Graphons and Graph Limits Tutorial

Parts 1 \& 2 (dense graphs)
Christian Borgs, UC Berkeley
Part 3 (sparse graphs)
Jennifer Chayes, UC Berkeley

Motivation: Three Related Problems

Questions:

- When should we consider two large graphs to be similar?
- What is the "correct notion" of a limit of graphs (preserving "essential" properties of the finite graphs in the sequence)?
- How do I non-parametrically model massive real-world networks, and how do I estimate (learn) this non-parametric representation from data?

Lecture $1+2$: Dense Graphs, summarizing our works with Lovasz, Sos and Vesztergombi [BCLSV '06-'12] and a few others

Motivation: when are two graphs similar?

Combinatorialists/Social Scientists:

- If they have similar local properties, in particular, subgraph counts Statistics:
- If sampled subgraphs have similar distributions

Computer Science:

- If they have similar global properties, in particular max cut, min-bisection, etc.

Physicists:

- If statistical physics models on them have similar free energies or ground state energies
Thm1: [BCLSV'06,'08,'12,Diaconis-Janson'07]: For dense graphs, these are all equivalent, and they are also equivalent to similarity in the so-called cut-metric

Motivation: what is the right notion of a limit?

- A collection of limiting subgraph counts?
- A collection of distributions on finite graphs?
- A collection of (suitable generalizations) of max-cut, min-bisections, ...?
- A collection of free energies or ground state energies?

Thm2 [Lovasz-Szegedy'06, BCLSV'06 -'12]: For dense graphs, all the limiting quantities above can be described in terms of a graphon over $[0,1]$.
Def: A graphon over $[0,1]$ is a function $W:[0,1] \times[0,1] \rightarrow[0,1]$ s.th. $W(x, y)=W(y, x)$ for all $x, y \in \Omega$

Motivation: How to model large graphs?

Simple Models:

- $G(n, p)$
- Stochastic Block Model

Q: What is the "right" generalization
Thm3 [Aldous '81, Hoover '79]:
All "natural" dense random models can be generated by a (possibly random) graphons
Def: Given a probability space (Ω, μ), a graphon is a symmetric* 2variable function

$$
W: \Omega \times \Omega \rightarrow[0,1]:(x, y) \mapsto W(x, y)
$$

*Here W is symmetric if $W(x, y)=W(y, x)$ for all $x, y \in \Omega$

Summary: Graphs and Graphons

Grapis

- Vertex set V
- Adjacency matrix $A: V \times V \rightarrow\{0,1\}$
Graph
Limits

Graphons

- Probability space $(\Omega, \mathcal{F}, \mu)$
- Symmetric, measurable function $W: \Omega \times \Omega \rightarrow[0,1]$

1) Modelling Random Graphs

Random Graph $G(n, p)$:

- vertex set $[n]=\{1, \ldots, n\}$
- each of the possible $\binom{n}{2}$ edges is present i.i.d. with probability p

Stochastic Block Model $\operatorname{SBM}(n, B)$, where $B \in[0,1]^{k \times k}$ is a symmetric matrix:

- vertex set [n]
- each vertex has a label $x_{i} \in[k]$ chosen i.i.d. uniformly at random
- $i<j$ are connected independently with probability $P_{i j}=B_{x_{-} i x_{-} j}$

Inhomogneous Random Graph: $G_{n}(W)$
Start with a graphon, i.e., a symmetric function W over some probability space (Ω, μ)

- vertex set [n]
- each vertex has a feature $x_{i} \in \Omega$ chosen i.i.d. according to μ
- $i<j$ are connected independently with probability $P_{i j}=W\left(x_{i}, x_{j}\right)$

Q: How general is this?

