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Outline

Problem: causal effect estimation from observational studies

Goal: understand in high-dimensional settings without sparsity assumptions

Main result: a new central limit theorem

Some insights into proof techniques

Opportunities and implications for machine learning
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Causal effect estimation from observational studies

The problem: Observe n i.i.d. samples (Yi, Ai,Xi).

– Outcome Yi ∈ R, treatment Ai ∈ {0, 1}, covariates Xi ∈ Rp.

– Can we estimate effect of the treatment on the outcome?

Issue: For unit i, observe only outcome for assigned treatment!

One approach: The potential outcomes framework (Neyman-Rubin)
–Denote Yi(t) to be outcome we would observe if treatment t assigned.

Causal effects take multiple forms:

This talk

E.g: (1) The average treatment effect: τ = E[Yi(1)− Yi(0)]
(2) Conditional average treatment effect: τ(x) = E[Yi(1)− Yi(0)|X = x]

...
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Conditions for ATE identification

Unidentifiable from observational studies (in general).

Assume structure on observed data distribution so identifiable.

– No unmeasured confounding: Y (1), Y (0) ⊥ A|X
– Consistency: Y = AY (1) + (1−A)Y (0)

– Positivity : P[A = 1|X = x] > 0

The ATE can be identified from observational data using

E[Y (1)− Y (0)] = E[E(Y |A = 1,X)− E(Y |A = 0,X)]
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ATE estimation: A well-studied problem

General theme: The estimation problem involves two nuisance functions:

– The propensity score: π = E[A|X] = P(A = 1|X)

– The outcome regressions: m(1) = E[Y |A = 1,X], m(0) = E[Y |A = 0,X]

Multiple approaches exist:

(1) Inverse Probability Weighting (Horvitz and Thompson ’52, Rosenbaum and

Rubin ’83)

(2) G-computation (Robins ’86)

(3) Augmented Inverse Probability Weighting (Robins, Rotnitzky, Zhao ’94;

Rotnitzky, Robins, Scharfstein ’98; Scharfstein, Rotnitzky, Robins ’99; Bang and Robins

’05); Targeted MLE (van der Laan and Rubin ’06)
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The Augmented Inverse Probability Weighting

Recall our nuisance functions:

π = P(A = 1|X), m(1) = E[Y |A = 1,X], m(0) = E[Y |A = 0,X]

The AIPW computes estimates for the above, then uses a plug-in principle.

Suppose π̂i, m̂
(1)
i , m̂

(0)
i denote estimates for i-th sample.

The AIPW is given by τ̂AIPW = τ̂AIPW,1 − τ̂AIPW,0, where

τ̂AIPW,1 =
1

n

∑
i

[AiYi
π̂i
− Ai − π̂i

π̂i
m̂

(1)
i

]
τ̂AIPW,0 =

1

n

∑
i

[ (1−Ai)Yi
1− π̂i

+
Ai − π̂i
1− π̂i

m̂
(0)
i

]

 Combines best of both worlds.
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The double robustness property

Remains consistent, under classical fixed dimensions, large sample asymptotics,
even if one of the outcome regression or propensity score models misspecified

(Scharfstein, Rotnitzky, Robins ’99, Bang and Robins ’05)

Pragya Sur (Harvard) Aug 3, 2022 8 / 33



Extensions to high dimensions

High-dimensional data increasingly common in practice.

– Holds promise for alleviating issues with “no unmeasured confounding”.

Extensive recent works in high dimensions: rate double robustness, model
double robustness (Belloni, Chernozhukov, Hansen ’14; Farrell ’15; Bloniarz, Liu,

Zhang, Sekhon, Yu ’16; Wager, Du, Taylor, Tibshirani ’16; Chernozhukov, Chetverikov,

Demirer, Duflo, Hansen, Newey, Robins ’17; Athey, Imbens, Wager ’18; Bradic, Wager,

Zhu ’19; Smucler Rotnitzky, Robins ’19; Wang and Shah ’20; Ning, Sida, Imai ’20, Tan

’20a, ’20b . . . )

Typically requires at least one of the
propensity score/outcome regression models to be highly sparse.
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Issue: Fails to capture certain high-dimensional phenomena

p = 700, n = 10000. Plot examines a version of the AIPW.

