Networks & Economics 1

Matthew O. Jackson
Behavior on Networks:

• Contagion and diffusion

• Learning – processing beliefs

• Peer influence in choices and behaviors
 • Care about how peers act
 • A “complex” form of interaction – behaviors are fully interdependent
Behavior on Networks:

• Contagion and diffusion

• Learning – processing beliefs

• Peer influence in choices and behaviors
 • Care about how peers act
 • A “complex” form of interaction – behaviors are fully interdependent
Peer Effects

- Information – influencing and correlating beliefs and opinions
- Opportunities – we rely on others for access to jobs, education, group memberships,…
- Traditions, culture, norms, pressures – social influences for us to adopt specific behaviors, generally correlated with others
- Complementarities – benefits from coordinating (e.g., using same technology or language, studying, stealing, being corrupt, etc.)
Peer Effects

- Information – influencing and correlating beliefs and opinions
- Opportunities – we rely on others for access to jobs, education, group memberships,…
- Traditions, culture, norms, pressures – social influences for us to adopt specific behaviors, generally correlated with others
- Complementarities – benefits from coordinating (e.g., using same technology or language, studying, stealing, being corrupt, etc.)
Start with a Canonical Special Case:

• Each player chooses action x_i in \{0,1\}

• payoff depends on
 – how many neighbors choose each action
 – how many neighbors a player has
• Each player chooses action \(x_i \) in \{0,1\}

• Consider cases where \(i \)'s payoff is

\[
u_{d_i}(x_i, m_{N_i})
\]

depends on \(d_i(g) \) and \(m_{N_i(g)} \) - number of neighbors of \(i \) choosing 1
Games on Networks - Outline

• Basic Definitions

• Examples

• Strategic Complements/Substitutes

• Equilibrium existence and structure
Example:

Player prefers to adopt new technology if at least 40 percent of neighbors do.
Example:

Player prefers to adopt new technology if at least 40 percent of neighbors do.
Example:

Player prefers to adopt new technology if at least 40 percent of neighbors do
Example: Complements

• agent i is willing to choose 1 if and only if at least t neighbors do:

• Payoff action 0: $u_{d_i}(0, m_{N_i}) = 0$

• Payoff action 1: $u_{d_i}(1, m_{N_i}) = m_{N_i} - \frac{0.4}{d_i}$
A Nash Equilibrium

• A pure strategy Nash equilibrium on a network

• Specify a choice for each person x_i in X_i

• Nobody should want to change their action given what their friends are doing: $u_i(x_i, x_{-i}) \geq u_i(x_i', x_{-i})$ for all i, x_i'
Another Example: Best-Shot Public Goods

Player prefers to buy if no neighbors do
Another Example: Best-Shot Public Goods

Player prefers to buy if no neighbors do
Another Example:
Best-Shot Public Goods

Player prefers to buy if no neighbors do
Example: Best-Shot

- agent i is willing to choose 1 if and only if no neighbors do:

- Payoff action 0: $u_{d_i}(0,m_{N_i}) = 1$ if $m_{N_i} > 0$

 $= 0$ if $m_{N_i} = 0$

- Payoff action 1: $u_{d_i}(1,m_{N_i}) = 1 - c$
Independent Set: a set S of nodes such that no two nodes in S are linked,

Maximal: every node in N is either in S or linked to a node in S

Equilibria: Adopters = a maximal independent set
Another Example: Best-Shot Public Goods

Player prefers to buy if no neighbors do
Games on Networks - Outline

- Basic Definitions
- Examples
- Strategic Complements/Substitutes
- Equilibrium existence and structure
Externalities:

- Others’ behaviors affect one’s utility/welfare

- Others’ behaviors affect one’s *decisions, actions, consumptions, opinions*...
 - others’ actions affect the *relative* payoffs to one’s behaviors
• $b =$ benefit of a book/etc
• $c =$ cost $b > c$

<table>
<thead>
<tr>
<th></th>
<th>Friend buys</th>
<th>Friend does not</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy</td>
<td>$b - c$</td>
<td>$b - c$</td>
</tr>
<tr>
<td>Not</td>
<td>b</td>
<td>0</td>
</tr>
</tbody>
</table>
Strategic Substitutes

