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Can robots develop broadly intelligent behavior through learning & interaction?

Finn, Tan, Duan, Darrell, Levine, Abbeel. ICRA ‘16 Yu*, Finn*, Xie, Dasari, Zhang, 
Abbeel, Levine, RSS ‘18

Xie, Ebert, Levine, Finn, RSS ‘19

Chen*, Nam*, Nair*, Finn. ICRA ‘21 Song, Yang, Choromanski, Caluwaerts, 
Gao, Finn, Tan. IROS ‘20

Nair, Rajeswaran, Kumar, Finn, Gupta. arXiv ‘22



Machine learning works

on the training data distribution

Core assumption

Ptrain Ptest=



Examples of distribution shift: offline RL and temporal shifts

Language model perplexity over time.

Lazaridou et al. Pitfalls of Static Language Modeling. ‘21

Predicting flu incidence from search queries

Ginsberg et al. Detecting influenza epidemics 
using search engine query data. Nature ‘09

0.97 mean correlation with CDC data.

Distribution shift between policy in the dataset 
and the policy being optimized.

If you don’t account 
for this shift:

Feb 2013: predicting double the incidence

Shift over timeRL from offline datasets

0% success rate



Online content moderation (Borkan et al. 2019)

Examples of distribution shift: domains & subpopulations

wilds.stanford.edu
Koh*, Sagawa*, Marklund, Xie, Zhang, Balsubramani, Hu, Yasunaga, Phillips, Gao, Lee, David, Stavness, Guo, Earnshaw, Haque, 
Beery, Leskovec, Kundaje, Pierson, Levine, Finn, Liang. WILDS: A Benchmark of in-the-Wild Distribution Shifts. ICML 2021.

Pang Wei Koh Shiori Sagawa

Comment: “I doubt that anyone cares 
whether you believe it or not”

toxic / not toxic

92.2% average test accuracy

69.2% on non-toxic comments 
mentioning Black demographic

Molecular Property Prediction (Hu et al. 2020)

Molecule:

biological activity prediction

34.4% average precision on test molecules from training scaffolds

26.8% average precision on test molecules from held-out scaffolds

WILDS has 10 datasets with distribution shift, 
ranging from ecological conservation to medical imaging.

WILDS 2.0 adds unlabeled data for 8 datasets.

http://wilds.stanford.edu


Different kinds of distribution shift

Covariate shift Change in p(x)

Label shift Change in p(y)

Concept shift Change in p(y |x)

(includes domain shift, 
subpopulation shift)



Outline

Addressing extreme covariate shift  
via diverse ensembles

Addressing label shift  
via invariance transfer

for supervised learning & reinforcement learning for long-tailed image classification



A couple existing approaches for tackling covariate shift

Data rebalancing Domain invariance

Key idea: upweight or upsample 
underrepresented datapoints

- distributional robust optimization  
(group DRO, joint DRO) 

- uniform class resampling 
- learning from failure (LfF) 
- just train twice (JTT)

- domain adversarial neural networks 
& domain confusion 

- invariant risk minimization (IRM) 
- invariance via selective 

augmentation (LISA)

Key idea: learn representations 
that are invariant to domain

+ produce models robust to spurious correlations, domain shift
- may require domain annotations 
- don’t address more extreme spurious correlations

Note: ALL methods for distribution shift need 
to go beyond standard iid assumptions!



Underspecified data - an example

Many functions can achieve low training loss; they can’t all be correct.

negative training 
examples

positive training 
examples test examples 

(unknown label)

fe
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1

feature 2

Which feature should the model use?

Yoonho Lee
Underspecified only because there is covariate shift.



Possible Solutions

Regularize to the correct function

- requires domain knowledge 

- requires way to convert domain knowledge into a regularizer

Learn Bayesian posterior over parameters

- these methods don’t scale to deep networks



Train an ensemble of deep networks?

