Sparse Random Graphs-I

Souvik Dhara

Graph Limits and Processes on Networks: From Epidemics to Misinformation Boot Camp Lets start with a few questions...

How **DISEASE** becomes **Epidemic**?

Lets start with a few questions...

How **DISEASE** becomes **Epidemic**?

What causes INTERNET to breakdown?

Lets start with a few questions...

How **DISEASE** becomes **Epidemic**?

What causes **INTERNET** to **breakdown**?

When does **MISINFORMATION** reach a large population?

These seemingly unrelated questions have a few commonalities:

These seemingly unrelated questions have a few commonalities:

1 There is an underlying *large* network with a *complex structure*

These seemingly unrelated questions have a few commonalities:

- **1** There is an underlying *large* network with a *complex structure*
- 2 There is emergence of behavior having drastic impact, a.k.a. *phase transition*

These seemingly unrelated questions have a few commonalities:

- **1** There is an underlying *large* network with a *complex structure*
- 2 There is emergence of behavior having drastic impact, a.k.a. *phase transition*

➤ Random Graphs provide a *simplified probabilistic representation* to model these complex system.

- ➡ Capture structural properties (degree distribution, communities)
- Provide insight into emergence of different types of behavior such as phase transition

➤ Random Graphs are *good graphs*: General graphs are too messy and Random Graph is a way to pose regularity properties

Example: Expansion, Convergence (Graphon, Local-weak)

➤ Random Graphs are *good graphs*: General graphs are too messy and Random Graph is a way to pose regularity properties

Example: Expansion, Convergence (Graphon, Local-weak)

> Often reveal core properties responsible for phenomena of interest

Example: Will see how local neighborhood structure impact global properties like phase transition, typical distances

➤ Random Graphs are *good graphs*: General graphs are too messy and Random Graph is a way to pose regularity properties

Example: Expansion, Convergence (Graphon, Local-weak)

> Often reveal core properties responsible for phenomena of interest

Example: Will see how local neighborhood structure impact global properties like phase transition, typical distances

Random Graphs serve to get provable guarantees for graph algorithms *Example:* Heuristic algorithms for NP-hard problems such as graph partitioning, coloring.

partitioning, coloring

Plan

Today:

- > Local Branching Process approximation technique on random graphs
- > Explore its relation to *Giant Component Problem* on different models

Tomorrow:

- > Applications to Percolation, Epidemics
- > Using Stochastic Process convergence in Random Graphs

Let's start with the most elementary yet fundamental model...

Erdős-Rényi Random Graph

Definition

> Given n nodes $\{1, 2, \ldots, n\}$

Definition

- > Given n nodes $\{1, 2, ..., n\}$
- ≻ Edge {i, j} present w.p. p independently

Definition

- > Given n nodes $\{1, 2, ..., n\}$
- ≻ Edge {i, j} present w.p. p independently
- > Denote this graph by $ER_n(p)$

Definition

- > Given n nodes $\{1, 2, ..., n\}$
- \succ Edge {i, j} present w.p. p independently
- \succ Denote this graph by $ER_n(p)$

Historical note:

➤ This model was actually studied by Gilbert (1959) and heuristically by Solomonoff & Rapoport (1951)

➤ Erdős & Rényi (1959) initially worked with a slightly different model where fixed number of edges sampled uniformly. In a sequence of eight papers between 1959-1968 they laid the foundation of Random Graph theory

What are we after?

 $ER_n(p)$ with n = 1000

Pic source: van der Hofstad (2017)

What are we after?

 $ER_n(p)$ with n = 1000

 \succ If $p = \frac{\lambda}{n}$, then there is *phase transition around* $\lambda = 1$

- → λ < 1: All components are small
- ⇒ λ > 1: There is a unique *giant component*

Pic source: van der Hofstad (2017)

To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

➤ To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

➤ To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

> Generally, each vertex at depth i explores $Bin(n - s_i, \frac{\lambda}{n})$ new vertices at depth i + 1, where s_i is the number of vertices explored up to depth i

➤ To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

> Generally, each vertex at depth i explores $Bin(n - s_i, \frac{\lambda}{n})$ new vertices at depth i + 1, where s_i is the number of vertices explored up to depth i

Two obstacles come up to analyze this process

➤ To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

> Generally, each vertex at depth i explores $Bin(n - s_i, \frac{\lambda}{n})$ new vertices at depth i + 1, where s_i is the number of vertices explored up to depth i

Two obstacles come up to analyze this process

Depletion of vertices

➤ To analyze component sizes: Gradually explore graph in BFS starting from any node, e.g., node 1

➤ Generally, each vertex at depth i explores $Bin(n - s_i, \frac{\lambda}{n})$ new vertices at depth i + 1, where s_i is the number of vertices explored up to depth i

Two obstacles come up to analyze this process

- Depletion of vertices
- ➡ Conflicts among new vertices

Domination by Branching Process

Let's consider a random process without Depletion and Conflicts

➤ The object on right is a *Branching Process*

Domination by Branching Process

Let's consider a random process without Depletion and Conflicts

> The object on right is a *Branching Process*

Simple Fact

Let $N_k = \#$ vertices at depth k for $ER_n(\frac{\lambda}{n})$ exploration, and \bar{N}_k denotes same for Branching process. There is a coupling such that w.p. 1

 $N_k \leq \bar{N}_k \quad \forall k \geq 0$

 \succ C(1) := component size of vertex 1

 \succ C(1) := component size of vertex 1

 $\mathbb{E}[C(1)]$

 \succ C(1) := component size of vertex 1

$$\mathbb{E}[C(1)] = \mathbb{E}\bigg[\sum_{k \geqslant 1} N_k\bigg]$$

 \succ C(1) := component size of vertex 1

$$\mathbb{E}[C(1)] = \mathbb{E}\bigg[\sum_{k \geqslant 1} N_k\bigg] \leqslant \mathbb{E}\bigg[\sum_{k \geqslant 1} \bar{N}_k\bigg] = \sum_{k \geqslant 1} \mathbb{E}[\bar{N}_k]$$

 \succ C(1) := component size of vertex 1

$$\mathbb{E}[C(1)] = \mathbb{E}\bigg[\sum_{k \ge 1} N_k\bigg] \leqslant \mathbb{E}\bigg[\sum_{k \ge 1} \tilde{N}_k\bigg] = \sum_{k \ge 1} \mathbb{E}[\tilde{N}_k]$$

