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Motivation: Three Related Problems

Questions:
* When should we consider two large graphs to be similar?

 Whatis the “correct notion” of a limit of graphs (preserving
“essential” properties of the finite graphs in the sequence)?

e How do | non-parametrically model massive real-world

networks, and how do | estimate (learn) this non-parametric
representation from data?

Lecture 1 + 2: Dense Graphs, summarizing our works with Lovasz,
Sos and Vesztergombi [BCLSV ‘06-"12] and a few others



Motivation: when are two graphs similar?

Combinatorialists/Social Scientists:

 |Ifthey have similar local properties, in particular, subgraph counts

Statistics:

 |f sampled subgraphs have similar distributions

Computer Science:

 |If they have similar global properties, in particular max cut, min-bisection, etc.
Physicists:

e |f statistical physics models on them have similar free energies or ground state
energies '

Thm1: [BCLSV’06,08,12,Diaconis-Janson’07]: For dense graphs, these are all
equivalent, and they are also equivalent to similarity in the so-called cut-metric



* Aco
* Aco
e Aco

e Aco

Motivation: what is the right notion of a limit?

ection of limiting subgraph counts?
ection of distributions on finite graphs?
ection of (suitable generalizations) of max-cut, min-bisections, ...?

ection of free energies or ground state energies?

Thm2 [Lovasz-Szegedy’06, BCLSV’06 -"12]: For dense graphs, all the limiting
quantities above can be described in terms of a graphon over [0,1].

Def: A graphon over [0,1] is a function W/:[0,1] X [0,1] — [0,1] s.th.
Wi(x,y)=W (y,x) forall x,y € ()



" Motivation: How to model large graphs?
ﬂ;}SimpIe Models:

* G(n,p)

* Stochastic Block Model

Q: What is the “right” generalization

Thm3 [Aldous ‘81, Hoover ‘79]:

All “natural” dense random models can be generated by a (possibly
random) graphons
Def: Given a probability space (£, 1), a graphon is a symmetric* 2-
variable function

W:QxQ-[01]:(x,y) » W(x,y)

*Here W is symmetric if W (x,y)=W (y,x) forall x,y € Q



Summary: Graphs and Graphons

Graphs
= VertexsetV
= Adjacency matrix A:V XV - {0,1}

Graph Non-Parametric
Limits Random Graph Models

Graphons
m Probability space (Q, F, u)
m Symmetric, measurable function W:Q x Q - [0,1]




1) Modelling Random Graphs

Random Graph G (n, p):
« vertexset [n] ={1,...,n}

 each of the possible (Z) edges is present i.i.d. with probability p

Stochastic Block Model SBM (n, B), where B € [0,1]%*¥ is a symmetric matrix:
* vertex set [n]

* eachvertex has a label x; € [k] chosen i.i.d. uniformly at random

* i <jareconnected independently with probability P;; = By ;x j

Inhomogneous Random Graph: G, (W)

Start with a graphon, i.e., a symmetric function W over some probébility space (£, u)
* vertexset [n]

* each vertex has a feature x; € ) chosen i.i.d. according to u

* i <jare connected independently with probability P;; = W (x;, x;)
Q: How general is this?



1a) De Finetti

Def: An infinite sequence of random variables X3, X5, ... € {0,1} is called exchangeable if
for all n and all permutations m: [n] — [n],

X1y, - » Xz(n) has the same distribution as Xy, ..., X, R
Ex: Polya-Urn /HL(’(\ ;
e Start with R red and G green balls n x] .:L
* Pull out a ball, and replace it with two of the same color 1"@5----&:::::3:rf':::'
* |terate Pélyars Urn
Pr(rrrgg) = RR+1DR+2)G(G+1)
(R+G)R+G+1)...(R+G+4)
RG(R+1)(G+1)(R+2)
Pr(rgrgr) =

R+G)(R+G+1)..(R+G+4)



1a) De Finetti

Thm [De Finetti]: Assume X4, X5, ... € {0,1} is exchangeable

Then there exists a distribution u on [0,1] s.th. X;, X5, ... can be obtained by
* firstdrawing p ~ u, and then

* choosing X4, X5, ... i.i.d. with distribution Be(p).

Ex. Polya Urn: u is the beta-distribution (R, G)




1b) Aldous-Hoover Theorem

Exchangeable random graphs: an infinite random graph whose distribution
Is invariant under finite vertex relabeling is called exchangeable

Formal Definition in terms of adjaceny matrix:

An infinite random array (X;;);jen With entries in {0,1} is called
exchangeable if for all n and all permutations m: [n] — [n],

(Xz(i)m(j))i,j<n has the same distribution as (X;;); j<n
Q: What is the analogue of De Finetti? G(n,p) for arandom p?




1b) Aldous-Hoover Theorem

Thm [Aldous-Hoover]: Let (X;;);;en be an exchangeable array with entries in
{0,1} and Xii = 0.

