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How about convolutional kernels?

Neural networks � Kernels (in certain scaling regime)
[Jacot, Gabriel, Hongler, 2018]

CIFAR10 accuracy of convolutional kernels:

Paper method Error
- Gaussian kernel 43%

[Arora, et.al., 2019a] CNTK (data independent) 23%

[Li, et.al., 2019] CRFK (data dependent preprocessing) 11%

[Shankar, et.al., 2020] Myrtle10 CK 10%

[Bietti, 2022] 3-layers CK 12%
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Two important properties of images

▶ Locality of features in images.

▶ Translation invariance in images.

Question
How to mathematically quantify the advantage of convolution and pooling

operations for image dataset?
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Modeling invariance in image dataset?



The generative model: invariant functions

▶ Covariates x = (x1; x2; : : : ; xd)
T 2 Rd.

▶ Consider a group Gd that can act on Rd, e.g., the cyclic group
Gd = fg0; g1; : : : ; gd�1g

gi � x = (xi; xi+1; : : : ; xd; x1; : : : ; xi�1):

Other groups: 2D cyclic group; band-limited shift-invariant group.

▶ Label y induced by an invariant function f?

f?(x) = f?(g � x); 8g 2 Gd:

e.g., f?(x) =
Pd

i=1
xixi+1: a degree 2 cyclic polynomial.

Stylized model for an image label y = f?(x) + " invariant by translation of image x.
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x g ⋅ x

g

y = f(x) = "cat" y = f(g ⋅ x) = "cat"



Two-layer neural networks

▶ Two-layer fully-connected (FC) NN:

f̂FC(x;θ) =

NX
i=1

ai � �(hx;wii):

▶ Two-layer invariant (IV) NN:

f̂IV(x;θ) =

NX
i=1

ai �
Z
g2Gd

�(hg � x;wii)�(dg)

▶ When Gd is the cyclic group, this is two-layers convolutional NN (full window
size) with global average pooling.
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... and their corresponding kernels

▶ Fully-connected (FC) NNs induce inner-product kernels (the NTK):

KFC(x1;x2) = h(hx1;x2i=d);
where h(hx;yi=d) = Ew�Unif(Sd�1)[�(hx;wi)�(hy;wi)].

▶ Invariant (IV) NNs induce invariant kernels:

KIV(x1;x2) =

Z
g2Gd

h(hx1; g � x2i=d)�(dg):

▶ Goal: quantify the advantage of KIV over KFC learning invariant function.
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Test error of KRR with cyclic invariant kernel

Samples f(yi;xi)gi2[n]:

yi = f?(xi) + "i; xi � Unif(Sd�1(
p
d)); "i � N (0; � 2);

where f? is Gd-invariant, for Gd to be 1D or 2D cyclic group.

Theorem (Mei, Misiakiewicz, Montanari, 2021 (Informal))
Assume sufficiently smooth activation function. Consider kernel ridge regression
with FC and IV kernel, KRRFC and KRRIV respectively. In the regime n; d!1
with d` � n� d`+1, w.h.p,

kKRRFC � P�`f?kL2 = o(1);

kKRRIV � P�`+1f?kL2 = o(1):

Equivalently, the test error satisfies

E[(f?(x)� KRRFC(x))]
2 = kP>`f?k2L2 + o(1);

E[(f?(x)� KRRIV(x))]
2 = kP>`+1f?k2L2 + o(1):
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Numerical simulations
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Another interpretation of the theoretical result

To fit a degree ` invariant polynomial:
KRRFC require sample size n � d`,
KRRIV require sample size n � d`�1.

▶ We gain a factor d in sample complexity by using a cyclic kernel.

▶ Similar results hold for invariant random features.

▶ For general group Gd, we gain a sample size factor p which corresponds to the
“effective dimension” of the group Gd.
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The mechanism

Principle: KRR fit functions in the top O(n) eigenspace of the kernel.