For a Branching Process: $\mathbb{E}[\bar{N}_k] = \lambda^k$

 \succ C(1) := component size of vertex 1

$$\mathbb{E}[C(1)] = \mathbb{E}\bigg[\sum_{k \ge 1} N_k\bigg] \leqslant \mathbb{E}\bigg[\sum_{k \ge 1} \bar{N}_k\bigg] = \sum_{k \ge 1} \mathbb{E}[\bar{N}_k] = \sum_{k \ge 1} \lambda^k = \frac{1}{1-\lambda}$$

For a Branching Process: $\mathbb{E}[\bar{N}_k] = \lambda^k$

Small component sizes for $\lambda < 1$

 \succ C(1) := component size of vertex 1

$$\mathbb{E}[C(1)] = \mathbb{E}\bigg[\sum_{k \ge 1} N_k\bigg] \leqslant \mathbb{E}\bigg[\sum_{k \ge 1} \bar{N}_k\bigg] = \sum_{k \ge 1} \mathbb{E}[\bar{N}_k] = \sum_{k \ge 1} \lambda^k = \frac{1}{1 - \lambda}$$

For a Branching Process: $\mathbb{E}[\bar{N}_k] = \lambda^k$

If $\lambda < 1$, then BP has size O(1) so expected component size is O(1)

Small component sizes for $\lambda < 1$

 \succ C(1) := component size of vertex 1

$$\mathbb{E}[C(1)] = \mathbb{E}\bigg[\sum_{k \ge 1} N_k\bigg] \leqslant \mathbb{E}\bigg[\sum_{k \ge 1} \bar{N}_k\bigg] = \sum_{k \ge 1} \mathbb{E}[\bar{N}_k] = \sum_{k \ge 1} \lambda^k = \frac{1}{1 - \lambda}$$

For a Branching Process: $\mathbb{E}[\bar{N}_k] = \lambda^k$

If $\lambda < 1$, then BP has size O(1) so expected component size is O(1)

Theorem: Subcritical $ER_n(\frac{\lambda}{n})$

If $\lambda < 1$, then

$$\frac{max_u \ C(u)}{\log n} \xrightarrow{\mathbb{P}} \frac{1}{I_{\lambda}}, \qquad \text{where } I_{\lambda} = \lambda - 1 - \log \lambda$$

Small component sizes for $\lambda < 1$

 \succ C(1) := component size of vertex 1

$$\mathbb{E}[C(1)] = \mathbb{E}\bigg[\sum_{k \ge 1} N_k\bigg] \leqslant \mathbb{E}\bigg[\sum_{k \ge 1} \bar{N}_k\bigg] = \sum_{k \ge 1} \mathbb{E}[\bar{N}_k] = \sum_{k \ge 1} \lambda^k = \frac{1}{1 - \lambda}$$

For a Branching Process: $\mathbb{E}[\bar{N}_k] = \lambda^k$

If $\lambda < 1$, then BP has size O(1) so expected component size is O(1)

Theorem: Subcritical $ER_n(\frac{\lambda}{n})$

If $\lambda < 1$, then

$$\frac{\max_{u} C(u)}{\log n} \xrightarrow{\mathbb{P}} \frac{1}{I_{\lambda}}, \qquad \text{where } I_{\lambda} = \lambda - 1 - \log \lambda$$

> Proof uses Large Deviation estimates for branching process survival prob

What happens to the BP for $\lambda > 1$

Lets again look at upper bounding Branching Process (BP)

$$\operatorname{Bin}(\mathfrak{n},\frac{\lambda}{\mathfrak{n}}) \approx \operatorname{Poisson}(\lambda)$$
$$\operatorname{Bin}(\mathfrak{n},\frac{\lambda}{\mathfrak{n}}) \approx \operatorname{Poisson}(\lambda)$$

What happens to the BP for $\lambda > 1$

Lets again look at upper bounding Branching Process (BP)

$$\operatorname{Bin}(\mathfrak{n},\frac{\lambda}{\mathfrak{n}})\approx\operatorname{Poisson}(\lambda)$$
$$\operatorname{Bin}(\mathfrak{n},\frac{\lambda}{\mathfrak{n}})\approx\operatorname{Poisson}(\lambda)$$

 $\lambda > 1 \quad \Longrightarrow \quad \mathbb{P}(BP \text{ survives up to infinite generations}) = \zeta_\lambda > 0$

What happens to the BP for $\lambda > 1$

Lets again look at upper bounding Branching Process (BP)

$$Bin(n, \frac{\lambda}{n}) \approx Poisson(\lambda)$$
$$Bin(n, \frac{\lambda}{n}) \approx Poisson(\lambda)$$

 $\lambda > 1 \implies \mathbb{P}(BP \text{ survives up to infinite generations}) = \zeta_{\lambda} > 0$

 $\succ \zeta_{\lambda}$ satisfies is a positive solution of $1 - \zeta = e^{-\lambda\zeta}$

- > For $\lambda > 1$, $\mathbb{P}(BP \text{ survives up to infinite generations}) = \zeta_{\lambda} > 0$
- > As we will see, exploration and BP remain close together for a long time
 - When BP survives, exploration continues for a long time giving rise to a large component

- > For $\lambda > 1$, $\mathbb{P}(BP \text{ survives up to infinite generations}) = \zeta_{\lambda} > 0$
- > As we will see, exploration and BP remain close together for a long time
 - When BP survives, exploration continues for a long time giving rise to a large component
- ≻ C(ν) is large w.p. ζ_λ

- \succ For $\lambda > 1$, $\mathbb{P}(BP \text{ survives up to infinite generations}) = \zeta_{\lambda} > 0$
- > As we will see, exploration and BP remain close together for a long time
 - When BP survives, exploration continues for a long time giving rise to a large component
- $\succ C(\nu)$ is large w.p. $\zeta_{\lambda} \implies \mathbb{E}[\#\{\nu : C(\nu) \text{ is large}\}] \approx n\zeta_{\lambda}$

- \succ For $\lambda > 1$, $\mathbb{P}(BP \text{ survives up to infinite generations}) = \zeta_{\lambda} > 0$
- > As we will see, exploration and BP remain close together for a long time
 - When BP survives, exploration continues for a long time giving rise to a large component
- $\succ C(v)$ is large w.p. $\zeta_{\lambda} \implies \mathbb{E}[\#\{v : C(v) \text{ is large}\}] \approx n\zeta_{\lambda}$