Existing theory fails to capture true variability even in moderate dim.

Such var. inflation known in high-dim regression context. (Bean, Bickel, El

Karoui, Yu ’13, El Karoui, Bean, Bickel, Lim, Yu ’13, El Karoui ’13, Donoho and

Montanari ’13, Cattaneo, Jansson and Newey, ’15, S. and Candes ’18) & for causal
inference (Yadlowsky ’22+)
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This talk

Can we analyze a commonly used version of the AIPW estimator in a
high-dimensional regime, without assuming any sparsity-type conditions?
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Versions of AIPW in high dimensions

If all nuisances and ATE estimate calculated from full data,

estimator is intractable in high dimensions.

Typical fix: sample split then cross-fit (Chernozhukov, Chetverikov, Demirer, Duflo,

Hansen, Newey, Robins ’17; Newey and Robins ’18; Smucler Rotnitzky, Robins ’19)

– Version 1: Split sample into 3 parts, calculate PS/OR estimates and ATE
estimate from separate folds, switch role of folds, then average.

– Version 2: Split into 2 parts, calculate all nuisances from one part and
ATE estimate from other part, switch role of folds then average.

Existing theory: cross-covariances asymptotically negligible at
√
n scale.

– Recovers efficiency loss due to sample splitting

(in regimes studied in previous literature).
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The cross-fit 3-split AIPW

Split the data into three equal parts Sa, Sb, Sc.

Estimate propensity score from Sa: π̂Sa
i .

Estimate outcome regression models from Sb: m̂
(1),Sb

i , m̂
(0),Sb

i .

Use Sc to obtain the final estimator τ̂Sc

AIPW = τ̂Sc

AIPW,1 − τ̂
Sc

AIPW,0

τ̂Sc

AIPW,1 =
1

n/3

∑
i∈Sc

[AiYi
π̂Sa
i

− Ai − π̂Sa
i

π̂Sa
i

m̂
(1),Sb

i

]
τ̂Sc

AIPW,0 =
1

n/3

∑
i∈Sc

[ (1−Ai)Yi
1− π̂Sa

i

+
Ai − π̂Sa

i

1− π̂Sa
i

m̂
(0),Sb

i

]

Switch roles of Sa, Sb, Sc  yields 3! estimators, average these.

Call resulting estimator τ̂cf.
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So, what are the main hurdles?

Characterize asymptotic distribution of estimators pre-cross-fit.

Challenges: without sparsity assumptions, upto p signals allowed.

If p diverges higher than o(n), already entails a high-dimensional problem.

Track joint distribution between pre-cross-fit estimators.

Involves tracking the variance & cross-covariances.

Need theoretical tools for all of these, that applies for dense as well as sparse
signals, in high dimensions.
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Our formal setting

Logistic propensity scores, linear outcome regression models:

Ai ∼ Ber(σ(X>i β))

yi = α(Ai) +X>i β
(Ai) + ε

(Ai)
i , εAi

i ∼ N (0, {σ(Ai)}2)

High-dimensional setting: p, n→∞, p/n→ κ > 0

Covariate distribution: Xi ∼ N (0, I/n)

Signal moments:

‖β‖2

p
→ γ2,

‖β(0)‖2

p
→ σ2

0β ,
‖β(1)‖2

p
→ σ2

1β ,

〈β(0),β(1)〉
p

→ ρ01σ0βσ1β

Recall ATE: τ = E[Y (1)− Y (0)]
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The proportional scaling regime