● Vanilla ensembles show little disagreement, even in this toy dataset! 
○ Can be worse in larger-scale settings: simplicity bias, texture bias etc 

● Core idea: actively diversify on unlabeled data from test distribution

Re-training with different seeds



Diversify and Disambiguate (DivDis)

Train multiple functions 
(e.g. NN with multiple heads)
- minimize training error 

- maximize disagreement on unlabeled test data

Use an ensemble of NNs?

more specifically: minimize statistical dependence

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv ‘22



Diversify and Disambiguate (DivDis)

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv ‘22



Diversify and Disambiguate (DivDis)

- Randomly label some test points, select most accurate head 

- Query label for most disagreed points, select most accurate 

- Inspect the learned functions (e.g. using interpretability methods)

How to select the head?

A few options:

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv ‘22



What Happens During Diversification?

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv ‘22



What Happens During Diversification?

The diversified heads cover the space of functions consistent with training data.

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv ‘22



Experiment 1: Completely Correlated Data

- design train datasets with complete 
correlation btw spurious attribute & label 

- imperfect or no correlation in test data 

- measure avg & worst-group accuracy 

- DivDis with 2 heads, 16 active queries

- ERM (standard NN training) 
- JTT (upweight examples w/ highest error)  
- Group DRO (upweight group w/ highest error)

Initial Comparisons:

Note: none of these are designed to handle perfect correlation!

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv ‘22

Waterbirds-CC CelebA-CC



Experiment 1: Completely Correlated Data

Existing methods struggle, sometimes even doing worse than random guessing 

DivDis shows >25% improvement in worst-group accuracy on 3 of 4 datasets

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv ‘22



Experiment 1: Completely Correlated Data

- ERM+minority: standard NN training on 
training data & N minority examples 

- DFR: ERM + fine-tune on N target examples

Compare to:

What happens when you give a few labeled examples to ERM?

Kirichenko, P., Izmailov, P., and Wilson, A. G. (2022). Last layer re-training is sufficient 
for robustness to spurious correlations. arXiv:2204.02937

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv ‘22

DivDis substantially more label efficient,  
still favorable with 128 labeled target examples

Waterbirds-CC



Experiment 2: Assumptions for Tuning Hyperparameters

DivDis can be tuned without group labels.

On prior Waterbird & CelebA robustness benchmarks.

Existing methods assume access to group labels during hyperparameter tuning.
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weight on diversify term λ1



Experiment 3: Domain Shift Problems with Mild Correlations

Labeled data from in-
distribution hospitals

Unlabeled data from out-of-
distribution hospitals

(no complete correlation)

Camelyon17-WILDS

DivDis works well on domain shift  
(not just subpopulation shift) 

DivDis compares favorably to domain 
adaptation methods.



Summary of DivDis

● Tackles underspecification in data. Existing methods fail on data with severe 
underspecification through complete correlations. 

● To deal with such highly underspecified data, we must consider multiple 
hypotheses. 

● DivDis performs well on completely correlated data, and can be tuned without 
group information. 

● Code: https://github.com/yoonholee/DivDis

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv ‘22

https://github.com/yoonholee/DivDis


one training 
environment Mtrain 

new test environments Mtest

obstacle force perturbation disabled joints

Aside: Can you learn diverse ensembles of RL policies?



Learn & remember multiple 
solutions to Mtrain 

Simple idea: Adapt solution set to Mtest

e.g., few-shot robustness to local changes in obstacles, terrains, friction, etc

Assumption #2: changes to the environment are local
such that the optimal policy in  also does well in Mtest Mtrain 

S. Kumar, A. Kumar, Levine, Finn. One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL, NeurIPS ‘20

Assumption #1: ability to adapt with modest amount of data

Saurabh Kumar

Aside: Can you learn diverse ensembles of RL policies?



How to learn multiple solutions?