Then there exists a measurable function (x,y, a) » W, (x,y) from [0,1]° -
[0,1] s.th. (X;;)ijen can be generated by

 first choosing @ € [0,1] uniformly at random,
* then choosing x4, X5, ... i.i.d. uniformly at random in [0,1],

* andthen choosing X;; = Xj; ~ Be(W,(x;,x;)), independently for all i < j

Rephrased: If G,, is a finite subgraph of an exchangeable infinite random
graph G, then the distribution of (,, can be generated by a random graphon
W



1b) Aldous-Hoover Theorem

Summary:

A graphon is a symmetric 2-variable function over a probability space
(Qu), W:QxQ-10,1]: (x,y) » W(x,y)

It generates inhomogeneous random graph G,, (W) on by
o assigning i.i.d. features x; € ) according to u to the vertices
o connected i < j independently with probability P;; = W (x;, x;)

By Aldous- Hoover, any exchangeable family of random graphs (G,;)>1
can be generated by a (possibly random) graphon W



Graphs and Graphons

Graphs
= VertexsetV
= Adjacency matrix A:V XV - {0,1}

Non-Parametric
Random Graph Models

Graphons
m Probability space (Q, F, u)
m Symmetric, measurable function W:Q x Q - [0,1]




2) Different Notions of Similarity

Combinatorialists/Social Scientists:

* Similar local properties, in particular, subgraph counts

Statistics:

e Similar distributions for sampled subgraphs

Computer Science:

* Similar global properties, in particular max cut, min-bisection, etc.
Physicists:

* Similar free energies or ground state energies



2a) Subgraph counts

|dea: Test a large graph G = (V, E') “from the left” by mapping a small
graph H into G

Def: Subgraph frequencies: Given a graph G = (V, E) with adjacency
matrix A and a graph H on k nodes, define

to(H,G) = — Z 1_[ . 1_[ (1= Ayp))
.. VEV IJEE(H) ijGEE(H)
Def: Subgraph Count Convergence: |
* For all finite graphs H, ty(H, G,,) converges to some ty,(H) € [0,1]




2b) Sampling

Given a graph G = (V,E) and an integer k = 1, choose x4, ..., x; €V,
uniformly at random with replacement

* Smpl, () is the k-node graph with edge set {ij : x(i)x(j) € E}

Def: A sequence of dense graphs G, is called sampling convergent if the
distribution of Smpl;, (G,,) converges for all k

Rem: Sampling convergence is clearly equivalent to subgraph count
convergence. We call this notion left-convergence



2¢) Multiway Cuts

Notation: Given a graph ¢ = (V,E) onn nodesand S,T c V, set
1
e;(S,T) = ) 2 Lijer
i€S,jET

MaxCut(G) = max e;(5,5°), MinBisec(G) = min_e;(S,S°), ...
S: ISI—

Q: How to generalize this for cuts into more than two groups?



2¢) Multiway Cuts

Multiway-cuts: Given ] € R*** and g:V — [k] define

1

EG,](U) = ﬁ ]G(x)d(y)
x,y{x,y}€EE

and for a € Ay, set
MlnCUt],a(G) — moin EG’](O-)

where the minimum goes over all maps g: V' = | k] such that

| ‘0_1({i})| —na;| < 1foralli € |k]

Rem: We call convergence of these multi-way cuts right convergence



2d) Statistical Physics

In statistical physics, a: V' — [k] is called a spin-configuration, E; ;(a) is called its
energy, and MinCut; ,(G) is called the micro-canonical ground state energy.

Def: Micro-canonical free energy
F1o(G) = —2log Z; ,(G)

where Z; ,(G) is the partition function

Z;,a(G) = z e "G, (7)

o:V-l|k]

and the sumis overall g:V — [k] such that
| o7 ({i)| — na;| < 1foralli € [k]

Rem: This is another version of right convergence




2e) All these notions are equivalent!

Thm: Let (;,, be a sequence of graphs. Then the following are equivalent

1) Fora
2) Fora

3) Fora

finite graphs H, the subgraph frequencies t,(H, G,,) converge
k = 1, the distributions of Smpl, (G,,) converge
k>1,] € R and a € Ay, the multi-way cuts MinCut; ,(G,,)

converge

4) Forallk >1,] € R*¥** and a € A, the micro-canonical free energies

F; o (G,) converge

Proof Idea: prove equivalence to being a Cauchy sequence in the cut-

metric



3) Cut-Metric

Q How do we compare to graphs on different numbers of nodes.

Step 1: Embed graphs into the space of graphons:

Empirical Graphon of a Graph G on n nodes
* Replace [n] by n disjoint intervals I, ..., I, of width 1/n and divide
[0,1]% into n* squares I; X I; of side length 1/n
 Set W, to 1 onthesquareijifij is an edge in G and to 0 otherwise
Example:

Half graph




3) Cut-Metric

‘Step 2: Cut norm* of a function W:[0,1]? > R
[Wlla = (max,  Jsser 1V G y)dxdy ‘

Problem: In general, isomorphic graphs have a non-zero distance
Step 3: For two graphons Wy, W,:[0,1]% = [0,1] define the cut metric
6 (Wq, W3) = igf HW1¢ — Wy
O
where the infimum goes over measure preserving bijections and

W2 (G, y) = Wi (9(x), ()

*)Equivalently, we can define ||IW||5 by

Wl = max x)W (x, dxd
Wle = max ] fEOW (x, y)g(n)dxdy|



3) Cut-Metric

Def: For two finite graphs G, G, we set

SD(Gl’ GZ):= 6D(WG1’ WGz)

= inf max
¢ S,Tc[0,1]

foser (We, (00, 00 = W, (x,) ) dxdy



3a) Comments on Proof Structure

Proof Idea:

1) Provethatif 65(G,G') < €, the other properties differ by at most a constant
times € (the constant you will get will be moderate, roughly proportional to
k?, and maybe the norm of ). These proof are relatively elementary

I1) The other direction is more difficult, and often will require k to be
exponentially large in 1/€*

| will show this for some of the above quantities, to give you an idea of the flavor

of the proofs.
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