Distribution Shift as Underspecification
And What We Might Do About [t
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Can robots develop broadly intelligent behavior through learning & interaction?

Our Method

autonomous execution

Xie, Ebert, Levine, Finn, RSS'19 Yu*, Finn*, Xie, Dasari, Zhang,
Abbeel, Levine, RSS'18
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Nair, Rajeswaran, Kumar, Finn, Gupta. arXiv ‘22 Song, Yang, Choromanski, Caluwaerts,
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Machine learning works
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on the training data distribution

Core assumption

Ptrain — Ptest



RL from offline datasets

Dataset from

Chen et. al . 2020 Real Robot Evaluation

Distribution shift between policy in the dataset
and the policy being optimized.

If you don't account
for this shift:

0% success rate

-xamples of distribution shift

- offline RL and temporal shifts

Shift over time

Predicting flu incidence from search queries
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Ginsberg et al. Detecting influenza epidemics

using search engine query data. Nature ‘09

Feb 2013: predicting double the incidence

Language model perplexity over time.

— AR XV

251 === ARXIV avg
— WMT

4 === WMT avg
= CustomNews
| === CustomNews avg __J|

]
(=]

Relative perplexity (%)
B &

LN
i

T T L 1 T
2018 01 2018 06 2018 11 2019 04 2019 09
Test months

Lazaridou et al. Pitfalls of Static Language Modeling.'21



-xamples of distribution shift: domains & subpopulations

. . D hi Test -toxi t
Online content moderation (Borkan et al. 2019) CIograpiic  °St accuracy on Hon-ioxic comments
Male 87.3 (0.7)
., Female 89.0 (0.6)
Comment:’| doubt that anyone cares . . LGBTQ 74.6 (0.5)
heth beli i " > toxic/ not toxic Christian 92.1 (0.2)
whether you believe it or not christi o |
Other religi o 69.2% on non-toxic comments
er religions 86.1 (0.1) . . |
92.2% average test accuracy Séife fi;;-zz ((11..2)) mentioning Black demographic

Molecular Property Prediction (Hu et al. 2020)

34.4% average precision on test molecules from training scaffolds

Molecule: "‘__
¢ 2:} - 01.1.00.) 26.8% average precision on test molecules from held-out scaffolds
— biological activity prediction

WILDS has 10 datasets with distribution shift,

W | L D S ranging from ecological conservation to medical imaging.

WILDS 2.0 adds unlabeled data for 8 datasets.

Pa Wei Koh Shiori Sagaa

Koh*, Sagawa*, Marklund, Xie, Zhang, Balsubramani, Hu, Yasunaga, Phillips, Gao, Lee, David, Stavness, Guo, Earnshaw, Haque,

Beery, Leskovec, Kundaje, Pierson, Levine, Finn, Liang. WILDS: A Benchmark of in-the-Wild Distribution Shifts. ICML 2021. wilds.stantord.edu



http://wilds.stanford.edu

Different kinds of distribution shift

(includes domain shift,
subpopulation shift)

Covariate shift Change in p(x)
Label shift Change in p(y)

Concept shift Change in p(y | x)



Outline

Addressing extreme covariate shift
via diverse ensembles

Diversify Head ® A
ersify Heads ° "
O Unlabeled
\’s Target Data

Labeled
Source Data

Near-optimal Functions o O
for Source Distribution )

for supervised learning & reinforcement learning



A couple existing approaches for tackling covariate shift

Data rebalancing Domain invariance
Key idea: upweight or upsample Key idea: learn representations
underrepresented datapoints that are invariant to domain
- distributional robust optimization - domain adversarial neural networks
(group DRO, joint DRO) & domain confusion
- uniform class resampling - invariant risk minimization (IRM)
- learning from failure (LfF) - invariance via selective
- just train twice (JTT) augmentation (LISA)

+ produce models robust to spurious correlations, domain shift

- may require domain annotations

- don't address more extreme spurious correlatianc
P Note: ALL methods for distribution shift need

to go beyond standard iid assumptions!



Underspecified data - an example

positive training feature 2
examples [ oA A test examples

. A :OA Oooo ) (unknown label)

— A A o

v A A

L e negative training
° ' o . examples

OO O - o ]

Many functions can achieve low training loss; they can’t all be correct.

Which feature should the model use?

\omad/
‘ | h
Yoonho Lee

Underspecified only because there is covariate shift.



Possible Solutions

Regularize to the correct function

- requires domain knowledge

positive training

feature 2

examples

feature 1

- requires way to convert domain knowledge into a regularizer

Learn Bayesian posterior over parameters

- these methods don’t scale to deep networks

test examples
(unknown label)

negative training
examples



Train an ensemble of deep networks?