▶ For FC kernel, the eigen-functions are spherical harmonics

KFC(x1;x2) =

1X
k=0

�k(h)

B(d;k)X
l=1

Y
(d)
k;l (x1)Y

(d)
k;l (x2):

▶ For IV kernel, the eigen-functions are invariant spherical harmonics

KIV(x1;x2) =

1X
k=0

�k(h)

D(d;k)X
l=1

Y
(d)
k;l (x1)Y

(d)
k;l (x2):

Kernel FC IV
Eigenspace O(d0)�O(d1) Degree-1 harmonics Degree-2 cyclic harmonics
Eigenspace O(d1)�O(d2) Degree-2 harmonics Degree-3 cyclic harmonics
Eigenspace O(d2)�O(d3) Degree-3 harmonics Degree-4 cyclic harmonics
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Cyclic invariant MNIST

▶ Make MNIST dataset invariant under cyclic translation in 2 dimensions.
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Locality vs invariance

Cyclic NN can be understood as FCNN with weight sharing structure.

x1 x2 x3 x4 x5 x6 x7 x8

yFC

x1 x2 x3 x4 x5 x6 x7 x8

yIV

However, in practice, convolutional neural networks are locally-connected

x1 x2 x3 x4 x5 x6 x7 x8

yLCC
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Modeling locality

x1 x2 x3 x4 x5 x6 x7 x8

yLCC

▶ Covariate x = (x1; x2; : : : ; xd)
T 2 f�1gd.

▶ The k’th patch x(k) = (xk+1; : : : ; xk+q)
T 2 f�1gq, q: window size.

▶ Weights (convolutional filters) fwigi2[N] � f�1gq.
▶ Locally-connected and convolutional (LCC) NN with window size q

f̂LCC(x) =
X
i2[N]

X
k2[d]

aik� (hwi;x(k)i) :

▶ Locally-connected and convolutional (LCC) kernel with window size q

KLCC(x;y) =
X
k2[d]

h(hx(k);y(k)i=q):
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Properties of LCC kernels with window size q

▶ The range of the kernel is the space of q-local functionsn
f(x) =

X
k2[d]

gk(x(k)) : fgkgk2[d] � L2(f�1gq)
o
:

▶ Eigen-functions are q-local harmonics [Misiakiewicz, Mei, 2021]

KLCC(x;y) =
X
k2[d]

h(hx(k);y(k)i=q) =
qX

`=0

X
S2E`

r(S)�q;` � YS(x)YS(y);

where the eigenfunctions are YS(x) =
Q

i2S xi (E` is all sets of length ` within
windows of size q).

Kernel LCC, q-local
Eigenspace O(1)�O(d) Degree-1 q-local harmonics

Eigenspace O(dq0)�O(dq1) Degree-2 q-local harmonics
Eigenspace O(dq1)�O(dq2) Degree-3 q-local harmonics
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Locality + Invariance

x1 x2 x3 x4 x5 x6 x7 x8

yLCCIV

▶ q-locally-connected, convolutional and invariant (LCCIV) neural networks

f̂LCCIV(x) =
X
i2[N]

ai
X
k2[d]

� (hwi;x(k)i) :

▶ q-locally-connected, convolutional and invariant (LCCIV) kernels

KLCCIV(x;y) =
X

k;k02[d]
h(hx(k);y(k0)i=q):



Properties of LCCIV kernels with window size q

▶ The range of the kernel is the space of cyclic q-local functionsn
f(x) =

X
k2[d]

g(x(k)) : g 2 L2(f�1gq)
o
:

▶ Eigen-functions are cyclic q-local polynomials [Misiakiewicz, Mei, 2021]
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where the eigenfunctions are Y S = d�1
Pd

k=1
YS+k (E` is all sets of length `

within windows of size q).