1a) De Finetti

Def: An infinite sequence of random variables $X_{1}, X_{2}, \ldots \in\{0,1\}$ is called exchangeable if for all n and all permutations $\pi:[n] \rightarrow[n]$,
$X_{\pi(1)}, \ldots, X_{\pi(n)}$ has the same distribution as X_{1}, \ldots, X_{n}

Ex: Polya-Urn

- Start with R red and G green balls
- Pull out a ball, and replace it with two of the same color
- Iterate

$$
\begin{aligned}
& \operatorname{Pr}(\operatorname{rrggg})=\frac{R(R+1)(R+2) G(G+1)}{(R+G)(R+G+1) \ldots(R+G+4)} \\
& \operatorname{Pr}(\text { rgrgr })=\frac{R G(R+1)(G+1)(R+2)}{(R+G)(R+G+1) \ldots(R+G+4)}
\end{aligned}
$$

1a) De Finetti

Thm [De Finetti]: Assume $X_{1}, X_{2}, \ldots \in\{0,1\}$ is exchangeable
Then there exists a distribution μ on $[0,1]$ s.th. X_{1}, X_{2}, \ldots can be obtained by

- first drawing $p \sim \mu$, and then
- choosing X_{1}, X_{2}, \ldots i.i.d. with distribution $\operatorname{Be}(p)$.

Ex. Polya Urn: μ is the beta-distribution $\beta(R, G)$

1b) Aldous-Hoover Theorem

Exchangeable random graphs: an infinite random graph whose distribution is invariant under finite vertex relabeling is called exchangeable Formal Definition in terms of adjaceny matrix:
An infinite random array $\left(X_{i j}\right)_{i j \in \mathbb{N}}$ with entries in $\{0,1\}$ is called exchangeable if for all n and all permutations $\pi:[n] \rightarrow[n]$,
$\left(X_{\pi(i) \pi(j)}\right)_{i, j \leq n}$ has the same distribution as $\left(X_{i j}\right)_{i, j \leq n}$
Q: What is the analogue of De Finetti? $G(n, p)$ for a random p ?

1b) Aldous-Hoover Theorem

Thm [Aldous-Hoover]: Let $\left(X_{i j}\right)_{i j \in \mathbb{N}}$ be an exchangeable array with entries in $\{0,1\}$ and $X_{i i}=0$.
Then there exists a measurable function $(x, y, \alpha) \mapsto W_{\alpha}(x, y)$ from $[0,1]^{3} \rightarrow$ $[0,1]$ s.th. $\left(X_{i j}\right)_{i j \in \mathbb{N}}$ can be generated by

- first choosing $\alpha \in[0,1]$ uniformly at random,
- then choosing x_{1}, x_{2}, \ldots i.i.d. uniformly at random in $[0,1]$,
- and then choosing $X_{i j}=X_{j i} \sim \operatorname{Be}\left(W_{\alpha}\left(x_{i}, x_{j}\right)\right)$, independently for all $i<j$ Rephrased: If G_{n} is a finite subgraph of an exchangeable infinite random graph G_{∞} then the distribution of G_{n} can be generated by a random graphon W

1b) Aldous-Hoover Theorem

Summary:

- A graphon is a symmetric 2-variable function over a probability space $(\Omega, \mu), W: \Omega \times \Omega \rightarrow[0,1]:(x, y) \mapsto W(x, y)$
- It generates inhomogeneous random graph $G_{n}(W)$ on by - assigning i.i.d. features $x_{i} \in \Omega$ according to μ to the vertices - connected $i<j$ independently with probability $P_{i j}=W\left(x_{i}, x_{j}\right)$
- By Aldous- Hoover, any exchangeable family of random graphs $\left(G_{n}\right)_{n \geq 1}$ can be generated by a (possibly random) graphon W

Graphs and Graphons

Graphs

- Vertex set V
- Adjacency matrix $A: V \times V \rightarrow\{0,1\}$

Graphons

- Probability space $(\Omega, \mathcal{F}, \mu)$
- Symmetric, measurable function $W: \Omega \times \Omega \rightarrow[0,1]$

2) Different Notions of Similarity

Combinatorialists/Social Scientists:

- Similar local properties, in particular, subgraph counts

Statistics:

- Similar distributions for sampled subgraphs

Computer Science:

- Similar global properties, in particular max cut, min-bisection, etc.