High-dimensional statistics: Johnstone and Lu (’09); Donoho, Maleki, Montanari (’09);
Bayati and Montanari (’11); Bean, Bickel, El Karoui, Yu (’13); El Karoui, Bean, Bickel,
Lim, Yu (’13); El Karoui (’13); Javanmard and Montanari (’14); Stojnic (’13);
Thrampoulidis, Omyak, Hassibi (’15); Dobriban and Wager (’15); Lei et al. (’16); Su,
Bogdan, Candés (’17); S., Chen, Candés (’17); Weinstein, Barber, Candés (’17);
Thrampoulidis, Abbasi, Hassibi (’18); El Alaoui and Jordan (’18); S. and Candés (’18);
Bellec and Zhang (’18); Miolane and Montanari (’18); Bu, Klusowski, Rush, Su (’19);
Hastie, Montanari, Rosset, Tibshirani (’19); Zhao, S., Candés (’20); Javanmard,
Soltanolkotabi, Hassani (’20); Wang, Weng, Maleki (’20); Celentano, Montanari, Wei
(’20); Celentano and Montanari (’21); Feng, Venkataramanan, Rush, Samworth (’21),
Patil, Wei, Rinaldo, Tibshirani (’21), Yadlowsky (’22) . . .

Econometrics: Cattaneo, Jansson, Newey ’18, Anatolyev ’18, Cattaneo, Jansson, Ma ’19,
Kline et al. ’20 . . .

Machine learning: Wang, Mattingly, Lu ’17; Mei, Montanari, Nguyen ’18; Mei,

Misiakiewicz, Montanari ’19; Hastie, Montanari, Rosset, Tibshirani ’19, Deng, Kammoun,

Thrampoulidis ’19; Montanari, Ruan, Sohn, Yan ’19, Ali, Kolter, Tibshirani ’19, Ali,

Dobriban, Tibshirani ’20, Adlam and Pennington ’20, Advani, Saxe, Sompolinsky ’20,

Liang and S. ’20, Liang, Sen, S. ’22 . . .

– Much older roots in statistical physics and probability theory!
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The main result

Recall ‖β‖2
p

→ γ2,
‖β(0)‖2

p
→ σ2

0β ,
‖β(1)‖2

p
→ σ2

1β , κ = lim p/n,
〈β(0),β(1)〉

p
→ ρ01σ0βσ1β

Theorem (Jiang, Mukherjee, Sen, S. ’22+)

Under convergence of empirical distribution of the signals, suppose either
(i) MLE used for estimating both nuisances (restrict to regime where MLEs exist,
whenever using them) or
(ii) MLE used for OR estimation and ridge regularization used for PS estimation
with tuning parameter λ, then

√
n(τ̂cf − τ)

d→ N (0, σ2
cf),

where σ2
cf =

(
(σ(0))2 + (σ(1))2

)
f(κ, γ2, λ) + κ

(
σ2
0β + σ2

1β − 2ρ01σ0βσ1β

)
.

σ2
cf much higher than classical variance or previous ultra-high-dim

lit. variance.
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Upshot 1: Variance plot - Theory vs empirical

Non-trimmed Trimmed at 0.005 ≤ σ(·) ≤ 0.995
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Upshot 2: Cross-fit versus non-cross-fit

Cross-covariances are asymptotically non-zero, even at
√
n-scale.

Stark difference in behavior in our regime.

Pragya Sur (Harvard) Aug 3, 2022 19 / 33



Upshot 3: Effects of regularization

Minimum variance along the λ-path closer
to classical variance.

(Approximate) LOOCV when optimizing
the prediction error (typically done in
practice) fails to capture the min-variance
λ.

Need better tuning parameter selection
approaches

Maybe through a good variance
estimator?
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Robustness to assumptions: Beyond Gaussianity I

Covariates i.i.d. Uniform, appropriately scaled.
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Robustness to assumptions: Beyond Gaussianity II

Non-trimmed Trimmed at 0.005 ≤ σ(·) ≤ 0.995

Covariates inspired by genetics applications.

j-th feature takes values {0, 1, 2} w.p. p2j , 2pj(1− pj), (1− pj)2.