Theorem: Supercritical $ER_n(\frac{\lambda}{n})$

Let $C_{(i)}$:= i-th largest component of $\text{ER}_n(\frac{\lambda}{n})$. If $\lambda > 1$, then as $n \to \infty$

$$\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda} \quad \text{and} \quad \frac{C_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$$

$$A \text{ unique giant component emerges..}$$

van der Hofstad: Random Graph and Complex Networks, Vol 2

Lemma 1: First moment

$$\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\} = \zeta_{\lambda} + o_{L,n}(1)$$

van der Hofstad: Random Graph and Complex Networks, Vol 2

Lemma 1: First moment

$$\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\} = \zeta_{\lambda} + o_{L,n}(1)$$

Lemma 2: Second moment

$$\sum_{i\geqslant 1}\frac{C^2_{\scriptscriptstyle(i)}}{\mathfrak{n}^2}\mathbb{1}\{C_{\scriptscriptstyle(i)}\geqslant L\}=\zeta_\lambda^2+o_{\scriptscriptstyle L,\mathfrak{n}}(1)$$

van der Hofstad: Random Graph and Complex Networks, Vol 2

Lemma 1: First moment

$$\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\} = \zeta_{\lambda} + o_{L,n}(1)$$

Lemma 2: Second moment

$$\sum_{i\geqslant 1}\frac{C_{\scriptscriptstyle(i)}^2}{n^2}\mathbb{I}\{C_{\scriptscriptstyle(i)}\geqslant L\}=\zeta_\lambda^2+o_{L,n}(1)$$

Two lemmas directly imply

$$\frac{C_{(1)}}{n} \approx \zeta_{\lambda} \quad \text{and} \quad \frac{C_{(2)}}{n} \approx 0$$

which shows existence and uniqueness of giant

van der Hofstad: Random Graph and Complex Networks, Vol 2

Lemma 1: First moment

$$\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\} = \zeta_{\lambda} + o_{L,n}(1)$$

Lemma 2: Second moment

$$\sum_{i\geqslant 1}\frac{C^2_{\scriptscriptstyle(i)}}{n^2}\mathbb{1}\{C_{\scriptscriptstyle(i)}\geqslant L\}=\zeta_\lambda^2+o_{L,n}(1)$$

Two lemmas directly imply

$$\frac{C_{(1)}}{n} \approx \zeta_{\lambda} \quad \text{and} \quad \frac{C_{(2)}}{n} \approx 0$$

which shows existence and uniqueness of giant

Next, prove two lemmas but before that...

van der Hofstad: Random Graph and Complex Networks, Vol 2

Will show: $N_k \approx \bar{N}_k$ until s vertices explored for $s = n^{\alpha}$, $\alpha < 1$

Exploration and BP remain close together for a long time

Will show: $N_k \approx \bar{N}_k$ until s vertices explored for $s = n^a$, a < 1

Exploration and BP remain close together for a long time

Two sources of discrepancy

1 Depletion:

Will show: $N_k \approx \bar{N}_k$ until s vertices explored for $s = n^a$, a < 1

Exploration and BP remain close together for a long time

Two sources of discrepancy

1 Depletion: Bin $(n - s, \frac{\lambda}{n}) \approx \text{Poisson}(\lambda)$ for s = o(n)

Will show: $N_k \approx \bar{N}_k$ until s vertices explored for $s = n^a$, a < 1

Exploration and BP remain close together for a long time

Two sources of discrepancy

- **1** Depletion: $Bin(n s, \frac{\lambda}{n}) \approx Poisson(\lambda)$ for s = o(n)
- **2** What about conflicts?

Will show: $N_k \approx \bar{N}_k$ until s vertices explored for $s = n^a$, a < 1

Exploration and BP remain close together for a long time

Two sources of discrepancy

- **1** Depletion: $Bin(n s, \frac{\lambda}{n}) \approx Poisson(\lambda)$ for s = o(n)
- **2** What about conflicts?

Fact:
$$\mathbb{E}[\text{#conflicts}] \leq C \frac{\lambda^{2k}}{n}$$

Fact: $\mathbb{E}[\# \text{ conflicts}] \leq C \frac{\lambda^{2k}}{n}$

Fact: $\mathbb{E}[\# \text{ conflicts}] \leq C \frac{\lambda^{2k}}{n}$

➤ If k is a *large* constant, then $\mathbb{E}[\text{#conflicts}] \approx 0$ *Exploration* = *BP w.p.* ≈ 1

Fact: $\mathbb{E}[\# \text{ conflicts}] \leq C \frac{\lambda^{2k}}{n}$

➤ If k is a *large* constant, then $\mathbb{E}[\text{#conflicts}] \approx 0$ *Exploration* = *BP w.p.* ≈ 1

Fact: $\mathbb{E}[\# \text{ conflicts}] \leq C \frac{\lambda^{2k}}{n}$

➤ If k is a *large* constant, then $\mathbb{E}[\text{#conflicts}] \approx 0$ *Exploration* = *BP w.p.* ≈ 1

 \succ Let $k = a \log_{\lambda} n$ and $0 \leq a < 1$.

Fact: $\mathbb{E}[\# \text{ conflicts}] \leq C \frac{\lambda^{2k}}{n}$

➤ If k is a *large* constant, then $\mathbb{E}[\text{#conflicts}] \approx 0$ *Exploration* = *BP w.p.* ≈ 1

 \succ Let $k = a \log_{\lambda} n$ and $0 \leq a < 1$. Then $\lambda^k = n^a$ and

Fact: $\mathbb{E}[\# \text{ conflicts}] \leq C \frac{\lambda^{2k}}{n}$

> If k is a *large* constant, then $\mathbb{E}[\text{#conflicts}] \approx 0$ *Exploration* = *BP w.p.* ≈ 1

 \succ Let $k = a \log_{\lambda} n$ and $0 \leq a < 1$. Then $\lambda^k = n^a$ and

 $\Rightarrow \mathbb{E}[\text{#conflicts}] \leq Cn^{2\alpha-1}$

Fact: $\mathbb{E}[\# \text{ conflicts}] \leq C \frac{\lambda^{2k}}{n}$

➤ If k is a *large* constant, then $\mathbb{E}[\text{#conflicts}] \approx 0$ *Exploration* = *BP w.p.* ≈ 1

 \succ Let $k = a \log_{\lambda} n$ and 0 ≤ a < 1. Then $\lambda^k = n^a$ and

→ $\mathbb{E}[\text{#conflicts}] \leq Cn^{2\alpha-1}$

 \clubsuit Conditioned on BP survives for r depth (r large), $\bar{N}_k\approx\lambda^k=n^\alpha$ for $k\geqslant r$

Fact: $\mathbb{E}[\# \text{ conflicts}] \leq C \frac{\lambda^{2k}}{n}$

➤ If k is a *large* constant, then $\mathbb{E}[\text{#conflicts}] \approx 0$ *Exploration* = *BP w.p.* ≈ 1

