

The two main ingredients to prove this were...
(1) Local neighborhood approximation: Local neighborhood of u is approximately BP whp and when BP survives, $\mathrm{C}(u)$ is large

Summary: Giant for Erdős-Rényi

We proved
Theorem: Supercritical $E R_{n}\left(\frac{\lambda}{n}\right)$
Let $C_{(i)}:=i$-th largest component of $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$. If $\lambda>1$, then

$$
\frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta_{\lambda} \quad \text { and } \quad \frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0
$$

The two main ingredients to prove this were...
(1) Local neighborhood approximation: Local neighborhood of u is approximately BP whp and when BP survives, $\mathrm{C}(\mathrm{u})$ is large
(2) Two large components intersect:

$$
\lim _{\mathrm{L} \rightarrow \infty} \lim _{n \rightarrow \infty} \mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \nless u_{2}\right)=0
$$

Summary: Giant for Erdős-Rényi

We proved
Theorem: Supercritical $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $C_{(i)}:=i$-th largest component of $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$. If $\lambda>1$, then

$$
\frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta_{\lambda} \quad \text { and } \quad \frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0
$$

The two main ingredients to prove this were...
(1) Local neighborhood approximation: Local neighborhood of u is approximately BP whp and when BP survives, $\mathrm{C}(u)$ is large
(2) Two large components intersect:

$$
\lim _{L \rightarrow \infty} \lim _{n \rightarrow \infty} \mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \nleftarrow u_{2}\right)=0
$$

\Rightarrow Was shown by growing two neighborhoods, and they must intersect when neighborhoods become large enough $\mathrm{O}(\sqrt{n})$

Summary: Giant for Erdős-Rényi

We proved
Theorem: Supercritical $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $C_{(i)}:=i$-th largest component of $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$. If $\lambda>1$, then

$$
\frac{\mathrm{C}_{(1)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} \zeta_{\lambda} \quad \text { and } \quad \frac{\mathrm{C}_{(2)}}{\mathrm{n}} \xrightarrow{\mathbb{P}} 0
$$

The two main ingredients to prove this were...
(1) Local neighborhood approximation: Local neighborhood of u is approximately BP whp and when BP survives, $\mathrm{C}(\mathrm{u})$ is large
(2) Two large components intersect:

$$
\lim _{L \rightarrow \infty} \lim _{n \rightarrow \infty} \mathbb{P}\left(C\left(u_{1}\right) \geqslant L, C\left(u_{2}\right) \geqslant L, u_{1} \not \leftrightarrow u_{2}\right)=0
$$

\Rightarrow Was shown by growing two neighborhoods, and they must intersect when neighborhoods become large enough $\mathrm{O}(\sqrt{n})$
$>$ van der Hofstad (2021) proved this for general graphs that converge in local-weak convergence sense

Before moving on to other models, lets see another useful application of the above ideas...

Typical distances in Erdős-Rényi

Typical distances in the giant of Erdős-Rényi

Typical distance: Graph distance between two uniform vertices $\mathfrak{u}_{1}, \mathfrak{u}_{2}$

Typical distances in the giant of Erdős-Rényi

Typical distance: Graph distance between two uniform vertices u_{1}, u_{2}
Theorem: Typical distances in $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $\lambda>1$. Conditionally on u_{1}, u_{2} in same component (i.e., $\left.\operatorname{dist}\left(u_{1}, u_{2}\right) \neq \infty\right)$

$$
\frac{\operatorname{dist}\left(u_{1}, u_{2}\right)}{\log _{\lambda} n} \xrightarrow{\mathbb{P}} 1
$$

Typical distances in the giant of Erdős-Rényi

Typical distance: Graph distance between two uniform vertices $\mathfrak{u}_{1}, \mathfrak{u}_{2}$
Theorem: Typical distances in $\operatorname{ER}_{\mathrm{n}}\left(\frac{\lambda}{\mathrm{n}}\right)$
Let $\lambda>1$. Conditionally on u_{1}, u_{2} in same component (i.e., $\operatorname{dist}\left(u_{1}, u_{2}\right) \neq \infty$)

$$
\frac{\operatorname{dist}\left(u_{1}, u_{2}\right)}{\log _{\lambda} n} \xrightarrow{\mathbb{P}} 1
$$

Proof: Again use neighborhood growth idea...

Typical distances in the giant of Erdős-Rényi

Typical distance: Graph distance between two uniform vertices $\mathfrak{u}_{1}, \mathfrak{u}_{2}$
Theorem: Typical distances in $\operatorname{ER}_{\mathrm{n}}\left(\frac{\lambda}{\mathrm{n}}\right)$
Let $\lambda>1$. Conditionally on \mathfrak{u}_{1}, u_{2} in same component (i.e., $\left.\operatorname{dist}\left(u_{1}, u_{2}\right) \neq \infty\right)$

$$
\frac{\operatorname{dist}\left(u_{1}, u_{2}\right)}{\log _{\lambda} n} \xrightarrow{\mathbb{P}} 1
$$

Proof: Again use neighborhood growth idea...
(1) Keep growing neighborhoods from $\mathfrak{u}_{1}, \mathfrak{u}_{2}$.