Appropriately centered and scaled.
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The theoretical workhorses

Leave-one-out: Helps decorrelate dependencies in various terms. (Known as

cavity method in statistical physics: Mezard, Parisi Virasoro (’87); Statistics ref with

linear models: Bean, Bickel, El Karoui, Yu (’13); El Karoui, Bean, Bickel, Lim, Yu (’13);

El Karoui (’13); Statistics ref. with GLMs: S., Chen, Candès (’17), S. and Candès (’18);

Spectral methods: Chen Chi Fan Ma (’21), . . .)

Approximate Message Passing Theory : Helps track properties of estimators
in the logistic model, which don’t have closed forms. (Donoho, Maleki,

Montanari (’09); Bayati and Montanari (’11); Rangan (’11); Javanmard and Montanari

(’14); S. and Candès (’19), Barbier Krzakala, Macris, Miolane, Zdeborova (’19), . . .)

Deterministic equivalents: Helps track quadratic forms of random matrices
by connecting to more tractable deterministic matrices. ((Hachem et al. (’07);

Couillet et al. (’11); Girko (’12))
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Quick peek into Leave-one-out in our setting

Recall cross-fit AIPW involves Xi from Sa and β̂Sa . Dependence
complicated.

Note that β̂
(−i)
Sa

is independent of Xi.

– Connect β̂Sa
to β̂

(−i)
Sa

through their 1st order stationary conditions.

=⇒ β̂Sa = f(β̂
(−i)
Sa

,Xi, yi),

f depends on σ crucially!

Often, need to track X>i β̂
(−i)
Sa
∼ N (0, ‖β̂(−i)

Sa
‖2/n), conditional on β̂

(−i)
Sa

.
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Approximate Message Passing

– β̂ can be any minimizer of a convex loss, not just the MLE.

An algorithmic route

Introduce a ‘suitable’ iterative algorithm

Analyze asymptotic behavior of the iterates β̂t

Establish β̂t → β̂ in an appropriate limiting sense

Rich history in statistical physics—Approximate Message Passing—DMM (’09), BM (’11), JM (’13), BLM (’15)
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Basic structure for regression problems

Tracks two sets of iterates:
– {β̂t}, proxy for β̂

– {Rt}, proxy for y −Xβ̂ or Xβ̂

The algorithm

R̂t = Xf(β̂t) − btg(Rt−1)

β̂t+1 = X>g(Rt) − dtf(β̂t−1)

Very special forms: bt ≈ tr[∇(g)], dt ≈ tr[∇(f)]

Roughly iterates score equation for estimator of choice.

Known as Onsager correction term

–Tracks dependence between iterations. Fundamentally important quantity!

Pragya Sur (Harvard) Aug 3, 2022 26 / 33



Basic structure for regression problems

Tracks two sets of iterates:
– {β̂t}, proxy for β̂

– {Rt}, proxy for y −Xβ̂ or Xβ̂

The algorithm

R̂t = Xf(β̂t) − btg(Rt−1)

β̂t+1 = X>g(Rt) − dtf(β̂t−1)

Very special forms: bt ≈ tr[∇(g)], dt ≈ tr[∇(f)]

Roughly iterates score equation for estimator of choice.

Known as Onsager correction term

–Tracks dependence between iterations. Fundamentally important quantity!

Pragya Sur (Harvard) Aug 3, 2022 26 / 33



Basic structure for regression problems

Tracks two sets of iterates:
– {β̂t}, proxy for β̂

– {Rt}, proxy for y −Xβ̂ or Xβ̂

The algorithm

R̂t = Xf(β̂t) − btg(Rt−1)

β̂t+1 = X>g(Rt) − dtf(β̂t−1)

Very special forms: bt ≈ tr[∇(g)], dt ≈ tr[∇(f)]

Roughly iterates score equation for estimator of choice.

