Distribution Shift as Underspecification And What We Might Do About It

Chelsea Finn

Can robots develop broadly intelligent behavior through learning & interaction?

Chen*, Nam*, Nair*, Finn. ICRA '21

Nair, Rajeswaran, Kumar, Finn, Gupta. arXiv '22

Xie, Ebert, Levine, Finn, RSS '19

Yu*, Finn*, Xie, Dasari, Zhang, Abbeel, Levine, RSS '18

Song, Yang, Choromanski, Caluwaerts, Gao, Finn, Tan. IROS '20

IM & GENET

P_{train}

Machine learning works

Core assumption

Ptest

Examples of distribution shift: offline RL and temporal shifts

RL from offline datasets

Real Robot Evaluation

Distribution shift between **policy in the dataset** and the **policy being optimized**.

If you don't account for this shift:

Shift over time

Predicting flu incidence from search queries

Feb 2013: predicting **double** the incidence

Language model perplexity over time.

Lazaridou et al. Pitfalls of Static Language Modeling. '21

Examples of distribution shift: **domains** & **subpopulations**

Koh*, Sagawa*, Marklund, Xie, Zhang, Balsubramani, Hu, Yasunaga, Phillips, Gao, Lee, David, Stavness, Guo, Earnshaw, Haque, Beery, Leskovec, Kundaje, Pierson, Levine, Finn, Liang. WILDS: A Benchmark of in-the-Wild Distribution Shifts. ICML 2021.

	Demographic	Test accuracy on non-toxic commen	ts
С	Male	87.3 (0.7)	
	Female	89.0(0.6)	
	m LGBTQ	74.6(0.5)	
	Christian	92.1(0.2)	
	Muslim	80.9 (1.0) 60	20% on non-toxic comme
	Other religions	86.1 (0.1)	
	Black	69.2 (1.3) Me	entioning Black demogra
	White	71.2(1.4)	<i>y</i>

34.4% average precision on test molecules from training scaffolds **26.8%** average precision on test molecules from held-out scaffolds

ranging from ecological conservation to medical imaging.

Different kinds of distribution shift

Covariate shift

Label shift

Concept shift

Change in p(x)

(includes domain shift, subpopulation shift)

Change in p(y)

Change in p(y | x)

Addressing extreme covariate shift via diverse ensembles

for supervised learning & reinforcement learning

Outline

Addressing label shift via invariance transfer

for long-tailed image classification

A couple existing approaches for tackling covariate shift

Data rebalancing Key idea: upweight or upsample underrepresented datapoints

- distributional robust optimization (group DRO, joint DRO)
- uniform class resampling
- learning from failure (LfF)
- just train twice (JTT)

- may require domain annotations
- don't address more extreme spurious correlations

Domain invariance

Key idea: learn representations that are invariant to domain

- domain adversarial neural networks _ & domain confusion
- invariant risk minimization (IRM)
- invariance via selective _ augmentation (LISA)
- + produce models robust to spurious correlations, domain shift

Note: ALL methods for distribution shift need to go *beyond* standard iid assumptions!

Underspecified data - an example

Many functions can achieve low training loss; they can't all be correct.

- Which feature should the model use?
- Underspecified only because there is covariate shift.

Possible Solutions

Regularize to the correct function

- requires **domain knowledge**
- requires way to convert domain knowledge into a regularizer

Learn Bayesian posterior over parameters

- these methods **don't scale** to deep networks

Train an ensemble of deep networks?

- Vanilla ensembles show little disagreement, even in this toy dataset!
 - Can be worse in larger-scale settings: simplicity bias, texture bias etc
- Core idea: actively diversify on unlabeled data from test distribution

Re-training with different seeds

Diversify and Disambiguate (DivDis)

Use an ensemble of NNs? Train multiple functions (e.g. NN with multiple heads)

- minimize training error -
- maximize disagreement on unlabeled test data -

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv '22

more specifically: minimize statistical dependence $\mathcal{L}_{MI}(f_i, f_j) = D_{KL}(p(\hat{y}_i, \hat{y}_j) || p(\hat{y}_i) \otimes p(\hat{y}_j))$

Diversify and Disambiguate (DivDis)

Stage 1: Diversify

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv '22

Stage 2: Disambiguate

Diversify and Disambiguate (DivDis)

A few options:

- Randomly label some test points, select most accurate head
- Query label for most disagreed points, select most accurate -
- Inspect the learned functions (e.g. using interpretability methods)

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv'22

How to select the head?

What Happens During Diversification?

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv '22

What Happens During Diversification?

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv '22

The **diversified heads** cover the space of functions consistent with training data.