Physicists:

- Similar free energies or ground state energies

2a) Subgraph counts

Idea: Test a large graph $G=(V, E)$ "from the left" by mapping a small graph H into G
Def: Subgraph frequencies: Given a graph $G=(V, E)$ with adjacency matrix A and a graph H on k nodes, define

$$
t_{0}(H, G)=\frac{1}{|V|^{k}} \sum_{v_{1}, \ldots, v_{k} \in V} \prod_{i j \in E(H)} A_{v_{i} v_{j}} \prod_{i j \notin E(H)}\left(1-A_{v_{i} v_{j}}\right)
$$

Def: Subgraph Count Convergence:

- For all finite graphs $H, t_{0}\left(H, G_{n}\right)$ converges to some $t_{0}(H) \in[0,1]$

2b) Sampling

Given a graph $G=(V, E)$ and an integer $k \geq 1$, choose $x_{1}, \ldots, x_{k} \in V$, uniformly at random with replacement

- $\operatorname{Smpl}_{k}(G)$ is the k-node graph with edge set $\{i j: x(i) x(j) \in E\}$

Def: A sequence of dense graphs G_{n} is called sampling convergent if the distribution of $\operatorname{Smpl}_{k}\left(G_{n}\right)$ converges for all k
Rem: Sampling convergence is clearly equivalent to subgraph count convergence. We call this notion left-convergence

2c) Multiway Cuts

Notation: Given a graph $G=(V, E)$ on n nodes and $S, T \subset V$, set

$$
e_{G}(S, T)=\frac{1}{n^{2}} \sum_{i \in S, j \in T} 1_{i j \in E}
$$

$\operatorname{MaxCut}(G)=\max _{S \subset V} e_{G}\left(S, S^{c}\right), \operatorname{MinBisec}(G)=\min _{S:|S|=\frac{n}{2}} e_{G}\left(S, S^{c}\right), \ldots$
Q: How to generalize this for cuts into more than two groups?

2c) Multiway Cuts

Multiway-cuts: Given $J \in \mathbb{R}^{k \times k}$ and $\sigma: V \rightarrow[k]$ define

$$
E_{G, J}(\sigma)=\frac{1}{n^{2}} \sum_{x, y:\{x, y\} \in E} J_{\sigma(x) \sigma(y)}
$$

and for $\alpha \in \Delta_{k}$, set

$$
\operatorname{MinCut}_{J, \alpha}(G)=\min _{\sigma} E_{G, J}(\sigma)
$$

where the minimum goes over all maps $\sigma: V \rightarrow[k]$ such that

$$
\left|\left|\sigma^{-1}(\{i\})\right|-n \alpha_{i}\right| \leq 1 \text { for all } i \in[k]
$$

Rem: We call convergence of these multi-way cuts right convergence

2d) Statistical Physics

In statistical physics, $\sigma: V \rightarrow[k]$ is called a spin-configuration, $E_{G, J}(\sigma)$ is called its energy, and $\operatorname{MinCut}_{J, \alpha}(G)$ is called the micro-canonical ground state energy.

Def: Micro-canonical free energy

$$
F_{J, \alpha}(G)=-\frac{1}{n} \log Z_{J, \alpha}(G)
$$

where $Z_{J, \alpha}(G)$ is the partition function

$$
Z_{J, \alpha}(G)=\sum_{\sigma: V \rightarrow[k]} e^{-n E_{G, J}(\sigma)}
$$

and the sum is over all $\sigma: V \rightarrow[k]$ such that

$$
\left|\left|\sigma^{-1}(\{i\})\right|-n \alpha_{i}\right| \leq 1 \text { for all } i \in[k]
$$

Rem: This is another version of right convergence

2e) All these notions are equivalent!