Known as Onsager correction term

–Tracks dependence between iterations. Fundamentally important quantity!
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High-level idea

An algorithmic route

Introduce a ‘suitable’ iterative algorithm

Analyze asymptotic behavior of the iterates β̂t

Establish β̂t → β̂ in an appropriate limiting sense

Rich history in statistical physics—Approximate Message Passing (AMP) algorithms—DMM (’09), BM (’11), JM (’13), BLM
(’15)
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Tracking algorithm iterates

State evolution formalism

Under moment conditions, for any pseudo-Lipschitz function ψ, for any t.

lim
n→∞

1

p

p∑
j=1

ψ(β̂t,j , βj) = E[ψ(σtZ, β̃)],

where Z ∼ N (0, 1), β̃ drawn from limiting empirical distribution of the regression
vectors; Z, β̃ independent. Asymptotic variance σt can be precisely characterized.

Upshot: Can characterize any separable function of β̂t,

– Important examples: ‖β̂t‖2/p, ‖β̂t − β‖2/p.

Caveat: Crucially uses the form of the AMP algorithm.
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The final convergence step

– Recall β̂ was our original estimator of interest.

– Final step: Construct η s.t. η(β̂t) ≈ β̂ under appropriate limits.

Formally, show that

lim
n→∞

p∑
j=1

ψ(β̂j , βj) = lim
t→∞

lim
n→∞

1

p

p∑
j=1

ψ(η(β̂t,j), βj)

= lim
t→∞

E[ψ(η(σtZ), β̃)]

,

The algorithm must be constructed so that η(·) can be found.

All info. about the AMP iterates can be transferred to our estimator β̂!
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Caveats

Need an algorithm in AMP form

with fixed points satisfying same KKT conditions as estimator of interest.

Construction highly non-trivial, case-specific.

The final convergence step also problem-specific.

– Relies on properties of loss the estimator minimizes.
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Causal inference uncovers novel challenges

Our cross-fit 3-split AIPW involves (among others) all of

{X>i β̂Sk
}i∈Sa or Sb or Sc; k equals one of the others.

Leave-one-out helps decorrelate pairwise dependencies.

For our CLT, need track many of these dependencies simultaneously.

The error terms cumulate!

Tracking these requires very careful analysis.
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Interactions with machine learning

Recall ‖β‖2
p

→ γ2,
‖β(0)‖2

p
→ σ2

0β ,
‖β(1)‖2

p
→ σ2

1β , κ = lim p/n,
〈β(0),β(1)〉

p
→ ρ01σ0βσ1β

Theorem (Jiang, Mukherjee, Sen, S. ’22+)

Under convergence of empirical distribution of the signals, suppose either
(i) MLE used for estimating both nuisances (restrict to regime where MLEs exist,
whenever using them) or
(ii) MLE used for OR estimation and ridge regularization used for PS estimation
with tuning parameter λ, then

√
n(τ̂cf − τ)

d→ N (0, σ2
cf),

where σ2
cf =

(
(σ(0))2 + (σ(1))2

)
f(κ, γ2, λ) + κ

(
σ2
0β + σ2

1β − 2ρ01σ0βσ1β

)
.

Double/Debiased Machine Learning (Chernozhukov et al. ’16): Modern ML
methods regularly used for nuisance estimation

Can we develop analogues here?
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Wrapping Up

Summary:

–CLT in high-dimensional setting for cross-fit AIPW estimator

–Without sparsity assumptions

–Quantification of variance inflation

–Non-trivial cross-fit covariances, a new high-dimensional phenomena

Next Steps?

Towards inference (exploring)

Formalizing theory beyond covariate distribution assumptions

More general nuisance estimation

Analyze other estimators
...
...
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Thank you!

Thanks to NSF DMS and the William F. Milton Fund Award

Contact: pragya@fas.harvard.edu
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