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Motivation: Three Related Problems

Questions:
• When should we consider two large graphs to be similar?  
• What is the “correct notion” of a limit of graphs (preserving 

“essential” properties of the finite graphs in the sequence)?
• How do I non-parametrically model massive real-world 

networks, and how do I estimate (learn) this non-parametric 
representation from data?

Lecture 1 + 2: Dense Graphs, summarizing our works with Lovasz, 
Sos and Vesztergombi [BCLSV ‘06-’12] and a few others



Motivation: when are two graphs similar?
Combinatorialists/Social Scientists: 
• If they have similar local properties, in particular, subgraph counts
Statistics:
• If sampled subgraphs have similar distributions
Computer Science:
• If they have similar global properties, in particular max cut, min-bisection, etc.  
Physicists:
• If statistical physics models on them have similar free energies or ground state 

energies

Thm1: [BCLSV’06,’08,’12,Diaconis-Janson’07]: For dense graphs, these are all 
equivalent, and they are also equivalent to similarity in the so-called cut-metric



Motivation: what is the right notion of a limit?

• A collection of limiting subgraph counts?
• A collection of distributions on finite graphs?
• A collection of (suitable generalizations) of max-cut, min-bisections, …?

• A collection of free energies or ground state energies?

Thm2 [Lovasz-Szegedy’06, BCLSV’06 -’12]: For dense graphs, all the limiting 
quantities above can be described in terms of a graphon over [0,1].
Def: A graphon over [0,1] is a function 𝑊𝑊: 0,1 × [0,1] → 0,1 s.th. 
𝑊𝑊(𝑥𝑥,𝑦𝑦)=𝑊𝑊(𝑦𝑦, 𝑥𝑥) for all 𝑥𝑥,𝑦𝑦 ∈ Ω



Motivation: How to model large graphs?
Simple Models:
• 𝐺𝐺 𝑛𝑛, 𝑝𝑝
• Stochastic Block Model
Q: What is the “right” generalization
Thm3 [Aldous ‘81, Hoover ‘79]:

All “natural” dense random models can be generated by a (possibly 
random) graphons

Def: Given a probability space (Ω, 𝜇𝜇), a graphon is a symmetric*  2-
variable function 

𝑊𝑊:Ω × Ω → 0,1 : 𝑥𝑥,𝑦𝑦 ↦ 𝑊𝑊(𝑥𝑥,𝑦𝑦)

*Here 𝑊𝑊 is symmetric if 𝑊𝑊(𝑥𝑥,𝑦𝑦)=𝑊𝑊(𝑦𝑦, 𝑥𝑥) for all 𝑥𝑥,𝑦𝑦 ∈ Ω



Summary: Graphs and Graphons

Graphs
 Vertex set 𝑉𝑉
 Adjacency matrix 𝐴𝐴:𝑉𝑉 × 𝑉𝑉 → {0,1}

Graph 
Limits

Non-Parametric 
Random Graph Models

Graphons
 Probability space Ω,ℱ, 𝜇𝜇
 Symmetric, measurable function 𝑊𝑊:Ω × Ω → [0,1]



1) Modelling Random Graphs
Random Graph 𝐺𝐺 𝑛𝑛,𝑝𝑝 : 
• vertex set 𝑛𝑛 = 1, … ,𝑛𝑛
• each of the possible 𝑛𝑛

2 edges is present i.i.d. with probability 𝑝𝑝
Stochastic Block Model 𝑆𝑆𝑆𝑆𝑆𝑆 𝑛𝑛,𝑆𝑆 , where 𝑆𝑆 ∈ 0,1 𝑘𝑘×𝑘𝑘 is a symmetric matrix: 
• vertex set [𝑛𝑛]
• each vertex has a label 𝑥𝑥𝑖𝑖 ∈ [𝑘𝑘] chosen i.i.d. uniformly at random
• 𝑖𝑖 < 𝑗𝑗 are connected independently with probability 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑥𝑥_𝑖𝑖𝑥𝑥_𝑖𝑖
Inhomogneous Random Graph: 𝐺𝐺𝑛𝑛(𝑊𝑊)
Start with a graphon, i.e., a symmetric function 𝑊𝑊 over some probability space (Ω,𝜇𝜇)
• vertex set [𝑛𝑛]
• each vertex has a feature 𝑥𝑥𝑖𝑖 ∈ Ω chosen i.i.d. according to 𝜇𝜇
• 𝑖𝑖 < 𝑗𝑗 are connected independently with probability 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑊𝑊(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖)
Q: How general is this?