Kernel LCCIV, q-local
Eigenspace O(q0)�O(q1) Degree-2 cyclic q-local harmonics
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▶ The range of the kernel is the space of cyclic q-local functionsn
f(x) =

X
k2[d]

g(x(k)) : g 2 L2(f�1gq)
o
:

▶ Eigen-functions are cyclic q-local polynomials [Misiakiewicz, Mei, 2021]

KLCCIV(x;y) =
X

k;k02[d]
h(hx(k);y(k0)i=q) =

qX
`=0

X
S2E`

r(S)�q;` � Y S(x)Y S(y);

where the eigenfunctions are Y S = d�1
Pd

k=1
YS+k (E` is all sets of length `

within windows of size q).

Kernel LCCIV, q-local
Eigenspace O(q0)�O(q1) Degree-2 cyclic q-local harmonics
Eigenspace O(q1)�O(q2) Degree-3 cyclic q-local harmonics
Eigenspace O(q2)�O(q3) Degree-4 cyclic q-local harmonics



Test error of KRR with convolutional kernels

Let f?(x) =
P

k2[d] g(x(k)) be cyclic q-local. Given iid samples f(yi;xi)gi2[n],

yi = f?(xi) + "i; xi � Unif(f�1gd); "i � N (0; � 2):

Theorem (Misiakiewicz, Mei, 2021 (Informal))
To fit the degree ` polynomial part of f?,

KRR with KLCC requires sample size

dq`�1 � n� dq`

KRR with KLCCIV requires sample size

q`�1 � n� q`:

▶ KFC requires sample size d` � n� d`+1,
▶ KIV requires sample size d`�1 � n� d`.
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Four architectures

x1 x2 x3 x4 x5 x6 x7 x8

yFC

x1 x2 x3 x4 x5 x6 x7 x8

yIV

x1 x2 x3 x4 x5 x6 x7 x8

yLCC

x1 x2 x3 x4 x5 x6 x7 x8

yLCCIV



Comparison and numerical simulations
To fit a degree ` polynomial KFC KIV KLCC KLCCIV

Sample complexity d` d`�1 dq`�1 q`�1

` = 3, q = 10, d = 30 27; 000 900 3000 100

Table: Sample size n to fit a cyclic q-local polynomial of degree `.

Figure: Simulation for fitting a cubic cyclic 3-local polynomial
f(x) = d�1=2

Pd

i=1
xixi+1xi+2. Here d = 30, q = 10.
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The proof machinery

A general framework for analyzing the performance of random features regression
and kernel ridge regression in the high dimensional regime.

Theorem (Mei, Misiakiewicz, Montanari, 2022 (Very informal))
Suppose the kernel has eigen-decomposition

K(x;z) =

1X
i=1

�i i(x) i(z):

Assume �i satisfies the "spectral gap" and "decaying" assumptions, and  i
satisfies "hypercontractivity" and "concentration" assumptions. Then KRR with
kernel K with sample size n fits the top O(n) eigenspace f igi�O(n).

Proof idea
Everything can be expressed as summation, product, and inversion of matrices. E.g.,

E[f?(x)KRR(x)] = uT(K + �I)�1y; where ui = E[f?(x)K(x;xi)]:

The technical difficulty lies in analyzing spectral properties of random matrices.
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Comparison

Classical non-asymptotic results: Oracle inequality and minimax lower bound
[Caponnetto, de Vito, 2007], [Rahimi, Recht, 2009], [Bach, 2017], [E, Ma, Wu, 2018]

R(fd) � min
f?2F

kfd � f?k2 + G(�n;F):

High dimensional asymptotic results:
[El Karoui, 2010], [Fan, and Montanari, 2017], [Ghorbani, Mei, Misiakiewicz, and
Montanari, 2020], [Mei, Montanari, 2021]

lim
d;n!1

R(fd) = R?:

Difference between:

HD results v.s. Classical results

n = dk as d!1; v.s. fixed d large n;