Experiment 1: Completely Correlated Data

Waterbirds-CC CelebA-CC Landbird Waterbird Black Hair O Background 0 Water Glasses Background \times Glasses) Land

Initial Comparisons:

- **ERM** (standard NN training)
- **JTT** (upweight examples w/ highest error)
- **Group DRO** (upweight group w/ highest error)

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv '22

Black Hair X

- design train datasets with **complete** correlation btw spurious attribute & label
- imperfect or no correlation in test data -
- measure avg & worst-group accuracy -
- DivDis with 2 heads, 16 active queries

- **Note**: none of these are designed to handle perfect correlation!

Experiment 1: Completely Correlated Data

	Waterb	irds-CC	CelebA	A-CC-1	CelebA	A-CC-2	MultiNLI-CC	
	Avg (%)	Worst (%)	Avg (%)	Worst (%)	Avg (%)	Worst (%)	Avg (%)	Worst (%)
Random guessing baseline	50.0	50.0	50.0	50.0	50.0	50.0	33.3	33.3
ERM	60.5 ± 1.6	7.0 ± 1.5	70.9 ± 2.0	57.0 ± 5.8	73.1 ± 0.9	41.1 ± 2.6	53.2 ± 1.5	22.8 ± 2.5
JTT (Liu et al., 2021)	44.6 ± 1.9	26.5 ± 1.4	71.4 ± 1.9	51.2 ± 5.4	78.7 ± 0.8	59.8 ± 1.1	80.0 ± 4.0	40.5 ± 2.3
GDRO (Sagawa et al., 2020)	55.6 ± 4.8	47.1 ± 8.9	71.6 ± 0.3	59.3 ± 2.6	71.6 ± 2.4	61.3 ± 2.3	79.1 ± 3.4	39.8 ± 1.4
DivDis w/o reg	87.2 ± 0.8	77.5 ± 4.7	91.0 ± 0.4	$\textbf{85.9} \pm 1.0$	79.7 ± 0.4	$\textbf{69.3} \pm 1.9$	80.3 ± 0.6	67.6 ± 4.0
DivDis	87.6 ± 1.4	82.4 ± 1.9	90.8 ± 0.4	85.6 ± 1.1	79.5 ± 0.2	$\textbf{68.5} \pm 1.7$	79.9 ± 1.2	$\textbf{71.5} \pm 2.5$

Existing methods struggle, sometimes even doing worse than random guessing

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv '22

DivDis shows >25% improvement in worst-group accuracy on 3 of 4 datasets

Experiment 1: Completely Correlated Data

What happens when you give a few labeled examples to ERM?

Compare to:

- **ERM+minority:** standard NN training on training data & N minority examples
- **DFR:** ERM + fine-tune on N target examples -

DivDis substantially more label efficient, still favorable with 128 labeled target examples

Kirichenko, P., Izmailov, P., and Wilson, A. G. (2022). Last layer re-training is sufficient for robustness to spurious correlations. arXiv:2204.02937

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv '22

Experiment 2: Assumptions for Tuning Hyperparameters

On prior Waterbird & CelebA robustness benchmarks.

	Waterbirds worst	-group test acc.	CelebA worst-group test acc.			
	Tuned w/ worst	Tuned w/ avg	Tuned w/ worst	Tuned w/ avg		
CVaR DRO (Levy et al., 2020)	75.9%	62.0%	64.4%	36.1%		
LfF (Nam et al., 2020)	78.0%	44.1%	77.2%	24.4%		
JTT (Liu et al., 2021)	86.7%	62.5%	81.1%	40.6%		
DivDis	85.6%	81.0 %	55.0%	55.0 %		

Existing methods assume access to **group labels** during hyperparameter tuning. DivDis can be **tuned without group labels.**

\sim		Avg	Acc, S	ource	Dist	_	Avg	Acc, ٦	arget	Dist		Worst Acc, Target				
	1e0 -	88.3	88.4	86.4	54.2	-	90.1	90.7	89.8	58.3	-	83.2	81.0	84.4	23.4	
guld	1e1 -	83.5	89.2	85.4	53.7	-	89.5	89.9	88.9	59.0	-	85.6	84.7	83.9	18.9	
	1e2 -	82.4	78.2	82.1	54.5	-	87.5	90.2	88.3	58.0	-	70.6	80.9	75.2	18.0	
/eldll	1e3 -	66.4	72.2	64.1	53.2	-	76.7	77.9	68.6	55.1	-	44.0	54.6	34.2	9.2	
\leq		1e-1	1e0	le1	1e2	•	1e-1	1e0	le1	1e2	•	1e-1	1e0	lel	1e2	
	weight on diversify term λ_1															

Experiment 3: Domain Shift Problems with Mild Correlations

Camelyon17-WILDS

Labeled data from indistribution hospitals (no complete correlation)

Unlabeled data from **out-ofdistribution** hospitals

	Test Acc
Pseudo-Label	67.7 ± 8.2
DANN	68.4 ± 9.2
FixMatch	71.0 ± 4.9
CORAL	77.9 ± 6.6
NoisyStudent	86.7 ± 1.7
DivDis (ours)	90.4 ± 1.8

DivDis works well on domain shift (not just subpopulation shift)

DivDis compares favorably to domain adaptation methods.

