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Plan

e Recap from Yesterday: Classic view of Supervised Learning, Estimation vs
Approximation Error, Capacity/Uniform Convergence, Inductive Bias

* How does Deep Learning fit into classical view?
* Explicit vs Implicit Inductive Bias

* Benign Overfitting



Supervised Learning: find h: X’ = Y with small generalization error
L(h) = ]E(x,y)~1) [loss(h(x); y)]
based on samples S (hopefully S ~ D™) using learning rule:
A:SHh (e, A (X XY > Y*)

No Free Lunch: For any learning rule, there exists a source D (i.e. reality), for which the learning
rule yields expected error %

More formally for any A, m there exists D s.t. 3;+L(h*) = 0 but
m

1
Es.om|[L(A(S))] = SRIEa]
Inductive Bias:
* Some realities (sources D) are less likely; design A to work well on more likely realities
e.g., by preferring certain y|x (i.e. h(x)) over others
* Assumption or property of reality D under which A ensures good generalization error
e.g., dh € H with low L(h)

e.g., 3h with low “complexity” c(h) and low L(h)




Flat Inductive Bias
“Flat” inductive bias: 3h™ € H with low L(h™)

(Almost) optimal learning rule:

ERM;(S) = h = arg min L (h)

Guarantee (in expectation over S ~ D™):

0(capacity(7—[))
\ m

L(ERM;3:(S)) < L(h*) + Ry () = L(h*) +

=>» can learn withm = O(capacity(H)) samples
E.g.
* For binary classification, capacity(H) = VCdim(H)

Vapnik-Chrvonenkis (VC) dimension: largest number of points D that can be labeled
(by some h € H) in every possible way (i.e. for which the inductive bias is uninformative)

* For linear classifiers over d features, VCdim(H) = d

e Usually with d parameters, VCdim(H) ~ O(#params)

* Always: VCdim(H) < log|H | < #bits = #params - #bits/param

* For linear predictors with ||w||, < B, with logistic loss and normalized data: capacity(H) = B?



Machine Learning

* We want model classes (hypothesis classes) that:
* Are expressive enough to capture reality well
* Have small enough capacity to allow generalization



Complexity Measure as Inductive Bias

* Complexity measure: mapping c: Y* — [0, ]
* Associated inductive bias: 3h™ with small c(h™) and small L(h™)
 Learningrule: SRM4+(S) =argmin L(h) , c(h)

e.g. argminL(h)+Ac(h) or argminL(h) s.t. c(h) < B

and choose /A or B using cross-validation

Ls(h) |
* E.g.:
5 A — o
e Degree of poly
* Sparsity
< lIwl -
Regularization Path

(Pareto Frontier) A-0

c(h)



Complexity Measure as Inductive Bias

Complexity measure: mapping c: Y* — [0, 0]
Associated inductive bias: 3h™ with small c(h") and small L(h")
Learning rule: SRM4,(S) = argmin L(h) , c(h)

e.g. argminL(h)+ Ac(h) or argminL(h) s.t. c(h) <B

and choose A or B using cross-validation

Guarantee:

@ = {h|c(h) < B} |

o)
capacit ¥
L(SRMy(S)) <= L(h") + | 2te)
\ m
E.g.:
e Degree of poly
* Sparsity T

* vl







Feed-Forward Neural Networks
(The Multilayer Perceptron)

hG(V,E),a,w (x)

z wlu = v]olu]
u—-veE

olv] = a(alv])

Architecture:

* Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
* “Input Units” v; ...v4 € V, with no incoming edges and o[v;]| = x[i]
o “Output Unit” v,y €V, h, (x) = 0[vyy;]

* “Activation Function” : R — R. E.g. oggry(2) = [z]+ /

Parameters:

* Weight w|u — v| foreachedgeu - v € E McCulioch



Feed Forward Neural Networks

* Fix architecture (connection graph G (V, E), transfer o)
Hew e =1 fwlx) = output of net with weights w }

* Capacity / Generalization ability / Sample Complexity
* O(|E|) (number of edges, i.e. number of weights) V

(with threshold &, or with RELU and finite precision; RELU with inf precision: O(|E| - depth))

* Expressive Power / Approximation



What can Feed-Forward Networks Represent?