“structured maximum entropy RL” (SMERL)

Learn controllable space of diverse policies that achieve return with  of optimalϵ
constrained optimizationusing latent variables

πθ(a |s, z)

ℋ(s) − ℋ(s |z)

{Train time:

Test time: Roll-out  policies with different . Return  for best performing .K z πθ(a |s, zi) zi

Eysenbach, Gupta, Ibarz, Levine. DIAYN: Learning Skills without a Reward Function, ICLR ‘18
S. Kumar, A. Kumar, Levine, Finn. One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL, NeurIPS ‘20



Testing Robustness to Obstacles, Perturbations, and Motor Failures

Pinto, Davidson, Sukthankar, Gupta. Robust Adversarial Reinforcement Learning, ICML ‘17

Measuring 5-shot 
generalization.

Compare:

degree of environment change

p
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S. Kumar, A. Kumar, Levine, Finn. One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL, NeurIPS ‘20



SMERL policies at train time. Best SMERL policy at test time.

SAC policies at train time. Best SAC policy at test time.

S. Kumar, A. Kumar, Levine, Finn. One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL, NeurIPS ‘20



Outline

Addressing extreme covariate shift  
via diverse ensembles

Addressing label shift  
via invariance transfer

for supervised learning & reinforcement learning for image classification

Takeaway: Learning diverse classifiers & policies  
enables fast adaptation to OOD situations



What	if	your	data	has	a	long	tail?

categories

big data

small data

# 
of

 d
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oi

nt
s

Why do deep networks fail on the tail?



Hypothesis

The model fails to transfer class-agnos7c	invariances 
from the head classes to the tail classes

—> if true, would lead to poor generaliza?on on the tail.

Zhou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR ’21. Allan Zhou Fahim Tajwar Alex Robey



Hypothesis
The model fails to transfer class-agnos7c	invariances 

from the head classes to the tail classes

Empirically tes?ng this hypothesis: 
- Create synthe7c	long-tailed	dataset with invariance	to	transforma7on	T 
- Train models and evaluate their invariance to T.

T: Background shading T: Image dila?on/erosion T: Rota?on

based	on	Kuzushiji-49	(K49)	dataset

Zhou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR ’21.



Zhou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR ’21.

Hypothesis
The model fails to transfer class-agnos7c	invariances 

from the head classes to the tail classes

Measure	invariance	to	T	w.r.t.	class	size.

# of examples per class

Invariance to T  
(lower is beLer)

Takeaway: Evidence suggests that invariances  
are not transferred across classes.



Can we encourage the model to transfer invariances across classes?

1. Train a condi?onal genera?ve model to es?mate class-preserving transforma?ons.(1) 
2. Use the model to augment small classes.(2)

(1)Related works, which use paired transforma?on data: 
Robey et al. Model-Based Robust Deep Learning. 2020 
Wong & Kolter. Learning Perturba?on Sets for Robust Deep Learning. 2020

Genera?ve invariance transfer:

(2)Related augmenta?on works: 
Antoniou et al. Data Augmenta?on GAN. 2017 
Mariani et al. Data Augmenta?on with Balancing GAN. 2018

Zhou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR ’21.



Does GIT improve invariance on small classes?

Invariance to T  
(lower is beLer)

Yes! It also worsens invariance on well-represented classes, 
likely since genera?ve model is imperfect.

—> Only apply augmenta?on to small classes
Zhou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR ’21.



Do these improvements translate into beLer balanced accuracy?

4-10%	improvement on K49

1-10%	improvement  
on GTSRB-LT, CIFAR-LT

Takeaway: Explicitly transferring invariances can 
significantly improve balanced accuracy.

Zhou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR ’21.



Outline

Addressing extreme covariate shift  
via diverse ensembles

Addressing label shift  
via invariance transfer

for supervised learning & reinforcement learning for image classification

Takeaway: Learning diverse classifiers & policies  
enables fast adaptation to OOD situations

Takeaway: Invariances do not transfer across 
classes. Transferring them can help with label shift 



Questions?

Working on distribution shift?

Benchmark with distribution shifts 
arising in real-world applications.

wilds.stanford.edu

Students

http://wilds.stanford.edu