Re-training with different seeds
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e Vanilla ensembles show little disagreement, even in this toy dataset!

o Can be worse in larger-scale settings: simplicity bias, texture bias etc

e Coreidea: actively diversify on unlabeled data from test distribution



Diversify and Disambiguate (DivDis)

Train multiple functions Use an ensemble of NNs?
(e.g. NN with multiple heads)

- minimize training error

- maximize disagreement on unlabeled test data
more specifically: minimize statistical dependence  Lyu(fs, f;) = DxL (0(%3,95) || p(7:) ® p(7;))

Stage 1. Diversify

4 N\
Diversify Heads ® .V\
O /Oy Unlabeled
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Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv'22



Diversity and Disambiguate (DivD

Stage 1: Diversify
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Stage 2: Disambiguate
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Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv 22
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Datapoint
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Diversify and Disambiguate (DivDis)

Stage 1: Diversify

-

Diversify Heads
]

Near-optimal Functions
for Source Distribution

Unlabeled
Target Data

Labeled
Source Data

/

A few options:

Stage 2: Disambiguate

4 Disambiguate . A
! AN
Most Disagreed
Datapoint
N /

How to select the head?

- Randomly label some test points, select most accurate head

- Query label for most disagreed points, select most accurate

- Inspect the learned functions (e.g. using interpretability methods)

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv'22



What Happens During Diversification?

Accuracy
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Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv'22



What Happens During Diversification?

The diversified heads cover the space of functions consistent with training data.

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv'22



Experiment 1: Completely Correlated Data

Waterbirds-CC CelebA-CC
Waterbird Landbird Black Hair O  Black Hair X
T o - design train datasets with complete
g8 3 correlation btw spurious attribute & label
S X g
S O - imperfect or no correlation in test data
g - - measure avg & worst-group accuracy
2 n
© 0O )
C = 7)) . . . . .
% g - DivDis with 2 heads, 16 active queries
© O
2

Initial Comparisons:
- ERM (standard NN training)

- JTT (upweight examples w/ highest error)
- Group DRO (upweight group w/ highest error)

Note: none of these are designed to handle perfect correlation!

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv'22



Experiment 1: Completely Correlated Data

Waterbirds-CC CelebA-CC-1 CelebA-CC-2 MultiNLI-CC

Avg (%) Worst (%) Avg (%) Worst (%) Avg (%) Worst (%) Avg (%) Worst (%)
Random guessing baseline 50.0 50.0 50.0 50.0 50.0 50.0 33.3 33.3
ERM 60.5 = 1.6 7.0x£1.5 70.9 £+ 2.0 57.0 £ 5.8 73.1 0.9 41.1 £ 2.6 53.2+1.5 22.8 £ 2.5
JTT (Liu et al., 2021) 446 £ 1.9 26.5+1.4 71.4+1.9 51.2+54 78.7 0.8 09.8 1.1 80.0 £ 4.0 40.5 £ 2.3
GDRO (Sagawa et al., 2020) 55.6 £4.8 47.1 = 8.9 71.6 £ 0.3 99.3 £ 2.6 71.6 2.4 61.3 £+ 2.3 79.1+3.4 39.8+1.4
DivDis w/o reg 87.2 4+ 0.8 77.5+4.7 91.0+0.4 85.9+1.0 79.7+04 69.3+1.9 80.3 = 0.6 67.6 = 4.0
DivDis 7.6 +1.4 82.4+1.9 90.8+ 0.4 85.6 £ 1.1 79.5 £ 0.2 68.5 + 1.7 79.94+1.2 71.5 + 2.5

Existing methods struggle, sometimes even doing worse than random guessing

DivDis shows >25% improvement in worst-group accuracy on 3 of 4 datasets

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv 22



Experiment 1: Completely Correlated Data

What happens when you give a few labeled examples to ERM?

Compare to:

- ERM+minority: standard NN training on
training data & N minority examples

- DFR: ERM + fine-tune on N target examples

Worst-group Acc (%)

DivDis substantially more label efficient,
still favorable with 128 labeled target examples

Kirichenko, P, Izmailov, P, and Wilson, A. G. (2022). Last layer re-training is sufficient
for robustness to spurious correlations. arXiv:2204.02937

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv'22

Waterbirds-CC
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Additional Samples




Experiment 2: Assumptions for Tuning Hyperparameters
On prior Waterbird & CelebA robustness benchmarks.

Waterbirds worst-group test acc. CelebA worst-group test acc.