* ANDs (using a single unit)

* ORs (using a single unit)

* XORs (parities) (using |E| = d* with depth 2, or |E| = 0(d) with depth log(d))
* NOT (using a single weight)

e Any function over X = {+1}¢
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Learning Circuits as Neural Networks
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CIRCUIT, |depth, size] = functions f:{£1}" — {0,1} that can be implemented with logical circuits
with at most size unlimited-fan-in AND, OR and NOT gates, and longest path from input to output at

most depth (AC' ~ CIRCUIT|0(log! n), poly(n)])

Learning a circuit (ie learning with the class CIRCUIT ): learning the architecture

Claim: CIRCUIT, [depth, size] S H¢, | _ ;.0 kesizesion

Fully connected layer graph, with L(=depth) layers
and k(=size) nodes in each layers.

* Weights are +1 if connected in the circuit (with/without a NOT gate in between), 0 otherwise;

* Bias terms are fanin-1 for AND, 1-fanin for OR



What can Feed-Forward Networks Represent?

e Any function over X’ = {+1}¢
* As a circuit
e E.g. using DNF (OR of ANDS), with a single hidden layer of ANDs, output output unit implementing OR
e |V| =29 |E| =d2¢
* Like representing the truth table directly...

* Universal Representation Theorem: Any continuous functions f:[0,1]¢ — R can be
approximated to to within € (for any €) by a feed-forward network with sigmoidal (or
almost any other) activation and a single hidden layer.

 Size of layer exponential ind



What can SMALL Networks Represent?

* Intersection of halfspaces
* Using single hidden layer (the halfspaces; output unit does AND)

* Union of intersection of halfspaces
* Using two hidden layers (halfspaces> OR—>AND)

<@ 4
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What can SMALL Networks Represent?

* Intersection of halfspaces
* Using single hidden layer (the halfspaces; output unit does AND)

* Union of intersection of halfspaces
* Using two hidden layers (halfspaces> OR—>AND)

* Feature learning:
Linear predictors over (small number of) features,
in turn represented as linear predictors over more basic features,
that in turn are also represented as linear predictors



Multi-Layer Feature Learning

ion

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Trainable
Classifier




Feed Forward Neural Networks

* Fix architecture (connection graph G (V, E), transfer o)

Hew o =1 fwlx) = output of net with weights w }
* Capacity / Generalization ability / Sample Complexity
* O(|E|) (number of edges, i.e. number of weights)

(with threshold &, or with RELU and finite precision; RELU with inf precision: O(|E| - depth))

* Expressive Power / Approximation
* Any continuous function with huge network

* Lots of interesting things naturally with small networks V
* Realities captures by hierarchies of progressively complex features

* Any time T computable function with network of size O(T)

Using a depth-T network, since anything computable in time T is also computable using a logical
circuit of size O(T)



Free Lunches

ML as an Engineering Paradigm: Use data and examples, instead of expert knowledge and
tedious programming, to automatically create efficient systems that perform complex tasks

We only care about {h|h is an efficient system}

Free Lunch: TIME; = {h|h comp. in time T} has capacity O(T) and hence learnable with O(T)
samples, e.g. using ERM

Even better: PROG; = {program of length T} has capacity O(T)

Problem: ERM for above is not computable!
Modified ERM for TIME  (truncating exec. time) is NP-complete
P=NP =2 Universal Learning is possible! (Free Lunch)

Crypto is possible (one-way functions exist)
=>» No poly-time learning algorithm for TIME
(that is: no poly-time A and uses poly(T) samples s.t. if 3h* € TIME} with L(h*) = 0 then

E[L(A(S))] < 0.4)



No Free (Computational) Lunch

 Statistical No-Free Lunch: For any learning rule A, there exists a source D (i.e. reality), s.t.
3h* with L(R") = 0 but E[L(A(S))] ~ .

* Cheating Free Lunch: There exists A, s.t. for any reality D and any efficiently computable
h*, A learns a predictor almost as good as h*
(with #samples=0(runtime of h*), but a lot of time).