Thm: Let G_{n} be a sequence of graphs. Then the following are equivalent

1) For all finite graphs H, the subgraph frequencies $t_{0}\left(H, G_{n}\right)$ converge
2) For all $k \geq 1$, the distributions of $\operatorname{Smpl}_{k}\left(G_{n}\right)$ converge
3) For all $k \geq 1, J \in \mathbb{R}^{k \times k}$ and $\alpha \in \Delta_{k}$, the multi-way cuts $\operatorname{MinCut}_{J, \alpha}\left(G_{n}\right)$ converge
4) For all $k \geq 1, J \in \mathbb{R}^{k \times k}$ and $\alpha \in \Delta_{k}$, the micro-canonical free energies $F_{J, \alpha}\left(G_{n}\right)$ converge
Proof Idea: prove equivalence to being a Cauchy sequence in the cutmetric

3) Cut-Metric

Q: How do we compare to graphs on different numbers of nodes.
Step 1: Embed graphs into the space of graphons:
Empirical Graphon of a Graph G on n nodes

- Replace [n] by n disjoint intervals I_{1}, \ldots, I_{n} of width $1 / n$ and divide $[0,1]^{2}$ into n^{2} squares $I_{i} \times I_{j}$ of side length $1 / n$
- Set W_{G} to 1 on the square $i j$ if $i j$ is an edge in G and to 0 otherwise

Example:

3) Cut-Metric

Step 2: Cut norm* of a function $W:[0,1]^{2} \rightarrow \mathbb{R}$

$$
\|W\|_{\square}=\max _{S, T \subset[0,1]}\left|\int_{S \times T} W(x, y) d x d y\right|
$$

Problem: In general, isomorphic graphs have a non-zero distance
Step 3: For two graphons $W_{1}, W_{2}:[0,1]^{2} \rightarrow[0,1]$ define the cut metric

$$
\delta_{\square}\left(W_{1}, W_{2}\right)=\inf _{\phi}\left\|W_{1}^{\phi}-W_{2}\right\|_{\square}
$$

where the infimum goes over measure preserving bijections and

$$
W_{1}^{\phi}(x, y)=W_{1}(\phi(x), \phi(y))
$$

$\left.{ }^{*}\right)$ Equivalently, we can define $\|W\|_{\square}$ by

$$
\|W\|_{\square}=\max _{f, g:[0,1] \rightarrow[0,1]}\left|\int f(x) W(x, y) g(y) d x d y\right|
$$

3) Cut-Metric

Def: For two finite graphs G_{1}, G_{2} we set

$$
\begin{aligned}
& \delta_{\square}\left(G_{1}, G_{2}\right):=\delta_{\square}\left(W_{G_{1}}, W_{G_{2}}\right) \\
& \quad=\inf _{\phi} \max _{S, \mathrm{~T} \subset[0,1]}\left|\int_{S \times T}\left(W_{G_{1}}(\phi(x), \phi(y))-W_{G_{2}}(x, y)\right) d x d y\right|
\end{aligned}
$$

3a) Comments on Proof Structure

Thm: Let G_{n} be a sequence of graphs. Then the following are equivalent

1) For all finite graphs H, the subgraph frequencies $t_{0}\left(H, G_{n}\right)$ converge
2) For all $k \geq 1$, the distributions of $\operatorname{Smpl}_{k}\left(G_{n}\right)$ converge
3) For all $k \geq 1, J \in \mathbb{R}^{k \times k}$ and $\alpha \in \Delta_{k}$, the multi-way cuts $\operatorname{MinCut}_{J, \alpha}\left(G_{n}\right)$ converge
4) For all $k \geq 1, J \in \mathbb{R}^{k \times k}$ and $\alpha \in \Delta_{k}$, the micro-canonical free energies $F_{J, \alpha}\left(G_{n}\right)$ converge
5) G_{n} is a Cauchy sequence in the cut metric δ_{\square}

Proof Idea:

I) Prove that if $\delta_{\square}\left(G, G^{\prime}\right) \leq \epsilon$, the other properties differ by at most a constant times ϵ (the constant you will get will be moderate, roughly proportional to k^{2}, and maybe the norm of J). These proof are relatively elementary
II) The other direction is more difficult, and often will require k to be exponentially large in $1 / \epsilon^{2}$
I will show this for some of the above quantities, to give you an idea of the flavor of the proofs.