Summary of DivDis

- underspecification through complete correlations.
- To deal with such highly underspecified data, we must consider **multiple** hypotheses.
- group information.
- Code: <u>https://github.com/yoonholee/DivDis</u>

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv '22

Tackles underspecification in data. **Existing methods fail** on data with severe

DivDis performs well on completely correlated data, and can be tuned without

Aside: Can you learn diverse ensembles of RL policies?

one training environment $M_{ ext{train}}$

new test environments M_{test}

Simple idea:

Learn & remember multiple solutions to M_{train}

Assumption #1: ability to adapt with modest amount of data

Assumption #2: changes to the environment are local such that the optimal policy in M_{test} also does well in M_{train}

e.g., few-shot robustness to local changes in obstacles, terrains, friction, etc

S. Kumar, A. Kumar, Levine, Finn. One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL, NeurIPS '20

Aside: Can you learn diverse ensembles of RL policies?

Adapt solution set to M_{test}

How to learn multiple solutions?

Learn controllable space of diverse policies that achieve return with ϵ of optimal

using latent variables $\pi_{\theta}(a \mid s, z)$

Train time:

T $\mathcal{H}(s) - \mathcal{H}(s \mid z)$

Roll-out K policies with different z. Return $\pi_{\theta}(a \mid s, z_i)$ for best performing z_i . Test time:

"structured maximum entropy RL" (SMERL)

Eysenbach, Gupta, Ibarz, Levine. DIAYN: Learning Skills without a Reward Function, ICLR'18 S. Kumar, A. Kumar, Levine, Finn. One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL, NeurIPS '20

constrained optimization

$\arg\max_{\theta} \sum_{t=1} I(s_t; z) \text{ s.t. } \forall z, R_{\mathcal{M}}(\pi_{\theta}) \ge R_{\mathcal{M}}(\pi_{\mathcal{M}}^*) - \varepsilon$

Testing Robustness to Obstacles, Perturbations, and Motor Failures

Pinto, Davidson, Sukthankar, Gupta. Robust Adversarial Reinforcement Learning, ICML'17 S. Kumar, A. Kumar, Levine, Finn. One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL, NeurIPS '20

degree of environment change

SAC policies at train time.

SMERL policies at train time.

S. Kumar, A. Kumar, Levine, Finn. One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL, NeurIPS '20

Best **SAC** policy at test time.

Best SMERL policy at test time.

Addressing extreme covariate shift via diverse ensembles

for supervised learning & reinforcement learning

Takeaway: Learning diverse classifiers & policies enables fast adaptation to OOD situations

Outline

Addressing label shift via invariance transfer

for image classification

What if your data has a long tail? # of datapoints big data small data categories

Why do deep networks fail on the tail?

Hypothesis

Zhou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR '21.

The model fails to transfer class-agnostic invariances from the head classes to the tail classes

—> if true, would lead to poor generalization on the tail.

Hypothesis

The model fails to transfer class-agnostic invariances from the head classes to the tail classes

Empirically testing this hypothesis:

- Create synthetic long-tailed dataset with invariance to transformation T
- Train models and evaluate their invariance to T.

T: Background shading

Zhou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR '21.

T: Image dilation/erosion

T: Rotation

based on Kuzushiji-49 (K49) dataset

Hypothesis

Invariance to T (lower is better)

Takeaway: Evidence suggests that invariances are **not** transferred across classes.

Zhou, rajvar, noncy, neurovics, rappus, rasaril, rinn. Do Deep networks Transfer Invariances Across Classes. ICLR '21.

The model fails to transfer class-agnostic invariances from the head classes to the tail classes

Measure invariance to T w.r.t. class size.

of examples per class

Can we encourage the model to transfer invariances across classes?

Generative invariance transfer:

- Use the model to augment small classes.⁽²⁾ 2.

⁽¹⁾Related works, which use paired transformation data: ⁽²⁾Related augmentation works: Robey et al. Model-Based Robust Deep Learning. 2020 Antoniou et al. Data Augmentation GAN. 2017 Mariani et al. Data Augmentation with Balancing GAN. 2018 Wong & Kolter. Learning Perturbation Sets for Robust Deep Learning. 2020

Zhou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR '21.