Typical distances in the giant of Erdős-Rényi

Typical distance: Graph distance between two uniform vertices $\mathfrak{u}_{1}, \mathfrak{u}_{2}$
Theorem: Typical distances in $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $\lambda>1$. Conditionally on u_{1}, u_{2} in same component (i.e., $\left.\operatorname{dist}\left(u_{1}, u_{2}\right) \neq \infty\right)$

$$
\frac{\operatorname{dist}\left(u_{1}, u_{2}\right)}{\log _{\lambda} n} \xrightarrow{\mathbb{P}} 1
$$

Proof: Again use neighborhood growth idea...
(1) Keep growing neighborhoods from u_{1}, u_{2}. Recall $\mathbb{E}[\#$ conflicts $] \leqslant \lambda^{2 k-\log _{\lambda} n}$

Typical distances in the giant of Erdős-Rényi

Typical distance: Graph distance between two uniform vertices $\mathfrak{u}_{1}, \mathfrak{u}_{2}$
Theorem: Typical distances in $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $\lambda>1$. Conditionally on u_{1}, u_{2} in same component (i.e., $\left.\operatorname{dist}\left(u_{1}, u_{2}\right) \neq \infty\right)$

$$
\frac{\operatorname{dist}\left(u_{1}, u_{2}\right)}{\log _{\lambda} n} \xrightarrow{\mathbb{P}} 1
$$

Proof: Again use neighborhood growth idea...
(1) Keep growing neighborhoods from u_{1}, u_{2}. Recall $\mathbb{E}[\#$ conflicts $] \leqslant \lambda^{2 k-\log _{\lambda} n}$
\Rightarrow They are disjoint until boundary sizes become \sqrt{n}, i.e., $k \lesssim \frac{1}{2} \log _{\lambda} n$

Typical distances in the giant of Erdős-Rényi

Typical distance: Graph distance between two uniform vertices $\mathfrak{u}_{1}, \mathfrak{u}_{2}$
Theorem: Typical distances in $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $\lambda>1$. Conditionally on u_{1}, u_{2} in same component (i.e., $\left.\operatorname{dist}\left(u_{1}, u_{2}\right) \neq \infty\right)$

$$
\frac{\operatorname{dist}\left(u_{1}, u_{2}\right)}{\log _{\lambda} n} \xrightarrow{\mathbb{P}} 1
$$

Proof: Again use neighborhood growth idea...
(1) Keep growing neighborhoods from u_{1}, u_{2}. Recall $\mathbb{E}[\#$ conflicts $] \leqslant \lambda^{2 k-\log _{\lambda} n}$
\Rightarrow They are disjoint until boundary sizes become \sqrt{n}, i.e., $k \lesssim \frac{1}{2} \log _{\lambda} n$
\Rightarrow Shortest path correspond to first intersection of neighborhoods

Typical distances in the giant of Erdős-Rényi

Typical distance: Graph distance between two uniform vertices $\mathfrak{u}_{1}, \mathfrak{u}_{2}$
Theorem: Typical distances in $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $\lambda>1$. Conditionally on u_{1}, u_{2} in same component (i.e., $\left.\operatorname{dist}\left(u_{1}, u_{2}\right) \neq \infty\right)$

$$
\frac{\operatorname{dist}\left(u_{1}, u_{2}\right)}{\log _{\lambda} n} \xrightarrow{\mathbb{P}} 1
$$

Proof: Again use neighborhood growth idea...
(1) Keep growing neighborhoods from u_{1}, u_{2}. Recall $\mathbb{E}[\#$ conflicts $] \leqslant \lambda^{2 k-\log _{\lambda} n}$
\Rightarrow They are disjoint until boundary sizes become \sqrt{n}, i.e., $k \lesssim \frac{1}{2} \log _{\lambda} n$
\Rightarrow Shortest path correspond to first intersection of neighborhoods
(2) Around $k=\frac{1}{2} \log _{\lambda} n+\omega_{n}$, neighborhoods start intersecting

Typical distances in the giant of Erdős-Rényi

Typical distance: Graph distance between two uniform vertices $\mathfrak{u}_{1}, \mathfrak{u}_{2}$
Theorem: Typical distances in $\operatorname{ER}_{n}\left(\frac{\lambda}{n}\right)$
Let $\lambda>1$. Conditionally on $\mathfrak{u}_{1}, \mathfrak{u}_{2}$ in same component (i.e., $\operatorname{dist}\left(\mathfrak{u}_{1}, \mathfrak{u}_{2}\right) \neq \infty$)

$$
\frac{\operatorname{dist}\left(u_{1}, u_{2}\right)}{\log _{\lambda} n} \xrightarrow{\mathbb{P}} 1
$$

Proof: Again use neighborhood growth idea...
(1) Keep growing neighborhoods from u_{1}, u_{2}. Recall $\mathbb{E}[\#$ conflicts $] \leqslant \lambda^{2 k-\log _{\lambda} n}$
\Rightarrow They are disjoint until boundary sizes become \sqrt{n}, i.e., $k \lesssim \frac{1}{2} \log _{\lambda} n$
\Rightarrow Shortest path correspond to first intersection of neighborhoods
(2) Around $k=\frac{1}{2} \log _{\lambda} n+\omega_{n}$, neighborhoods start intersecting

$$
\operatorname{dist}\left(u_{1}, u_{2}\right)=\frac{1}{2} \log _{\lambda} n+\frac{1}{2} \log _{\lambda} n+o\left(\log _{\lambda} n\right)=\log _{\lambda} n+o\left(\log _{\lambda} n\right)
$$