Constant asymptotic error, v.s. Vanishing upper bound,

Pointwise lower bound, v.s. Minimax lower bound.
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Related works

▶ Analyzing kernel inner product matrices:
[Ghorbani, Mei, Misiakiewicz, Montanari, 2019, 2020], [Misiakiewicz, 2022], [Hu,
Lu, 2022], [Lu, Yau, 2022]

▶ Learning with invariance and locality in the classical regime:
[Li, Zhang, Arora, 2020], [Bietti, Venturi, Bruna, 2021], [Bietti, 2021], [Favero,
Cagnetta, and Wyart, 2021]

▶ Extension to multi-layer networks:
[Xiao, 2021]



Open questions

▶ We assumed the image covariates x has an isotropic distribution, which is not
realistic. The image covariates are sparse in the wavelet domain. Can we also
model such properties of images and derive similar results?

▶ In classification tasks, how to characterize the interplay of invariance and
locality in dataset and kernels?

▶ Consider non-linear neural networks. How to characterize the invariance and
locality in neural network training?



Summary

To fit a degree ` polynomial KFC KIV KLCC KLCCIV

Sample complexity d` d`�1 dq`�1 q`�1

` = 3, q = 10, d = 30 27; 000 900 3000 100

Table: Sample size n to fit a cyclic q-local polynomial of degree `.

▶ Cyclic kernels save a factor of d in learning cyclic functions.
[Mei, Misiakiewicz, Montanari, 2021]

▶ Local kernels reduce the sample complexity from d` to dq` in learning q-local
functions.
[Misiakiewicz and Mei, 2021]

▶ General proof machineary.
[Mei, Misiakiewicz, Montanari, 2022]

Thank you!
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Assumption (fn(d);m(d)gd�1-Kernel Concentration Property)

We say that the sequence of operators fHdgd�1 satisfies the Kernel Concentration Property (KCP) with respect to the sequence

f(n(d);m(d))gd�1 if there exists a sequence of integers fu(d)gd�1 with u(d) � m(d) such that the following conditions hold.

(a) (Hypercontractivity of finite eigenspaces.) For any fixed q � 1, there exists a constant C such that, for any
h 2 Dd;�u(d) = span( s; 1 � s � u(d)), we have

khk
L2q

� C � khk
L2
: (1)

(b) (Properly decaying eigenvalues.) There exists fixed �0 > 0, such that, for all d large enough,

n(d)
2+�0 �

(

P1

j=u(d)+1
�4
d;j

)2P1

j=u(d)+1
�8
d;j

; (2)

n(d)
2+�0 �

(

P1

j=u(d)+1
�2
d;j

)2P1

j=u(d)+1
�4
d;j

: (3)

(c) (Concentration of diagonal elements of kernel) For (xi)i2[n(d)] �iid �d , we have:

max
i2[n(d)]

jEx��d [Hd;>m(d)(xi;x)
2
]� Ex;x0��d

[Hd;>m(d)(x;x
0
)
2
]j =od;P(1) � Ex;x0��d

[Hd;>m(d)(x;x
0
)
2
];

(4)

max
i2[n(d)]

jHd;>m(d)(xi;xi)� Ex[Hd;>m(d)(x;x)]j = od;P(1) � Ex[Hd;>m(d)(x;x)]: (5)

Back



Assumption (Eigenvalue condition at level f(n(d);m(d))gd�1)

We say that the sequence of Kernel operators fHdgd�1 satisfies the Eigenvalue
Condition at level f(n(d);m(d))gd�1 if the following conditions hold for all d large
enough.

(a) There exists fixed �0 > 0, such that

n(d)1+�0 � 1

�4d;m(d)+1

1X
k=m(d)+1

�4d;k; (6)

n(d)1+�0 � 1

�2d;m(d)+1

1X
k=m(d)+1

�2d;k: (7)

(b) There exists fixed �0 > 0, such that

m(d) � n(d)1��0 :