- $b =$ benefit of a book/etc.
- $c =$ cost $b > c$

<table>
<thead>
<tr>
<th></th>
<th>Friend buys</th>
<th>Friend does not</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy</td>
<td>$b - c$</td>
<td>$b - c$</td>
</tr>
<tr>
<td>Not</td>
<td>b</td>
<td>0</td>
</tr>
</tbody>
</table>

externality
Externalities:

• Others’ behaviors affect one’s utility/welfare

• Game theory: others’ behaviors affect one’s decisions, actions, consumptions, opinions...
 – others’ actions affect the relative payoffs to one’s behaviors
• $b =$ benefit of a book/cd/etc.
• $c =$ cost $b > c$

Friend has

<table>
<thead>
<tr>
<th></th>
<th>Friend has</th>
<th>Friend does not</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy</td>
<td>$b - c$</td>
<td>$b - c$</td>
</tr>
<tr>
<td>Not</td>
<td>b</td>
<td>0</td>
</tr>
</tbody>
</table>
b = benefit of playing game with friend

• c = cost of learning to play

Friend plays
Play b - c

Friend do not
Not 0

externality

- c

0
Strategic Complements

- $b =$ benefit of playing game with friend
- $c =$ cost of learning to play

<table>
<thead>
<tr>
<th></th>
<th>Friend plays</th>
<th>Friend do not</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play</td>
<td>$b - c$</td>
<td>$- c$</td>
</tr>
<tr>
<td>Not</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
• with negative externality, e.g., doping:
Strategic Substitutes

- with negative externality, e.g., congestion game:

<table>
<thead>
<tr>
<th></th>
<th>Other shows</th>
<th></th>
<th>Other not</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show</td>
<td>- c</td>
<td>negative</td>
<td>b - c</td>
</tr>
<tr>
<td>Not</td>
<td>0</td>
<td>externality</td>
<td>0</td>
</tr>
</tbody>
</table>
Strategic Complements/Substitutes

• strategic complements -- for all $d, m \geq m'$
 – Increasing differences:
 $$u_d(1,m) - u_d(0,m) \geq u_d(1,m') - u_d(0,m')$$

• strategic substitutes -- for all $d, m \geq m'$
 – Decreasing differences:
 $$u_d(1,m) - u_d(0,m) \leq u_d(1,m') - u_d(0,m')$$
Strategic Complements/Substitutes

- **Complements**: Choice to take an action by my friends increases my relative payoff to taking that action (e.g., friend learns to play a video game)

- **Substitutes**: Choice to take an action by my friends decreases my relative payoff to taking that action (e.g., roommate buys a stereo/fridge)
Examples

• Complements:
 – smoking & other behavior among teens, peers, ...
 – technology adoption – care about fraction others compatible...
 – educate/drop out work force
 – learn a language
 – corruption, crime
 – cheating, doping

• Substitutes
 – information gathering
 – local public goods (shareable products...)
 – competing firms (oligopoly with local markets)
 – vaccinations (near herd immunity)...
Useful Observation

• Complements: there is a threshold $t(d)$, such that i prefers 1 if $m_{N_i} > t(d)$ and 0 if $m_{N_i} < t(d)$

• Substitutes: there is a threshold $t(d)$, such that i prefers 1 if $m_{N_i} < t(d)$ and 0 if $m_{N_i} > t(d)$

• Can be indifferent at the threshold
Games on Networks - Outline

• Basic Definitions

• Examples

• Strategic Complements/Substitutes

• Equilibrium existence and structure
Equilibrium

• Nash equilibrium: Every player’s action is optimal for that player given the actions of others

• Often look for pure strategy equilibria

• May require some mixing in case of substitutes
Proposition

In a game on a network of strategic complements where the individual strategy sets are complete lattices: the set of pure strategy equilibria are a (nonempty) complete lattice.
• Complete Lattice: for every set of equilibria X
 – there exists an equilibrium x' such that $x' \geq x$ for all x in X, and
 – there exists an equilibrium x'' such that $x'' \leq x$ for all x in X.
Contrast: Complements and Substitutes