1a) De Finetti
Def: An infinite sequence of random variables 𝑋𝑋1,𝑋𝑋2, … ∈ {0,1} is called exchangeable if 
for all 𝑛𝑛 and all permutations 𝜋𝜋: 𝑛𝑛 → [𝑛𝑛],

𝑋𝑋𝜋𝜋(1), … ,𝑋𝑋𝜋𝜋(𝑛𝑛) has the same distribution as 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛
Ex: Polya-Urn
• Start with 𝑅𝑅 red and 𝐺𝐺 green balls
• Pull out a ball, and replace it with two of the same color
• Iterate

Pr 𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔 =
𝑅𝑅 𝑅𝑅 + 1 𝑅𝑅 + 2 𝐺𝐺(𝐺𝐺 + 1)

𝑅𝑅 + 𝐺𝐺 𝑅𝑅 + 𝐺𝐺 + 1 … (𝑅𝑅 + 𝐺𝐺 + 4)

Pr 𝑟𝑟𝑔𝑔𝑟𝑟𝑔𝑔𝑟𝑟 =
𝑅𝑅𝐺𝐺 𝑅𝑅 + 1 (𝐺𝐺 + 1) 𝑅𝑅 + 2

𝑅𝑅 + 𝐺𝐺 𝑅𝑅 + 𝐺𝐺 + 1 … (𝑅𝑅 + 𝐺𝐺 + 4)



1a) De Finetti

Thm [De Finetti]: Assume 𝑋𝑋1,𝑋𝑋2, … ∈ {0,1} is exchangeable

Then there exists a distribution 𝜇𝜇 on [0,1] s.th. 𝑋𝑋1,𝑋𝑋2, … can be obtained by 
• first drawing 𝑝𝑝 ∼ 𝜇𝜇, and then 
• choosing 𝑋𝑋1,𝑋𝑋2, … i.i.d. with distribution 𝑆𝑆𝐵𝐵(𝑝𝑝).  
Ex. Polya Urn: 𝜇𝜇 is the beta-distribution 𝛽𝛽(𝑅𝑅,𝐺𝐺)



1b) Aldous-Hoover Theorem
Exchangeable random graphs: an infinite random graph whose distribution 
is invariant under finite vertex relabeling is called exchangeable
Formal Definition in terms of adjaceny matrix:
An infinite random array (𝑋𝑋𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈ℕ with entries in {0,1} is called 
exchangeable if for all 𝑛𝑛 and all permutations 𝜋𝜋: 𝑛𝑛 → [𝑛𝑛],

(𝑋𝑋𝜋𝜋 𝑖𝑖 𝜋𝜋(𝑖𝑖))𝑖𝑖,𝑖𝑖≤𝑛𝑛 has the same distribution as (𝑋𝑋𝑖𝑖𝑖𝑖)𝑖𝑖,𝑖𝑖≤𝑛𝑛
Q: What is the analogue of De Finetti?  𝐺𝐺(𝑛𝑛, 𝑝𝑝) for a random 𝑝𝑝?



1b) Aldous-Hoover Theorem
Thm [Aldous-Hoover]: Let (𝑋𝑋𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈ℕ be an exchangeable array with entries in 
0,1 and 𝑋𝑋𝑖𝑖𝑖𝑖 = 0.  