 \succ Let $k = a \log_{\lambda} n$ and 0 ≤ a < 1. Then $\lambda^k = n^a$ and

⇒ \mathbb{E} [#conflicts] $\leq Cn^{2\alpha-1}$

 \clubsuit Conditioned on BP survives for r depth (r large), $\bar{N}_k\approx\lambda^k=n^\alpha$ for $k\geqslant r$

 $#conflicts = o(\bar{N}_k)$ whp

Fact: $\mathbb{E}[\# \text{ conflicts}] \leq C \frac{\lambda^{2k}}{n}$

> If k is a *large* constant, then $\mathbb{E}[\text{#conflicts}] \approx 0$ *Exploration* = *BP w.p.* ≈ 1

 \succ Let $k = a \log_{\lambda} n$ and 0 ≤ a < 1. Then $\lambda^k = n^a$ and

⇒ \mathbb{E} [#conflicts] $\leq Cn^{2\alpha-1}$

 \clubsuit Conditioned on BP survives for r depth (r large), $\bar{N}_k\approx\lambda^k=n^\alpha$ for $k\geqslant r$

$$\text{#conflicts} = o(\bar{N}_k) \text{ whp } \implies \boxed{N_k \approx \bar{N}_k \approx \lambda^k}$$

Fact: $\mathbb{E}[\# \text{ conflicts}] \leq C \frac{\lambda^{2k}}{n}$

> If k is a *large* constant, then $\mathbb{E}[\text{#conflicts}] \approx 0$ *Exploration* = *BP w.p.* ≈ 1

 \succ Let $k = a \log_{\lambda} n$ and $0 \leq a < 1$. Then $\lambda^k = n^a$ and

→
$$\mathbb{E}[\text{#conflicts}] \leq Cn^{2\alpha-1}$$

⇒ Conditioned on BP survives for r depth (r large), $\bar{N}_k \approx \lambda^k = n^{\alpha}$ for $k \ge r$

$$\texttt{#conflicts} = o(\bar{N}_k) \text{ whp } \implies \boxed{N_k \approx \bar{N}_k \approx \lambda^k}$$

When exploration survives for long time, growth rate of N_k becomes exponential in λ

Fact: $\mathbb{E}[\# \text{ conflicts}] \leq C \frac{\lambda^{2k}}{n}$

> If k is a *large* constant, then $\mathbb{E}[\text{#conflicts}] \approx 0$ *Exploration* = *BP w.p.* ≈ 1

 \succ Let $k = a \log_{\lambda} n$ and 0 ≤ a < 1. Then $\lambda^k = n^a$ and

→
$$\mathbb{E}[\text{#conflicts}] \leq Cn^{2\alpha-1}$$

⇒ Conditioned on BP survives for r depth (r large), $\bar{N}_k \approx \lambda^k = n^{\alpha}$ for $k \ge r$

$$\texttt{#conflicts} = o(\bar{N}_k) \text{ whp } \implies \boxed{N_k \approx \bar{N}_k \approx \lambda^k}$$

When exploration survives for long time, growth rate of N_k becomes exponential in λ

Next, lets prove two lemmas

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \geqslant L\} \approx \zeta_{\lambda}$

To prove: $\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}$

$$\begin{split} &\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\} \\ &= \mathbb{P}(u \text{ falls in a component of size} \ge L \mid G) \quad (u \text{ is a uniform vertex}) \end{split}$$

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \geqslant L\} \approx \zeta_{\lambda}$

$$\begin{split} &\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\} \\ &= \mathbb{P}(u \text{ falls in a component of size} \ge L \mid G) \quad (u \text{ is a uniform vertex}) \\ &= \mathbb{P}(C(u) \ge L \mid G) \end{split}$$

To prove: $\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}$

$$\begin{split} &\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \geqslant L\} \\ &= \mathbb{P}(u \text{ falls in a component of size} \geqslant L \mid G) \quad (u \text{ is a uniform vertex}) \\ &= \mathbb{P}\big(C(u) \geqslant L \mid G\big) \end{split}$$

Now,

 $\mathbb{P}(C(\mathfrak{u}) \geqslant L)$

To prove: $\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}$

$$\begin{split} &\sum_{i\geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \geqslant L\} \\ &= \mathbb{P}(u \text{ falls in a component of size} \geqslant L \mid G) \quad (u \text{ is a uniform vertex}) \\ &= \mathbb{P}\big(C(u) \geqslant L \mid G\big) \end{split}$$

Now,

 $\mathbb{P}(\mathsf{C}(\mathsf{u}) \geqslant \mathsf{L}) \approx \mathbb{P}(\mathsf{BP} \geqslant \mathsf{L}) \qquad \qquad (\text{Exploration of } \mathsf{u} = \mathsf{BP} \text{ w.p.} \approx 1)$

Proving first moment lemma

To prove: $\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}$

$$\begin{split} &\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \geqslant L\} \\ &= \mathbb{P}(u \text{ falls in a component of size} \geqslant L \mid G) \quad (u \text{ is a uniform vertex}) \\ &= \mathbb{P}\left(C(u) \geqslant L \mid G\right) \end{split}$$

Now,

$$\begin{split} \mathbb{P}(\mathsf{C}(\mathsf{u}) \ge \mathsf{L}) &\approx \mathbb{P}(\mathsf{BP} \ge \mathsf{L}) & (\text{Exploration of } \mathsf{u} = \mathsf{BP} \text{ w.p.} \approx 1) \\ &\approx \mathbb{P}(\mathsf{BP} \text{ survives}) & (\text{holds for large enough } \mathsf{L}) \\ &= \zeta_{\lambda} \end{split}$$

Proving first moment lemma

To prove: $\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}$

$$\begin{split} &\sum_{i\geqslant 1} \frac{C_{(\mathfrak{i})}}{n} \mathbb{1}\{C_{(\mathfrak{i})} \geqslant L\} \\ &= \mathbb{P}(u \text{ falls in a component of size} \geqslant L \mid G) \quad (u \text{ is a uniform vertex}) \\ &= \mathbb{P}\big(C(u) \geqslant L \mid G\big) \end{split}$$

Now,

$$\begin{split} \mathbb{P}(\mathsf{C}(\mathsf{u}) \ge \mathsf{L}) &\approx \mathbb{P}(\mathsf{BP} \ge \mathsf{L}) & (\text{Exploration of } \mathsf{u} = \mathsf{BP} \text{ w.p.} \approx 1) \\ &\approx \mathbb{P}(\mathsf{BP} \text{ survives}) & (\text{holds for large enough } \mathsf{L}) \\ &= \zeta_{\lambda} \end{split}$$