Tuned w/ worst  Tuned w/avg  Tuned w/ worst  Tuned w/ avg
CVaR DRO (Levy et al., 2020) 75.9% 62.0% 64.4% 36.1%
LfF (Nam et al., 2020) 78.0% 44.1% 77.2% 24.4%
JTT (Liu et al., 2021) 86.7% 62.5% 81.1% 40.6%
DivDis 85.6% 81.0% 55.0% 55.0%

Existing methods assume access to group labels during hyperparameter tuning.
DivDis can be tuned without group labels.

Avg Acc, Source Dist Avg Acc, Target Dist Worst Acc, Target Dist

1e0
lel

le2

44.0 54.6 34.2

le34 66.4 72.2 64.1 76.7 77.9 68.6

weight on regularizer 4,

le-1 1eO lel le2 le-1 1eO lel le2 le-1 1e0 lel le2
weight on diversify term 4,



Experiment 3: Domain Shift Problems with Mild Correlations

Test Acc
Camelyon17-WILDS Pseudo-Label 67.7 + 8.2
DANN 68.4 + 9.2
Labeled data from in- glgll\{/lifh ;’178 - ‘612
distribution hospitals , DA
(no com . NoisyStudent 86.7 £ 1.7
plete correlation)
DivDis (ours) 90.4 + 1.8

Unlabeled data from out-of-

C . . DivDis works well on domain shift
distribution hospitals

(not just subpopulation shift)

DivDis compares favorably to domain
adaptation methods.



Summary of DivDis

e Tackles underspecification in data. Existing methods fail on data with severe
underspecification through complete correlations.

e Todeal with such highly underspecified data, we must consider multiple
hypotheses.

e DivDis performs well on completely correlated data, and can be tuned without
group information.

e Code: https://github.com/yoonholee/DivDis

Lee, Yao, Finn. Diversify and Disambiguate: Learning from Underspecified Data. arXiv'22


https://github.com/yoonholee/DivDis

Aside: Can you learn diverse ensembles of RL policies?

one training

environment M, new test environments Mieqt

rain

= R

obstacle force perturbation disabled joints




Aside: Can you learn diverse ensembles of RL policies?

Learn & remember multiple

Simple idea: . i
P solutions to My, Adapt solution set to Myagt
? @ e

Assumption #1: ability to adapt with modest amount of data

Assumption #2: changes to the environment are local
such that the optimal policy in Meg also does well in M,

rain

e.g., few-shot robustness to local changes in obstacles, terrains, friction, etc

Saurabh Kumar

S. Kumar, A. Kumar, Levine, Finn. One Solution is Not All You Need: Few-5Shot Extrapolation via Structured MaxEnt RL, NeurlPS 20



How to learn multiple solutions?

Learn controllable space of diverse policies that achieve return with € of optimal

using latent variables constrained optimization

my(als, z)
T
Train time: arg maxZ[(st; z) sit. Vz, Raq (mg) > Rpm(myy) — €
S R -
A (s) — Z(s|z2)

Test time:  Roll-out K policies with different z. Return zy(a | s, z;) for best performing z..

‘structured maximum entropy RL" (SMERL)

Fysenbach, Gupta, Ibarz, Levine. DIAYN: Learning Skills without a Reward Function, ICLR"18

S. Kumar, A. Kumar, Levine, Finn. One Solution is Not All You Need: Few-5Shot Extrapolation via Structured MaxEnt RL, NeurlPS 20



esting Robustness to Obstacles, Perturbations, and Motor Failures

HalfCheetah-Goal + Obstacle HalfCheetah-Goal + Force HalfCheetah-Goal + Motor Failure
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Pinto, Davidson, Sukthankar, Gupta. Robust Adversarial Reinforcement Learning, ICML"17
S. Kumar, A. Kumar, Levine, Finn. One Solution is Not All You Need: Few-5Shot Extrapolation via Structured MaxEnt RL, NeurlPS 20



SAC policies at train time. Best SAC policy at test time.

e -.:.-.__.

i, AN IR
SMERL policies at train time. Best SMERL policy at test time.
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S. Kumar, A. Kumar, Levine, Finn. One Solution is Not All You Need: Few-5Shot Extrapolation via Structured MaxEnt RL, NeurlPS 20
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Outline

Addressing extreme covariate shift
via diverse ensembles

Diversify Head ® A
iversify Heads ® S
O Unlabeled
\< Target Data

Labeled
Source Data

Near-optimal Functions o O
for Source Distribution )

for supervised learning & reinforcement learning

Takeaway: Learning diverse classifiers & policies
enables fast adaptation to OOD situations



What if your data has a long tail?

big data

/

of datapoints

/

categories

Why do deep networks fail on the tail?



Hypothesis

The model fails to transfer class-agnostic invariances
from the head classes to the tail classes

—> |f true, would lead to poor generalization on the tail.