Then there exists a measurable function 𝑥𝑥,𝑦𝑦,𝛼𝛼 ↦ 𝑊𝑊𝛼𝛼(𝑥𝑥,𝑦𝑦) from 0,1 3 →
0,1 s.th. (𝑋𝑋𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈ℕ can be generated by 

• first choosing 𝛼𝛼 ∈ 0,1 uniformly at random, 
• then choosing 𝑥𝑥1, 𝑥𝑥2, … i.i.d. uniformly at random in 0,1 , 
• and then choosing 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖 ∼ 𝑆𝑆𝐵𝐵(𝑊𝑊𝛼𝛼(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖)), independently for all 𝑖𝑖 < 𝑗𝑗
Rephrased: If 𝐺𝐺𝑛𝑛 is a finite subgraph of an exchangeable infinite random 
graph 𝐺𝐺∞ then the distribution of 𝐺𝐺𝑛𝑛 can be generated by a random graphon 
𝑊𝑊



1b) Aldous-Hoover Theorem
Summary:
• A graphon is a symmetric 2-variable function over a probability space 

(Ω, 𝜇𝜇), 𝑊𝑊:Ω × Ω → 0,1 : 𝑥𝑥,𝑦𝑦 ↦ 𝑊𝑊(𝑥𝑥,𝑦𝑦)

• It generates inhomogeneous random graph 𝐺𝐺𝑛𝑛(𝑊𝑊) on by
o assigning i.i.d. features 𝑥𝑥𝑖𝑖 ∈ Ω according to 𝜇𝜇 to the vertices
o connected 𝑖𝑖 < 𝑗𝑗 independently with probability 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑊𝑊(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖)

• By Aldous- Hoover, any exchangeable family of random graphs (𝐺𝐺𝑛𝑛)𝑛𝑛≥1
can be generated by a (possibly random) graphon 𝑊𝑊



Graphs and Graphons

Graphs
 Vertex set 𝑉𝑉
 Adjacency matrix 𝐴𝐴:𝑉𝑉 × 𝑉𝑉 → {0,1}

Graph 
Limits

Non-Parametric 
Random Graph Models

Graphons
 Probability space Ω,ℱ, 𝜇𝜇
 Symmetric, measurable function 𝑊𝑊:Ω × Ω → [0,1]



2) Different Notions of Similarity

Combinatorialists/Social Scientists: 
• Similar local properties, in particular, subgraph counts
Statistics:
• Similar distributions for sampled subgraphs
Computer Science:
• Similar global properties, in particular max cut, min-bisection, etc.  
Physicists:
• Similar free energies or ground state energies



2a) Subgraph counts
Idea: Test a large graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 “from the left” by mapping a small 
graph 𝐻𝐻 into 𝐺𝐺
Def: Subgraph frequencies: Given a graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 with adjacency 
matrix 𝐴𝐴 and a graph 𝐻𝐻 on 𝑘𝑘 nodes, define

𝑡𝑡0 𝐻𝐻,𝐺𝐺 =
1

|𝑉𝑉|𝑘𝑘
�

𝑣𝑣1,…,𝑣𝑣𝑘𝑘∈𝑉𝑉

�
𝑖𝑖𝑖𝑖∈𝐸𝐸(𝐻𝐻)

𝐴𝐴𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 �
𝑖𝑖𝑖𝑖∉𝐸𝐸(𝐻𝐻)

(1 − 𝐴𝐴𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗)

Def: Subgraph Count Convergence:
• For all finite graphs 𝐻𝐻, 𝑡𝑡0 𝐻𝐻,𝐺𝐺𝑛𝑛 converges to some 𝑡𝑡0 𝐻𝐻 ∈ [0,1]