Key fact 1: Local neighborhood of u is approximately BP whp

Proving first moment lemma

To prove: $\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}$

$$\begin{split} &\sum_{i\geqslant 1} \frac{C_{(\mathfrak{i})}}{n} \mathbb{1}\{C_{(\mathfrak{i})} \geqslant L\} \\ &= \mathbb{P}(u \text{ falls in a component of size} \geqslant L \mid G) \quad (u \text{ is a uniform vertex}) \\ &= \mathbb{P}\big(C(u) \geqslant L \mid G\big) \end{split}$$

Now,

$$\begin{split} \mathbb{P}(\mathsf{C}(\mathsf{u}) \ge \mathsf{L}) &\approx \mathbb{P}(\mathsf{BP} \ge \mathsf{L}) & (\text{Exploration of } \mathsf{u} = \mathsf{BP} \text{ w.p.} \approx 1) \\ &\approx \mathbb{P}(\mathsf{BP} \text{ survives}) & (\text{holds for large enough } \mathsf{L}) \\ &= \zeta_{\lambda} \end{split}$$

Key fact 1: Local neighborhood of u is approximately BP whp

> Theory of approximating local neighborhood of graphs is called Local-weak convergence (Christian's talk)

To prove: $\sum_{i \geqslant 1} \frac{C_{(i)}^2}{n^2} \mathbb{1}\{C_{(i)} \geqslant L\} \approx \zeta_{\lambda}^2$

To prove: $\sum_{i \ge 1} \frac{C_{(i)}^2}{n^2} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}^2$ $\zeta_{\lambda}^2 \approx \left(\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\}\right)^2$ by previous lemma

To prove: $\sum_{i \ge 1} \frac{C_{(i)}^2}{n^2} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}^2$ $\zeta_{\lambda}^2 \approx \left(\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\}\right)^2$ by previous lemma $= \sum_{i \ge 1} \frac{C_{(i)}^2}{n^2} \mathbb{1}\{C_{(i)} \ge L\} + \sum_{i \ne i} \frac{C_{(i)}C_{(j)}}{n^2} \mathbb{1}\{C_{(i)} \ge L, C_{(j)} \ge L\}$

To prove: $\sum_{i \ge 1} \frac{C_{(i)}^2}{n^2} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}^2$ $\zeta_{\lambda}^2 \approx \left(\sum_{i \ge 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \ge L\}\right)^2$ by previous lemma $= \sum_{i \ge 1} \frac{C_{(i)}^2}{n^2} \mathbb{1}\{C_{(i)} \ge L\} + \sum_{i \ne i} \frac{C_{(i)}C_{(j)}}{n^2} \mathbb{1}\{C_{(i)} \ge L, C_{(j)} \ge L\}$

Take two uniform vertices u_1, u_2 . The second term equals

 $\mathbb{P}\big(C(\mathfrak{u}_1) \geqslant L, C(\mathfrak{u}_2) \geqslant L, \mathfrak{u}_1 \not\leftrightarrow \mathfrak{u}_2 \mid G\big)$

$$\begin{split} \text{To prove: } \sum_{i \geqslant 1} \frac{C_{(i)}^2}{n^2} \mathbb{1}\{C_{(i)} \geqslant L\} &\approx \zeta_{\lambda}^2 \\ \zeta_{\lambda}^2 &\approx \left(\sum_{i \geqslant 1} \frac{C_{(i)}}{n} \mathbb{1}\{C_{(i)} \geqslant L\}\right)^2 \quad \text{by previous lemma} \\ &= \sum_{i \geqslant 1} \frac{C_{(i)}^2}{n^2} \mathbb{1}\{C_{(i)} \geqslant L\} + \sum_{i \neq j} \frac{C_{(i)}C_{(j)}}{n^2} \mathbb{1}\{C_{(i)} \geqslant L, C_{(j)} \geqslant L\} \end{split}$$

Take two uniform vertices u_1, u_2 . The second term equals

 $\mathbb{P}\big(C(\mathfrak{u}_1) \geqslant L, C(\mathfrak{u}_2) \geqslant L, \mathfrak{u}_1 \not\leftrightarrow \mathfrak{u}_2 \ \Big| \ G\big)$

Enough to show:

$$\lim_{L \to \infty} \limsup_{n \to \infty} \mathbb{P} \big(C(u_1) \ge L, C(u_2) \ge L, u_1 \not\leftrightarrow u_2 \big) = 0$$

Two large components cannot be disjoint...

To show $\mathbb{P}(C(u_1) \ge L, C(u_2) \ge L, u_1 \nleftrightarrow u_2) \approx 0$, suffices to prove $\mathbb{P}(u_1 \nleftrightarrow u_2 \mid C(u_1) \ge L, C(u_2) \ge L) \approx 0$

To show $\mathbb{P}(C(u_1) \ge L, C(u_2) \ge L, u_1 \nleftrightarrow u_2) \approx 0$, suffices to prove $\mathbb{P}(u_1 \nleftrightarrow u_2 \mid C(u_1) \ge L, C(u_2) \ge L) \approx 0$

Unfortunately, this is quite hard to show,

To show $\mathbb{P}(C(u_1) \ge L, C(u_2) \ge L, u_1 \nleftrightarrow u_2) \approx 0$, suffices to prove $\mathbb{P}(u_1 \nleftrightarrow u_2 \mid C(u_1) \ge L, C(u_2) \ge L) \approx 0$

Unfortunately, this is quite hard to show,

Idea: Replace the conditioning event by $\{\vartheta_r(u_1), \vartheta_r(u_2) \neq \varnothing\}$

To show $\mathbb{P}(C(\mathfrak{u}_1) \ge L, C(\mathfrak{u}_2) \ge L, \mathfrak{u}_1 \nleftrightarrow \mathfrak{u}_2) \approx 0$, suffices to prove $\mathbb{P}(\mathfrak{u}_1 \not\leftrightarrow \mathfrak{u}_2 \mid C(\mathfrak{u}_1) \ge L, C(\mathfrak{u}_2) \ge L) \approx 0$

Unfortunately, this is quite hard to show,

Idea: Replace the conditioning event by $\{\vartheta_r(u_1), \vartheta_r(u_2) \neq \varnothing\}$

 $\geq \{\partial_r(\mathfrak{u}_1), \partial_r(\mathfrak{u}_2) \neq \emptyset\} \approx \{C(\mathfrak{u}_1), C(\mathfrak{u}_2) \ge L\}$ in prob. for some large r

