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Benign Overfitting in the Presence of Noise

(Zhang et al. 2016)

• data has misclassification noise

Deep networks generalize well even when

• model is overparameterized

• not regularized

• trained to zero training loss via SGD
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Interpolating Training Data can be beneficial

(Belkin et al. 2018)
(Nakkiran et al. 2021)

3

Interpolation is helpful when

𝖯train = 𝖯test

Dense Models trained by SGD on Squared or Cross-Entropy Loss
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What happens when veer off this standard path?

Vignette 1: Interpolating Classifiers under shift Ptrain ≠ Ptest

(Sagawa et al. 2020)

4

•  is an imbalanced mixture of the groups𝖯train

•  is an uniform mixture over all groups𝖯test
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Is Interpolating at odds with Robustness?

(Sagawa et al. 2020)
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Interpolating classifiers trained on the reweighted CE loss suffer high test error
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Reweighting results in identical interpolating classifiers!

Training dynamics of a linear classifier with 2D toy data 
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Vignette II: Training Sparse Models

8

Scaling model size has led to drastic improvements

ImageNet Google Multilingual Corpus

(Huang et al. 2019)

However, increased memory and inference time

Interest in training sparser models
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(Dai et al. 2022)

To speed up inference and efficiency, sparse mixture-of-experts models 
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ResNet20 trained on CIFAR10

However Sparsity can hurt test error

10

(Chan et al. 2021)

As sparsity increases, the test error degrades
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Interpolation under 
Distribution Shift

Study these non-standard settings with linear models

Sparsity and 
Interpolation
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Distribution Shift and Importance Weighting

Train until interpolation: L( f(θ(t))) → 0

Goal: minimize test error ℙ(x,y)∼𝖯test [fθ(x) ≠ y]

Standard choice  wi =
𝖯test(xi, yi)
𝖯train(xi, yi)

Use gradient descent to minimize the importance weighted loss

L( f(θ)) =
n

∑
i=1

wi log [1 + exp(−yi fθ(x))]
(Shimodaira 2000)
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Doesn’t work

• Past work shows that this fails

• Regularization/early stopping helps
(Byrd & Lipton 2018, Sagawa et al. 2019)
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Can we design interpolators that respond to weighting?
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Consider the reweighted objective L(θ) =
n

∑
i=1

wi log [1 + exp(−yix⊤
i θ)]

19

This is equivalent to creating a “new dataset” with  copies of sample wi i

(xi, yi), …, (xi, yi)

wi times

arg max
∥θ∥2=1

{γ : subject to yix⊤
i θ ≥ γ, ∀i ∈ [n]}

The max-margin classifier for this new dataset is unchanged

Prior implicit bias results implies  reweighting is ineffectivet → ∞ (Soudry et al. 2018, Ji and Telgarsky 2018)
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Our Proposal: Switch losses log(1 + exp(−yfθ(x))) ⟶
1

yfθ(x)

We provably show it has the correct implicit bias
20
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log(1 + exp(−z))
log(1 + exp(−1)) z ≤ 1
1
zα z > 1

“poly-tailed classifier” θα

Maximizes a sum of weighted margins
21

Builds on results by Ji et al. 2020
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But what about the test performance?

Does maximizing the weighted margin translate into robust test accuracy?

22

What’s coming up…

1. Setting where the poly-tailed classifier achieves minimax accuracy

2. A lower bound that shows that the max-margin classifier fails 
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 ( )𝒫 x ∼ 𝖭(μ1, I)

𝒩

Want to study the generalization error in the 
overparameterized regime with distribution shift

(C. & Long 2020,  Cao et al. 2021)

What about the Test Error?
(or any subgaussian dist.)

Set weights as wi = {1 if i ∈ 𝒫
w > 1 if i ∈ 𝒩

Assumptions on the data

•
•
•

n ≥ C log(1/δ)

∥μ∥2 ≥ Cn2 log(n/δ)
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As d → ∞ 𝖳𝖾𝗌𝗍𝖤𝗋𝗋𝗈𝗋(θ𝖬𝖬) ≥
1
8

≥ 𝖳𝖾𝗌𝗍𝖤𝗋𝗋𝗈𝗋(θ1) → 0

(IW exp-tailed classifier) (IW poly-tailed classifier)
(w.h.p.)

Importance weighted poly-tailed classifier provably generalizes better
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Why this choice of weight ? w

τ3

2
≤ w ≤ 2τ3

26

Nothing special about , if , then τ3 L(z) ∼
1
zα

w ≍ τ
α(α + 2)

α2 + α − 1

This choice is unusual since the resulting loss is biased

Classical choice  leads to unbiased training lossw = τ
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Experiments with Neural Network Classifiers

Polynomial Losses + exponentiated weights improve performance for NNs
Performance improves even when regularization is used

classic IW exp. weights

30

Interpolating models Early Stopping

IW + poly loss
improves acc.

Exp. weights 
improves acc.
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Reweighted poly-loss is competitive current best reweighting methods

Also possible to plug into sophisticated DRO methods and see improvements
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ResNet20 trained on CIFAR10

Is sparsity incompatible with interpolation?

34

(Chan et al. 2021)

Sparsity seems to hurt the test error
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Q:  How does the excess risk of a sparse interpolator behave?

Q:  Does a spase interpolant outperform dense interpolants (min -norm)?ℓ2

Example: the minimum -norm interpolant is defined asℓ1

θℓ1
∈ arg min

θ∈ℝd
∥θ∥1, such that y = Xθ

ℝn ℝn×d ℝd

 (Basis Pursuit) is known to promote sparsityθℓ1

We show that sparsity is incompatible with interpolation by a lower bound



Construction for the Lower bound

Under the following assumptions:

Given  datapoints, , where  and n (x1, y1), …, (xn, yn) xi ∈ ℝd yi = ⟨xi, θ⋆⟩ + ξi

36



Construction for the Lower bound

Under the following assumptions:

Given  datapoints, , where  and n (x1, y1), …, (xn, yn) xi ∈ ℝd yi = ⟨xi, θ⋆⟩ + ξi

36

1.   The coordinates of  drawn from x 𝖭(0,Σ)



Construction for the Lower bound

Under the following assumptions:

Given  datapoints, , where  and n (x1, y1), …, (xn, yn) xi ∈ ℝd yi = ⟨xi, θ⋆⟩ + ξi

36

1.   The coordinates of  drawn from x 𝖭(0,Σ)
λ1 = … = λk = 1
λk+1 = … = λd = ϵ

 Model(k, ε)

Σ = [Ik×k 0
0 ε ⋅ Id−k×d−k]



Construction for the Lower bound

Under the following assumptions:

Given  datapoints, , where  and n (x1, y1), …, (xn, yn) xi ∈ ℝd yi = ⟨xi, θ⋆⟩ + ξi

2.   The noise drawn independently ξ ∼ 𝖭(0,σ2)

36

1.   The coordinates of  drawn from x 𝖭(0,Σ)
λ1 = … = λk = 1
λk+1 = … = λd = ϵ

 Model(k, ε)

Σ = [Ik×k 0
0 ε ⋅ Id−k×d−k]



Construction for the Lower bound

Under the following assumptions:

Given  datapoints, , where  and n (x1, y1), …, (xn, yn) xi ∈ ℝd yi = ⟨xi, θ⋆⟩ + ξi
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(Similar bound in the isotropic case by Muthukumar et al. 2020)
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Dense interpolators like the OLS can spread this over  directionsd

However, sparse estimators like BP can only spread it over  directionss
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• Can we analyze NNs and also understand if sparsity is harmful?