Train a conditional generative model to estimate class-preserving transformations.⁽¹⁾

Does GIT improve invariance on small classes?

Invariance to T (lower is better)

-> Only apply augmentation to small classes Zhou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR '21.

Do these improvements translate into better balanced accuracy?

Baseline		Strategy	Dataset					
			K49-B	G-LT	К49-Г	DIL-LT	-	
ERM			42.29 ± 1.46		39.49 ± 1.47		-	
CE+	-DRS	+GIT	42.21 ± 49.99 ±	= 1.36 = 1.25	39.48 49.18	$\pm 1.37 \\ \pm 1.23$	-	4-10% improvement on K49
LDAN	/I+DRS	+GIT	54.08 ± 58.86 ±	= 1.21 = 1.11	50.44 56.76	$\pm 1.24 \\ \pm 1.11$	-	
				Da	taset			
line	Strategy	GTSI	RB-LT	CIFAR	L-10 LT	CIFAR	L-100 L7	<u>Т</u>
Μ		68.88	± 1.75	70.74	± 0.13	38.69	± 0.32	2
DRS	+GIT	64.45 75.19	± 1.15 ± 0.50	74.28 77.25	$egin{array}{c} \pm 0.56 \ \pm 0.18 \end{array}$	40.97 42.73	$egin{array}{c} \pm 0.40 \ \pm 0.27 \end{array}$	$\frac{1-10\%}{7}$ 1-10% improvement
- DRS	+GIT	65.68 71.29	$egin{array}{c} \pm 2.09 \ \pm 0.73 \end{array}$	73.51 76.87	$egin{array}{c} \pm 0.50 \ \pm 0.14 \end{array}$	40.77 41.25	$\pm 0.21 \\ \pm 0.26$	
+ DRS	+GIT	77.25 81.39	$\pm 1.29 \\ \pm 0.98$	76.73 78.76	$\pm 0.74 \\ \pm 0.19$	43.21 44.35	$egin{array}{c} \pm 0.31 \ \pm 0.21 \end{array}$	Takeaway : Explicitly transferring invariances
								significanti, improve salanced accuracy

			01										
	K49- ERM 42.29 CE+DRS 42.21 +GIT 49.99		K49-B	K49-BG-LT K49									
_				42.29 =	± 1.46	.46 $39.49 \pm$							
_			$\begin{array}{c} 42.21 \pm \\ \textbf{+GIT} \qquad \textbf{49.99} \pm \end{array}$		42.21 ± 1.36 49.99 ± 1.25		48 ± 1.37 ${f 18} \pm {f 1.23}$		4-10% improvement on K49				
_	LDAM+DRS		+GIT	54.08 : 58.86 :	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 50.44 \pm 1.24 \\ {\bf 56.76 \pm 1.11} \end{array}$						
				Da	taset								
Baseli	ine	Strategy	GTS	RB-LT	CIFAF	R-10 LT	CIFAR	-100 LJ					
ERN	Л		68.88	± 1.75	70.74	± 0.13	38.69	± 0.32					
CE + D	DRS	+GIT	64.45 75.19	$5 \pm 1.15 74.28 \pm 0.56 \\ 9 \pm 0.50 77.25 \pm 0.18$		28 ± 0.56 40.97 ± 0.40 25 ± 0.18 42.73 ± 0.27		± 0.40 ± 0.27	, 1-10% improvement				
Focal +	DRS	+GIT	65.68 71.29	$egin{array}{c} \pm 2.09 \ \pm 0.73 \end{array}$	73.51 76.87	$egin{array}{c} \pm 0.50 \ \pm 0.14 \end{array}$	40.77 41.25	$egin{array}{c} \pm 0.21 \ \pm 0.26 \end{array}$	- ONGISKD-LI, CIFAK-LI				
LDAM +	- DRS	+GIT	77.25 81.39	$egin{array}{c} \pm 1.29 \ \pm 0.98 \end{array}$	76.73 78.76	± 0.74 ± 0.19	43.21 44.35	± 0.31 ± 0.2	Takeaway : Explicitly transferring invariances significantly improve balanced accuracy				

Zhou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR '21.

Addressing extreme covariate shift via diverse ensembles

for supervised learning & reinforcement learning

Takeaway: Learning diverse classifiers & policies enables fast adaptation to OOD situations

Outline

Addressing label shift via invariance transfer

for image classification

Takeaway: Invariances do not transfer across classes. Transferring them can help with label shift

Questions?

Working on distribution shift?

Benchmark with distribution shifts arising in real-world applications. <u>wilds.stanford.edu</u>