To show $\mathbb{P}(C(\mathfrak{u}_1) \ge L, C(\mathfrak{u}_2) \ge L, \mathfrak{u}_1 \nleftrightarrow \mathfrak{u}_2) \approx 0$, suffices to prove $\mathbb{P}(\mathfrak{u}_1 \not\leftrightarrow \mathfrak{u}_2 \mid C(\mathfrak{u}_1) \ge L, C(\mathfrak{u}_2) \ge L) \approx 0$

Unfortunately, this is quite hard to show,

Idea: Replace the conditioning event by $\{\vartheta_r(u_1), \vartheta_r(u_2) \neq \varnothing\}$

 $\geq \{\partial_r(\mathfrak{u}_1), \partial_r(\mathfrak{u}_2) \neq \emptyset\} \approx \{C(\mathfrak{u}_1), C(\mathfrak{u}_2) \ge L\}$ in prob. for some large r

➤ Advantage with conditioning on $\{\partial_r(u_1), \partial_r(u_2) \neq \varnothing\}$ is we can now explore rest of the graph

▷ Condition on $\{\partial_r(u_1), \partial_r(u_2) \neq \emptyset\}$ for large r

- ≻ Condition on $\{\partial_r(u_1), \partial_r(u_2) \neq \emptyset\}$ for large r
- > Recall: After exploration survives up to r, further growth is exponential

- ≻ Condition on $\{\partial_r(\mathfrak{u}_1), \partial_r(\mathfrak{u}_2) \neq \emptyset\}$ for large r
- > Recall: After exploration survives up to r, further growth is exponential
- > Grow u_1 neighborhood up to k_1 s.t. boundary size $N_{k_1} \approx \lambda^{k_1} = \omega_n \sqrt{n}$

- ≻ Condition on $\{\partial_r(u_1), \partial_r(u_2) \neq \emptyset\}$ for large r
- > Recall: After exploration survives up to r, further growth is exponential
- > Grow u_1 neighborhood up to k_1 s.t. boundary size $N_{k_1} \approx \lambda^{k_1} = \omega_n \sqrt{n}$
- ▶ Grow u_2 neighborhood s.t. boundary size is \sqrt{n}

- ▶ Condition on $\{\partial_r(u_1), \partial_r(u_2) \neq \emptyset\}$ for large r
- > Recall: After exploration survives up to r, further growth is exponential
- ≻ Grow u_1 neighborhood up to k_1 s.t. boundary size $N_{k_1} \approx \lambda^{k_1} = \omega_n \sqrt{n}$
- ≻ Grow u_2 neighborhood s.t. boundary size is \sqrt{n}

 $\mathbb{P}(\text{no edge between boundaries}) = \left(1 - \frac{\lambda}{n}\right)^{\omega_{\pi}\sqrt{n} \times \sqrt{n}} \approx e^{-\lambda \omega_{\pi}} \to 0$

- ≻ Condition on $\{\partial_r(u_1), \partial_r(u_2) \neq \emptyset\}$ for large r
- > Recall: After exploration survives up to r, further growth is exponential
- ≻ Grow u_1 neighborhood up to k_1 s.t. boundary size $N_{k_1} \approx \lambda^{k_1} = \omega_n \sqrt{n}$
- ≻ Grow u_2 neighborhood s.t. boundary size is \sqrt{n}

 $\mathbb{P}(\text{no edge between boundaries}) = \left(1 - \frac{\lambda}{n}\right)^{\omega_{\pi}\sqrt{n} \times \sqrt{n}} \approx e^{-\lambda \omega_{\pi}} \to 0$

$$\implies \mathbb{P}\left(\mathfrak{u}_1 \not\leftrightarrow \mathfrak{u}_2 \mid \mathfrak{d}_r(\mathfrak{u}_1), \mathfrak{d}_r(\mathfrak{u}_1) \neq \varnothing\right) \approx 0$$

- ▶ Condition on $\{\partial_r(u_1), \partial_r(u_2) \neq \emptyset\}$ for large r
- > Recall: After exploration survives up to r, further growth is exponential
- ≻ Grow u_1 neighborhood up to k_1 s.t. boundary size $N_{k_1} \approx \lambda^{k_1} = \omega_n \sqrt{n}$
- ≻ Grow u_2 neighborhood s.t. boundary size is \sqrt{n}

 $\mathbb{P}(\text{no edge between boundaries}) = \left(1 - \frac{\lambda}{n}\right)^{\omega_{\pi}\sqrt{n} \times \sqrt{n}} \approx e^{-\lambda \omega_{\pi}} \to 0$

$$\implies \mathbb{P}\left(\mathfrak{u}_1 \not\leftrightarrow \mathfrak{u}_2 \mid \mathfrak{d}_r(\mathfrak{u}_1), \mathfrak{d}_r(\mathfrak{u}_1) \neq \varnothing\right) \approx 0$$

Takeaway: If there are two components with large boundary, we can grow them until boundary has size \sqrt{n} and then they intersect

To prove: $\sum_{i \ge 1} \frac{C_{(i)}^2}{n^2} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}^2$

To prove:
$$\sum_{i \ge 1} \frac{C_{(i)}^2}{n^2} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}^2$$

➤ Reduced to prove

$$\lim_{L \to \infty} \limsup_{n \to \infty} \mathbb{P} \big(C(u_1) \geqslant L, C(u_2) \geqslant L, u_1 \not\leftrightarrow u_2 \big) = 0$$

Two large components cannot be disjoint...

To prove:
$$\sum_{i \ge 1} \frac{C^2_{(i)}}{n^2} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}^2$$

≻ Reduced to prove

$$\lim_{L \to \infty} \limsup_{n \to \infty} \mathbb{P} \big(C(u_1) \geqslant L, C(u_2) \geqslant L, u_1 \not\leftrightarrow u_2 \big) = 0$$

Two large components cannot be disjoint...

➤ Reduced to prove

 $\mathbb{P}(\mathfrak{u}_1\not\leftrightarrow\mathfrak{u}_2\,|\,\mathfrak{d}_r(\mathfrak{u}_1),\mathfrak{d}_r(\mathfrak{u}_2)\neq\varnothing)\approx 0$

To prove:
$$\sum_{i \ge 1} \frac{C_{(i)}^2}{n^2} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}^2$$

➤ Reduced to prove

$$\lim_{L \to \infty} \limsup_{n \to \infty} \mathbb{P}\big(C(u_1) \geqslant L, C(u_2) \geqslant L, u_1 \not\leftrightarrow u_2\big) = 0$$

Two large components cannot be disjoint...