• In a game of complements: pure strategy equilibria are a (nonempty) complete lattice

• In a game of strategic substitutes:
 – Best shot game: pure strategy equilibria exist and are related to maximal independent sets
 – Others: pure strategy may not exist, but mixed will (with finite action spaces, or appropriate measure spaces)
 – Equilibria often do not form a lattice
When can multiple actions be sustained:

• Coordination game

• Care about fraction of neighbors taking action 1:
 prefer to take action 1 if fraction q or more take 1
• Let S be the group that take action 1

• Each i in S must have fraction of at least q neighbors in S

• Each i not in S must have a fraction of at least $1-q$ neighbors outside of S
Morris 2000: A group S is r-cohesive relative to g if
\[
\min_{i \in S} |N_i(g) \cap S| / d_i(g) \geq r
\]
At least a fraction r of each member of S’s neighbors are in S

Cohesiveness of S is $\min_{i \in S} |N_i(g) \cap S| / d_i(g)$
Both groups are 2/3 cohesive
There exists a pure strategy equilibrium where both actions are played if and only if there is a group S that is at least q cohesive and such that its complement is at least $1-q$ cohesive.
Example:

Player prefers to adopt new technology if at least 40 percent of neighbors do.
$1/3 < q < 1/2$

$1/2 < q < 2/3$
$1/4 < q < 1/3$

$2/3 < q < 3/4$
$q < \frac{1}{4}$

$\frac{3}{4} < q$
Growing block models: blocks b in $B(n)$

Probability of linking nodes from blocks b, b' is $p_{bb'}(n)$

expected degree of node in b to nodes in b' $d_{bb'}(n)$

overall expected degree of node in b $d_b(n)$

$\left(> (1 + \varepsilon) \log(n) \text{ for all } b, n \right)$
Convergent growing block models:

\[|B(n)| = k \text{ for large } k \]

\[\frac{d_{bb}(n)}{d_b(n)} \text{ converges for all } b, b' \]

Weakly homophilous:

\[\frac{d_{bb}(n)}{d_b(n)} > \frac{d_{b'b}(n)}{d_{b'}(n)} + \varepsilon \]
Consider a growing sequence of stochastic block networks.

- Any sequence of sets of adopters that are equilibria for some open set of q, are a superset of the blocks with a probability going to 1.

- If the sequence of block models is convergent and weakly homophilous, then there exists some open set of q, for which any given block is an equilibrium for those q with a probability going to 1.
Proof ideas

Thm by McDiarmid, Skerman 2018 – modularity of G(n,p) goes to 0

Relate modularity to equilibrium structure: if equilibrium splits some block, then modularity of that block has lower bound.
Community structures: equilibria define groups of people whose behaviors are always tied, communities differ based on behavior (q).

Seeding: communities help for seeding.

Complex contagion differs from simple: clustering needed for diffusion.

Equilibria can be ordered by degree distributions in random networks (Bayesian games, mean field games, graphon games).
Estimate q from data...

12th grade smoking, add health data

Estimate q presuming equilibrium: $q = 0.39$

mis-predict 29% of behavior

Jackson-Storms 2019
Each person chooses a level of behavior x_i:

- level of criminal activity
- how fast drive
- how long stay in school
- how much study
- effort spent legislating
g_{ij} \quad \text{intensity of connection from i to j: how much i is influenced by what j does}

can be weighted and directed

u_i(x_i, x_{-i}) = a x_i - c x_i^2/2 + b \sum_j g_{ij} x_i x_j

Ballester, Calvo-Armengol and Zenou (2006)
A Linear-Quadratic Model

\[u_i(x_i, x_{-i}) = a x_i - c x_i^2/2 + b \sum_j g_{ij} x_i x_j \]

\[\downarrow \]

the direct
benefit of \(x_i \)
A Linear-Quadratic Model

\[u_i(x_i, x_{-i}) = ax_i - c x_i^2/2 + b \sum_j g_{ij} x_i x_j \]

the cost of \(x_i \)
convex – higher
marginal costs as
increase \(x_i \)
A Linear-Quadratic Model

\[u_i(x_i, x_{-i}) = a x_i - c x_i^2/2 + b \sum_j g_{ij} x_i x_j \]

interaction effect:
the higher \(x_j \) and the higher \(g_{ij} \), the more \(i \) benefits from increasing \(x_i \)
A Linear-Quadratic Model

\[u_i(x_i, x_{-i}) = a x_i - c x_i^2/2 + b \sum_j g_{ij} x_i x_j \]