2b) Sampling
Given a graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 and an integer 𝑘𝑘 ≥ 1, choose 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 ∈ 𝑉𝑉, 
uniformly at random with replacement
• 𝑆𝑆𝑆𝑆𝑝𝑝𝑙𝑙𝑘𝑘(𝐺𝐺) is the 𝑘𝑘-node graph with edge set {𝑖𝑖𝑗𝑗 ∶ 𝑥𝑥 𝑖𝑖 𝑥𝑥 𝑗𝑗 ∈ 𝐸𝐸}
Def: A sequence of dense graphs 𝐺𝐺𝑛𝑛 is called sampling convergent if the 
distribution of 𝑆𝑆𝑆𝑆𝑝𝑝𝑙𝑙𝑘𝑘(𝐺𝐺𝑛𝑛) converges for all 𝑘𝑘
Rem: Sampling convergence is clearly equivalent to subgraph count 
convergence.  We call this notion left-convergence



2c) Multiway Cuts

Notation: Given a graph 𝐺𝐺 = 𝑉𝑉,𝐸𝐸 on 𝑛𝑛 nodes and 𝑆𝑆,𝑇𝑇 ⊂ 𝑉𝑉, set

𝐵𝐵𝐺𝐺 𝑆𝑆,𝑇𝑇 =
1
𝑛𝑛2 �

𝑖𝑖∈𝑆𝑆,𝑖𝑖∈𝑇𝑇

1𝑖𝑖𝑖𝑖∈𝐸𝐸

𝑆𝑆𝑀𝑀𝑥𝑥𝑀𝑀𝑀𝑀𝑡𝑡 𝐺𝐺 = max
𝑆𝑆⊂𝑉𝑉

𝐵𝐵𝐺𝐺 𝑆𝑆, 𝑆𝑆𝑐𝑐 , 𝑆𝑆𝑖𝑖𝑛𝑛𝑆𝑆𝑖𝑖𝑀𝑀𝐵𝐵𝑀𝑀 𝐺𝐺 = min
𝑆𝑆: 𝑆𝑆 =𝑛𝑛2

𝐵𝐵𝐺𝐺 𝑆𝑆, 𝑆𝑆𝑐𝑐 , …

Q: How to generalize this for cuts into more than two groups?



2c) Multiway Cuts

Multiway-cuts: Given 𝐽𝐽 ∈ ℝ𝑘𝑘×𝑘𝑘 and 𝜎𝜎:𝑉𝑉 → [𝑘𝑘] define

𝐸𝐸𝐺𝐺,𝐽𝐽 𝜎𝜎 =
1
𝑛𝑛2

�
𝑥𝑥,𝑦𝑦: 𝑥𝑥,𝑦𝑦 ∈𝐸𝐸

𝐽𝐽𝜎𝜎 𝑥𝑥 𝜎𝜎(𝑦𝑦)

and for 𝛼𝛼 ∈ Δ𝑘𝑘, set 
𝑆𝑆𝑖𝑖𝑛𝑛𝑀𝑀𝑀𝑀𝑡𝑡𝐽𝐽,𝛼𝛼 𝐺𝐺 = min

𝜎𝜎
𝐸𝐸𝐺𝐺,𝐽𝐽 𝜎𝜎

where the minimum goes over all maps 𝜎𝜎:𝑉𝑉 → [𝑘𝑘] such that

| 𝜎𝜎−1 𝑖𝑖 − 𝑛𝑛𝛼𝛼𝑖𝑖| ≤ 1 for all 𝑖𝑖 ∈ 𝑘𝑘

Rem: We call convergence of these multi-way cuts right convergence



2d) Statistical Physics

In statistical physics, 𝜎𝜎:𝑉𝑉 → [𝑘𝑘] is called a spin-configuration, 𝐸𝐸𝐺𝐺,𝐽𝐽 𝜎𝜎 is called its 
energy, and 𝑆𝑆𝑖𝑖𝑛𝑛𝑀𝑀𝑀𝑀𝑡𝑡𝐽𝐽,𝛼𝛼 𝐺𝐺 is called the micro-canonical ground state energy.