➤ Reduced to prove

$$\mathbb{P}(\mathfrak{u}_1 \not\leftrightarrow \mathfrak{u}_2 \mid \mathfrak{d}_r(\mathfrak{u}_1), \mathfrak{d}_r(\mathfrak{u}_2) \neq \varnothing) \approx 0$$

> Proved this by growing both the neihborhoods of u_1, u_2 and they intersect when the boundary size grows to size \sqrt{n}

To prove:
$$\sum_{i \ge 1} \frac{C_{(i)}^2}{n^2} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}^2$$

➤ Reduced to prove

$$\lim_{L \to \infty} \limsup_{n \to \infty} \mathbb{P}\big(C(u_1) \geqslant L, C(u_2) \geqslant L, u_1 \not\leftrightarrow u_2\big) = 0$$

Two large components cannot be disjoint...

➤ Reduced to prove

$$\mathbb{P}(\mathfrak{u}_1\not\leftrightarrow\mathfrak{u}_2\mid\mathfrak{d}_r(\mathfrak{u}_1),\mathfrak{d}_r(\mathfrak{u}_2)\neq\varnothing)\approx 0$$

> Proved this by growing both the neihborhoods of u_1, u_2 and they intersect when the boundary size grows to size \sqrt{n}

Completes the proof of Lemma 2

To prove:
$$\sum_{i \ge 1} \frac{C^2_{(i)}}{n^2} \mathbb{1}\{C_{(i)} \ge L\} \approx \zeta_{\lambda}^2$$

≻ Reduced to prove

Key fact 2: $\lim_{L \to \infty} \limsup_{n \to \infty} \mathbb{P} (C(u_1) \ge L, C(u_2) \ge L, u_1 \not\leftrightarrow u_2) = 0$

Two large components cannot be disjoint...

> Reduced to prove

$$\mathbb{P}(\mathfrak{u}_1\not\leftrightarrow\mathfrak{u}_2\mid\mathfrak{d}_r(\mathfrak{u}_1),\mathfrak{d}_r(\mathfrak{u}_2)\neq\varnothing)\approx 0$$

> Proved this by growing both the neihborhoods of u_1, u_2 and they intersect when the boundary size grows to size \sqrt{n}

Completes the proof of Lemma 2

We proved

Theorem: Supercritical $ER_n(\frac{\lambda}{n})$

Let $C_{(i)}$:= i-th largest component of $ER_n(\frac{\lambda}{n})$. If $\lambda > 1$, then

$$\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda} \quad \text{and} \quad \frac{C_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$$

We proved

Theorem: Supercritical $ER_n(\frac{\lambda}{n})$ Let $C_{(i)}$:= i-th largest component of $ER_n(\frac{\lambda}{n})$. If $\lambda > 1$, then $\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda}$ and $\frac{C_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$

The two main ingredients to prove this were...

We proved

Theorem: Supercritical $ER_n(\frac{\lambda}{n})$ Let $C_{(i)}$:= i-th largest component of $ER_n(\frac{\lambda}{n})$. If $\lambda > 1$, then $\frac{C_{(1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda}$ and $\frac{C_{(2)}}{n} \xrightarrow{\mathbb{P}} 0$

The two main ingredients to prove this were ...

1 Local neighborhood approximation: Local neighborhood of u is approximately BP whp and when BP survives, C(u) is large

We proved

Theorem: Supercritical $\text{ER}_n(\frac{\lambda}{n})$ Let $C_{(i)}$:= i-th largest component of $\text{ER}_n(\frac{\lambda}{n})$. If $\lambda > 1$, then

$$\frac{C_{\scriptscriptstyle (1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda} \quad \text{and} \quad \frac{C_{\scriptscriptstyle (2)}}{n} \xrightarrow{\mathbb{P}} 0$$

The two main ingredients to prove this were ...

- **1** Local neighborhood approximation: Local neighborhood of u is approximately BP whp and when BP survives, C(u) is large
- 2 Two large components intersect:

 $\lim_{L \to \infty} \lim_{\mathfrak{n} \to \infty} \mathbb{P} \big(C(\mathfrak{u}_1) \geqslant L, C(\mathfrak{u}_2) \geqslant L, \mathfrak{u}_1 \not\leftrightarrow \mathfrak{u}_2 \big) = 0$

We proved

Theorem: Supercritical $ER_n(\frac{\lambda}{n})$

Let $C_{(i)}$:= i-th largest component of $ER_n(\frac{\lambda}{n})$. If $\lambda > 1$, then

$$\frac{C_{\scriptscriptstyle (1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda} \quad \text{and} \quad \frac{C_{\scriptscriptstyle (2)}}{n} \xrightarrow{\mathbb{P}} 0$$

The two main ingredients to prove this were ...

- **1** Local neighborhood approximation: Local neighborhood of u is approximately BP whp and when BP survives, C(u) is large
- 2 Two large components intersect:

 $\lim_{L \to \infty} \lim_{n \to \infty} \mathbb{P} \big(C(u_1) \geqslant L, C(u_2) \geqslant L, u_1 \not\leftrightarrow u_2 \big) = 0$

 \clubsuit Was shown by growing two neighborhoods, and they must intersect when neighborhoods become large enough $O(\sqrt{n})$

We proved

Theorem: Supercritical $ER_n(\frac{\lambda}{n})$

Let $C_{(i)}$:= i-th largest component of $ER_n(\frac{\lambda}{n})$. If $\lambda > 1$, then

$$\frac{C_{\scriptscriptstyle (1)}}{n} \xrightarrow{\mathbb{P}} \zeta_{\lambda} \quad \text{and} \quad \frac{C_{\scriptscriptstyle (2)}}{n} \xrightarrow{\mathbb{P}} 0$$

The two main ingredients to prove this were ...

- **1** Local neighborhood approximation: Local neighborhood of u is approximately BP whp and when BP survives, C(u) is large
- 2 Two large components intersect:

 $\lim_{L \to \infty} \lim_{\mathfrak{n} \to \infty} \mathbb{P} \big(C(\mathfrak{u}_1) \geqslant L, C(\mathfrak{u}_2) \geqslant L, \mathfrak{u}_1 \not\leftrightarrow \mathfrak{u}_2 \big) = 0$

 \clubsuit Was shown by growing two neighborhoods, and they must intersect when neighborhoods become large enough $O(\sqrt{n})$

➤ van der Hofstad (2021) proved this for general graphs that converge in local-weak convergence sense

Before moving on to other models, lets see another useful application of the above ideas...