Maximize this function

the best response of \(x_i \) to \(x_{-i} \):
A Linear-Quadratic Model

\[u_i(x_i, x_{-i}) = a x_i - c x_i^2/2 + b \sum_j g_{ij} x_i x_j \]

Maximize this function
the best response of \(x_i \) to \(x_{-i} \):

\[a - c x_i + b \sum_j g_{ij} x_j = 0 \]

\[x_i = \frac{(a + b \sum_j g_{ij} x_j)}{c} \]
A Linear-Quadratic Model

\[x_i = \left(a + b \sum_j g_{ij} x_j \right)/c \]

in matrix form: \[x = A + G x \]

where \(A = (a/c, \ldots, a/c), \quad G_{ij} = b \ g_{ij}/c \)
A Linear-Quadratic Model

\[x = A + Gx \]

or \[x = A + G(A + G (A + G))) = \sum_{k \geq 0} G^k A \]

or \[x = (I - G)^{-1} A \] if invertible

(or if a=0, then \[x = Gx \], so unit eigenvector)
• Actions are related to network structure:

 – higher neighbors’ actions, higher own action

 – higher own action, higher neighbors actions

 – feedback – for solution need b/c to be small and/or g_{ij}’s to be small (need $\Sigma_{k\geq0} G^k$ to converge)
• Relation to centrality measures:

\[x = \sum_{k \geq 0} G^k A = \sum_{k \geq 0} G^k 1 \ (a/c) = (1 + \sum_{k \geq 1} G^k 1)(a/c) \]

Katz-Bonacich centrality:

\[B(g) = \sum_{k \geq 1} g^k 1 \]

So, \[x = (1 + B(G))(a/c) \]
A Linear-Quadratic Model

- Natural feedback, actions relate to the total feedback from various positions
- Capture network in tractable manner
- Centrality: relative number of weighted influences going from one node to another
Applications of Model:

- criminal behavior, delinquency (Patacchini, Zenou 12)
- study habits (Calvo, Patacchini, Zenou 09)
- political efforts, party divisions (Canen, Jackson, Trebbi 22)
- corporate control (Vitali et al 11, Larcker et al 13)
- drug trafficking (Dell 15)
- friendship paradox and teen behavior (Jackson 19)
Application to Student Performance

• Calvo-Armengol, Patacchini, Zenou (2009) applied this to Add Health data

• Let \(x_i \) be how hard a student studies

• Measure this by academic performance (a factor analysis of survey answers and grades)

• Estimate \(b/c \), see how much centrality matters in determining academic performance (w controls)
Estimates

• Estimate b/c to be .55

• Find a SD increase in Bonacich centrality increases performance by 7%
Games on Networks

• *Many* applications

• Externalities make the analysis important – individual incentives and societal welfare diverge

• Networks have systematic features that matter in ways that can be quantified
Network Formation Models

• Random models
 • *How* networks form

• Game theoretic/strategic models:
 • *Why* specific networks form
 • prefer to connect *because* someone is well connected
 • high clustering because lower cost for nearby connections
 • small worlds because value to bridges
 • Welfare analyses, inefficiencies, externalities, *policies*...
Questions:

• Which networks are formed by the people/nodes?

• Which networks are best for society?
An `Economic’ Analysis:

• Choose connections
 – benefits from connections
 – costs to maintaining relationships
 – time limits...

• Care about direct friendships, but also about indirect friendships
 – follow someone on media because they are connected...
References

Jackson, Matthew O. and Yves Zenou. 2014. “Games on Networks.” *Handbook of Game Theory, Elsevier*, edited by Young, H.P. and Zamir, S.