Def: Micro-canonical free energy
𝐹𝐹𝐽𝐽,𝛼𝛼 𝐺𝐺 = −1

𝑛𝑛 log𝑍𝑍𝐽𝐽,𝛼𝛼 𝐺𝐺

where 𝑍𝑍𝐽𝐽,𝛼𝛼 𝐺𝐺 is the partition function

𝑍𝑍𝐽𝐽,𝛼𝛼 𝐺𝐺 = �
𝜎𝜎:𝑉𝑉→[𝑘𝑘]

𝐵𝐵−𝑛𝑛𝐸𝐸𝐺𝐺,𝐽𝐽 𝜎𝜎

and the sum is over all 𝜎𝜎:𝑉𝑉 → [𝑘𝑘] such that

| 𝜎𝜎−1 𝑖𝑖 − 𝑛𝑛𝛼𝛼𝑖𝑖| ≤ 1 for all 𝑖𝑖 ∈ [𝑘𝑘]

Rem: This is another version of right convergence



2e) All these notions are equivalent!

Thm: Let 𝐺𝐺𝑛𝑛 be a sequence of graphs.  Then the following are equivalent
1) For all finite graphs 𝐻𝐻, the subgraph frequencies 𝑡𝑡0 𝐻𝐻,𝐺𝐺𝑛𝑛 converge
2) For all 𝑘𝑘 ≥ 1, the distributions of 𝑆𝑆𝑆𝑆𝑝𝑝𝑙𝑙𝑘𝑘(𝐺𝐺𝑛𝑛) converge

3) For all 𝑘𝑘 ≥ 1, 𝐽𝐽 ∈ ℝ𝑘𝑘×𝑘𝑘 and 𝛼𝛼 ∈ Δ𝑘𝑘, the multi-way cuts 𝑆𝑆𝑖𝑖𝑛𝑛𝑀𝑀𝑀𝑀𝑡𝑡𝐽𝐽,𝛼𝛼 𝐺𝐺𝑛𝑛
converge

4) For all 𝑘𝑘 ≥ 1, 𝐽𝐽 ∈ ℝ𝑘𝑘×𝑘𝑘 and 𝛼𝛼 ∈ Δ𝑘𝑘, the micro-canonical free energies 
𝐹𝐹𝐽𝐽,𝛼𝛼 𝐺𝐺𝑛𝑛 converge

Proof Idea: prove equivalence to being a Cauchy sequence in the cut-
metric



3) Cut-Metric
Q: How do we compare to graphs on different numbers of nodes.

Step 1: Embed graphs into the space of graphons: 
Empirical Graphon of a Graph 𝐺𝐺 on 𝑛𝑛 nodes
• Replace [𝑛𝑛] by 𝑛𝑛 disjoint intervals 𝐼𝐼1, … , 𝐼𝐼𝑛𝑛 of width ⁄1 𝑛𝑛 and divide 

0,1 2 into 𝑛𝑛2 squares 𝐼𝐼𝑖𝑖 × 𝐼𝐼𝑖𝑖 of side length 1/𝑛𝑛
• Set 𝑊𝑊𝐺𝐺 to 1 on the square 𝑖𝑖𝑗𝑗 if 𝑖𝑖𝑗𝑗 is an edge in 𝐺𝐺 and to 0 otherwise

Example:

~Half graph



3) Cut-Metric
Step 2: Cut norm* of a function 𝑊𝑊: 0,1 2 → ℝ

𝑊𝑊 □ = max
𝑆𝑆,T⊂[0,1]

∫𝑆𝑆×𝑇𝑇𝑊𝑊 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦

Problem: In general, isomorphic graphs have a non-zero distance
Step 3: For two graphons 𝑊𝑊1,𝑊𝑊2: 0,1 2 → [0,1] define the cut metric 

𝛿𝛿□ 𝑊𝑊1,𝑊𝑊2 = inf
𝜙𝜙

𝑊𝑊1
𝜙𝜙 −𝑊𝑊2 □

where the infimum goes over measure preserving bijections and
𝑊𝑊1

𝜙𝜙 𝑥𝑥,𝑦𝑦 = 𝑊𝑊1(𝜙𝜙 𝑥𝑥 ,𝜙𝜙 𝑦𝑦 )