Typical distances in Erdős-Rényi

Typical distance: Graph distance between two uniform vertices u₁, u₂

Typical distance: Graph distance between two uniform vertices u₁, u₂

Theorem: Typical distances in $ER_n(\frac{\lambda}{n})$

Let $\lambda > 1$. Conditionally on u_1 , u_2 in same component (i.e., dist $(u_1, u_2) \neq \infty$)

$$\frac{\operatorname{dist}(\mathfrak{u}_1,\mathfrak{u}_2)}{\log_{\lambda}\mathfrak{n}}\xrightarrow{\mathbb{P}} 1$$

Typical distance: Graph distance between two uniform vertices u₁, u₂

Theorem: Typical distances in $ER_n(\frac{\lambda}{n})$

Let $\lambda > 1$. Conditionally on u_1 , u_2 in same component (i.e., dist $(u_1, u_2) \neq \infty$)

$$\frac{\operatorname{dist}(\mathfrak{u}_1,\mathfrak{u}_2)}{\log_{\lambda}\mathfrak{n}}\xrightarrow{\mathbb{P}} 1$$

Proof: Again use neighborhood growth idea...

Typical distance: Graph distance between two uniform vertices u₁, u₂

Theorem: Typical distances in $ER_n(\frac{\lambda}{n})$

Let $\lambda > 1$. Conditionally on u_1 , u_2 in same component (i.e., dist $(u_1, u_2) \neq \infty$)

$$\frac{\operatorname{dist}(\mathfrak{u}_1,\mathfrak{u}_2)}{\log_{\lambda}\mathfrak{n}}\xrightarrow{\mathbb{P}} 1$$

Proof: Again use neighborhood growth idea...

1 Keep growing neighborhoods from u_1 , u_2 .

Typical distance: Graph distance between two uniform vertices u₁, u₂

Theorem: Typical distances in $ER_n(\frac{\lambda}{n})$

Let $\lambda > 1$. Conditionally on u_1 , u_2 in same component (i.e., $dist(u_1, u_2) \neq \infty$)

$$\frac{\operatorname{dist}(\mathfrak{u}_1,\mathfrak{u}_2)}{\log_\lambda \mathfrak{n}} \xrightarrow{\mathbb{P}} 1$$

Proof: Again use neighborhood growth idea...

0 Keep growing neighborhoods from u_1 , u_2 . Recall $\mathbb{E}[\text{#conflicts}] \leq \lambda^{2k - \log_{\lambda} n}$

Typical distance: Graph distance between two uniform vertices u₁, u₂

Theorem: Typical distances in $ER_n(\frac{\lambda}{n})$

Let $\lambda > 1$. Conditionally on u_1 , u_2 in same component (i.e., $dist(u_1, u_2) \neq \infty$)

$$\frac{\operatorname{dist}(\mathfrak{u}_1,\mathfrak{u}_2)}{\log_{\lambda} \mathfrak{n}} \xrightarrow{\mathbb{P}} 1$$

Proof: Again use neighborhood growth idea...

0 Keep growing neighborhoods from u_1 , u_2 . Recall $\mathbb{E}[\text{#conflicts}] \leq \lambda^{2k-\log_{\lambda} n}$

⇒ They are disjoint until boundary sizes become \sqrt{n} , i.e., $k \lesssim \frac{1}{2} \log_{\lambda} n$

Typical distance: Graph distance between two uniform vertices u₁, u₂

Theorem: Typical distances in $ER_n(\frac{\lambda}{n})$

Let $\lambda > 1$. Conditionally on u_1 , u_2 in same component (i.e., $dist(u_1, u_2) \neq \infty$)

$$\frac{\operatorname{dist}(\mathfrak{u}_1,\mathfrak{u}_2)}{\log_{\lambda} \mathfrak{n}} \xrightarrow{\mathbb{P}} 1$$

Proof: Again use neighborhood growth idea...

0 Keep growing neighborhoods from u_1 , u_2 . Recall $\mathbb{E}[\text{#conflicts}] \leq \lambda^{2k - \log_{\lambda} n}$

- → They are disjoint until boundary sizes become \sqrt{n} , i.e., $k \lesssim \frac{1}{2} \log_{\lambda} n$
- ➡ Shortest path correspond to first intersection of neighborhoods

Typical distance: Graph distance between two uniform vertices u₁, u₂

Theorem: Typical distances in $ER_n(\frac{\lambda}{n})$

Let $\lambda > 1$. Conditionally on u_1 , u_2 in same component (i.e., $dist(u_1, u_2) \neq \infty$)

$$\frac{\operatorname{dist}(\mathfrak{u}_1,\mathfrak{u}_2)}{\log_{\lambda} \mathfrak{n}} \xrightarrow{\mathbb{P}} 1$$

Proof: Again use neighborhood growth idea...

0 Keep growing neighborhoods from u_1 , u_2 . Recall $\mathbb{E}[\text{#conflicts}] \leq \lambda^{2k-\log_{\lambda} n}$

- → They are disjoint until boundary sizes become \sqrt{n} , i.e., $k \lesssim \frac{1}{2} \log_{\lambda} n$
- ➡ Shortest path correspond to first intersection of neighborhoods
- **2** Around $k = \frac{1}{2} \log_{\lambda} n + \omega_n$, neighborhoods start intersecting

Typical distance: Graph distance between two uniform vertices u₁, u₂

Theorem: Typical distances in $ER_n(\frac{\lambda}{n})$

Let $\lambda > 1$. Conditionally on u_1 , u_2 in same component (i.e., $dist(u_1, u_2) \neq \infty$)

$$\frac{\operatorname{dist}(\mathfrak{u}_1,\mathfrak{u}_2)}{\log_{\lambda} \mathfrak{n}} \xrightarrow{\mathbb{P}} 1$$

Proof: Again use neighborhood growth idea...

0 Keep growing neighborhoods from u_1 , u_2 . Recall $\mathbb{E}[\text{#conflicts}] \leq \lambda^{2k - \log_{\lambda} n}$

- → They are disjoint until boundary sizes become \sqrt{n} , i.e., $k \lesssim \frac{1}{2} \log_{\lambda} n$
- Shortest path correspond to first intersection of neighborhoods

2 Around
$$k = \frac{1}{2} \log_{\lambda} n + \omega_{n}$$
, neighborhoods start intersecting
dist $(u_{1}, u_{2}) = \frac{1}{2} \log_{\lambda} n + \frac{1}{2} \log_{\lambda} n + o(\log_{\lambda} n) = \log_{\lambda} n + o(\log_{\lambda} n)$