Allan Zhou £ Fahim Tajwar B Alex Robey

/hou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR '21.



Hypothesis

The model fails to transfer class-agnostic invariances
from the head classes to the tail classes

Empirically testing this hypothesis:

- Create synthetic long-tailed dataset with invariance to transformation T
- Train models and evaluate their invariance to T.

T: Background shading T: Image dilation/erosion T: Rotation
‘ i L
gl R =Np)

based on Kuzushiji-49 (K49) dataset
/hou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR '21.




Hypothesis

The model fails to transfer class-agnostic invariances
from the head classes to the tail classes

Measure invariance to T w.r.t. class size.

K49-ROT-LT (Rotation) K49-BG-LT (Background Intensity) K49-DIL-LT (Dilation/Erosion)

2.5+ 0.12- Method
—_ ERM
. 0.10- .
' *0 CE+DRS | °°
nvariance to 1 0.08 -
_ 1.5- 04
(lower is better) 0.06- -
1.0 0.04 -
0.21 N\
. 0.02 1 N
10" 102 103 10! 102 103 10! 102 103

of examples per class

Takeaway: Evidence suggests that invariances
are not transferred across classes.

110G, 1upvvan, ooy, i iovvie o, 1 uppous, iusun 1 u e v o WOrKs Transfer Invariances Across Classes. ICLR 21,



Can we encourage the model to transfer invariances across classes?

Generative invariance transfer:

1. Train a conditional generative model to estimate class-preserving transtormations.

2. Use the model to augment small classes.®

K49-BG-LT Original Generated samples GTSRB-LT Original Generated samples
Larest'l'g"| ‘/ "' -k S -

| d / .

(LRelated works, which use paired transformation data: (2)Related augmentation works:

Robey et al. Model-Based Robust Deep Learning. 2020 Antoniou et al. Data Augmentation GAN. 2017
Wong & Kolter. Learning Perturbation Sets for Robust Deep Learning. 2020 Mariani et al. Data Augmentation with Balancing GAN. 2018

/hou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR '21.



Does GIT improve invariance on small classes?

K49-BG-LT (Background Intensity) K49-DIL-LT (DiIatioh/Erdsion)

0.12- Method
0.10- 0.6 - — ERM
. CE+DRS
nvariance to 1 0.08 - _ CE+DRS+GIT
(lower is better)  6- 0.4-
0.04 1
0.2 1 AN
0.02- ~
o004 =] 0
10 102 103 10’ 102 103
Class size
Yes! It also worsens invariance on well-represented classes,

likely since generative model is imperfect.

—> Only apply augmentation to small classes

/hou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR '21.



Do these improvements translate into better balanced accuracy?

Baseline Strategy Dataset
K49-BG-LT K49-DIL-LT
ERM 42.29 £1.46  39.49 4 1.47
CE+DRS 42.21£1.36  39.48 + 1.37 4-10% improvement on K43
+GIT 4999+1.25 49.18+1.23
LDAM+DRS 54.08 £ 1.21 50.44 + 1.24

+GIT 58.86+t-1.11 56.76 =1.11

Dataset

Baseline Strategy  GTSRB-LT CIFAR-10LT CIFAR-100 LT

ERM 68.88 +1.75 70.74 +0.13 38.69 4+ 0.32
CE + DRS 64.45 £ 1.15  74.28 £0.56 40.97 £ 0.40 1-10% improvement
+GIT 75.19+0.50 77.25+0.18 42.73+0.27
on GTSRB-LT, CIFAR-LT
Focal + DRS 65.68 4+ 2.09 73.51 4+ 0.50 40.77 + 0.21
+GIT 71.291+0.73 76.87+0.14 41.25+0.26
LDAM + DRS 77.256+1.29 76.73+0.74  43.21 £0.31 Takeaway: Explicitly transferring invariances can

+GIT 81.39+-098 78.76 -0.19 44 .35 + 0.2:

significantly improve balanced accuracy.

/hou, Tajwar, Robey, Knowles, Pappas, Hasani, Finn. Do Deep Networks Transfer Invariances Across Classes. ICLR '21.



Outline

Addressing label shift
via invariance transfer

/ K49-ROT-LT (Rotation) K49-BG-LT (Background Intensi%
25 0.12- Method

— ERM

2.0- 019 CE+DRS

0.08 -
1.51

0.06
1.07 0.04 -
05- 0.02- \
0.00 A

\””1”61 o102 100 o100 102 108 J

for image classification

Takeaway: Invariances do not transfer across
classes. Transferring them can help with label shift
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Questions?

Working on distribution shift?

WIL®S

Benchmark with distribution shifts
arising in real-world applications.

wilds.stanford.edu



http://wilds.stanford.edu