*)Equivalently, we can define 𝑊𝑊 □ by
𝑊𝑊 □ = max

𝑓𝑓, 𝑔𝑔: 0,1 →[0,1]
∫ 𝑓𝑓(𝑥𝑥)𝑊𝑊 𝑥𝑥,𝑦𝑦 𝑔𝑔(𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦



3) Cut-Metric

Def: For two finite graphs 𝐺𝐺1,𝐺𝐺2 we set

𝛿𝛿□ 𝐺𝐺1,𝐺𝐺2 := 𝛿𝛿□ 𝑊𝑊𝐺𝐺1 ,𝑊𝑊𝐺𝐺2

= inf
𝜙𝜙

max
𝑆𝑆,T⊂[0,1]

∫𝑆𝑆×𝑇𝑇 𝑊𝑊𝐺𝐺1 𝜙𝜙(𝑥𝑥),𝜙𝜙(𝑦𝑦 ) −𝑊𝑊𝐺𝐺2 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦



3a) Comments on Proof Structure
Thm: Let 𝐺𝐺𝑛𝑛 be a sequence of graphs.  Then the following are equivalent
1) For all finite graphs 𝐻𝐻, the subgraph frequencies 𝑡𝑡0 𝐻𝐻,𝐺𝐺𝑛𝑛 converge
2) For all 𝑘𝑘 ≥ 1, the distributions of 𝑆𝑆𝑆𝑆𝑝𝑝𝑙𝑙𝑘𝑘(𝐺𝐺𝑛𝑛) converge
3) For all 𝑘𝑘 ≥ 1, 𝐽𝐽 ∈ ℝ𝑘𝑘×𝑘𝑘 and 𝛼𝛼 ∈ Δ𝑘𝑘, the multi-way cuts 𝑆𝑆𝑖𝑖𝑛𝑛𝑀𝑀𝑀𝑀𝑡𝑡𝐽𝐽,𝛼𝛼 𝐺𝐺𝑛𝑛 converge
4) For all 𝑘𝑘 ≥ 1, 𝐽𝐽 ∈ ℝ𝑘𝑘×𝑘𝑘 and 𝛼𝛼 ∈ Δ𝑘𝑘, the micro-canonical free energies 𝐹𝐹𝐽𝐽,𝛼𝛼 𝐺𝐺𝑛𝑛 converge
5) 𝐺𝐺𝑛𝑛 is a Cauchy sequence in the cut metric 𝛿𝛿□
Proof Idea: 
I) Prove that if 𝛿𝛿□ 𝐺𝐺,𝐺𝐺′ ≤ 𝜖𝜖, the other properties differ by at most a constant 

times 𝜖𝜖 (the constant you will get will be moderate, roughly proportional to
𝑘𝑘2, and maybe the norm of 𝐽𝐽).  These proof are relatively elementary

II) The other direction is more difficult, and often will require 𝑘𝑘 to be 
exponentially large in 1/𝜖𝜖2

I will show this for some of the above quantities, to give you an idea of the flavor 
of the proofs.


	�Graphons and Graph Limits�Tutorial�
	Motivation: Three Related Problems
	Motivation: when are two graphs similar?
	Motivation: what is the right notion of a limit?
	Motivation: How to model large graphs?
	Summary: Graphs and Graphons
	1) Modelling Random Graphs
	1a) De Finetti
	1a) De Finetti
	1b) Aldous-Hoover Theorem
	1b) Aldous-Hoover Theorem
	1b) Aldous-Hoover Theorem
	Graphs and Graphons
	2) Different Notions of Similarity
	2a) Subgraph counts
	2b) Sampling
	2c) Multiway Cuts
	2c) Multiway Cuts
	2d) Statistical Physics
	2e) All these notions are equivalent!
	3) Cut-Metric
	3) Cut-Metric
	3) Cut-Metric
	3a) Comments on Proof Structure