* Computational No-Free Lunch: For every computationally efficient learning algorithm A,
there is a reality D s.t. there is some comp. efficient (poly-time) h* with L(h*) = 0 but

E[L(A(S))] ~ 5.

* Inductive+Search Bias: Assumption or property of reality D under which a learning
algorithm A runs efficiently and ensures good generalization error.

* H or c(h) are not sufficient inductive bias if ERM/SRM not efficiently implementable, or
implementation doesn’t always work (runs quickly and returns actual ERM/SRM).



Feed Forward Neural Networks

* Capacity / Generalization ability / Sample Complexity ,

* O(|E|) (number of edges, i.e. number of weights) -
(with threshold o, or with RELU and finite precision; RELU with inf precision: O(|E| - depth))

* Expressive Power / Approximation
* Any continuous function with huge network
* Lots of interesting things naturally with small networks
* Any time T computable function with network of size O(T)

e Computation / Optimization
* Non-convex
* No known algorithm guaranteed to work x
* NP-hard to find weights even with 2 hidden units
* Even if function exactly representable with single hidden layer with
O®(log d) units, even with no noise, and even if we train a much larger

network or use any other method when learning: no poly-time algorithm

can ensure better-than-chance prediction
[Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz '14]



Choose your universal learner:

Short (or short runtime) Programs

Universal

Captures anything we want with reasonable
sample complexity

ERM is NP-hard

Provably hard to learn even improperly,
with any rule (subject to crypto)

Hard to optimize in practice
Short programs: Incomputable.
Even if we limit to bounded-time:
* No practical local search
* Highly non-continuous, disconnected
discrete space
* Not much success

Deep Networks

Universal

Captures anything we want with reasonable
sample complexity

ERM is NP-hard

Provably hard to learn even improperly,
with any rule (subject to crypto)

Often easy to optimize
* Continuous
* Amenable to local search with Grad Descent,
or SGD
* Lots of empirical success



Feed Forward Neural Networks

Fix architecture (connection graph G (V, E), transfer o)
Hew e =1 fwlx) = output of net with weights w }

Capacity / Generalization ability / Sample Complexity

* O(|E|) (number of edges, i.e. number of weights) V

(with threshold &, or with RELU and finite precision; RELU with inf precision: O(|E| - depth))

* Even if function exactly representable with single hidden layer with
O(log d) units, even with no noise, and even if we allow a much larger ?

network when learning: no poly-time algorithm always works
[Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz '14]

Expressive Power / Approximation
* Any continuous function with huge network
* Lots of interesting things naturally with small networks

* Any time T computable function with network of size O(T)

Computation / Optimization

* Magic property of reality that makes local search “work”



0.06¢
0.05¢

0.04|

Error

0.02}

0.01}

0.03;

I—Trlaininlg

—Test (at convergence)

4

8

16 32 64 128 256 512 1K 2K 4K

# Hidden Units

[Neyshabur Tomioka S ICLR’15]



model # params random crop weight decay train accuracy test accuracy

yes yes 100.0 89.05

: yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 26.03
no no 100.0 85.75

(fitting random labels) no no 100.0 9.78
Inception w/o no yes 100.0 83.00
BatchNorm 1,649,402 no no 100.0 82.00
(fitting random labels) no no 100.0 10.12
yes yes 99.90 81.22

yes no 99.82 79.66

Alexnet 1,387,786 o yes 100.0 77 36
no no 100.0 76.07

(fitting random labels) no no 99.82 9.86
no yes 100.0 53.35

MLP 3x512 1,735,178 o o 100.0 5739
(fitting random labels) no no 100.0 10.48
no yes 99.80 50.39

MLP 1x512 1,209,866 o o 100.0 50.51
(fitting random labels) no no 99.34 10.61

UNDERSTANDING DEEP LEARNING REQUIRES RE-THINKING GENERALIZATION
Zhang, Bengio, Hardt, Recht, Vinyals 2017



Learning with a Rich Function Class

* Learning rule A(S) s.t.
* For any data set, even with random labels, can fit data: LS(A(S)) =0
* For “real” data S ~ D™ sampled from reasonable reality D, we can generalize: LD(A(S)) is low

* Examples:
* 1-Nearest Neighbor: if realizable by some continuous h* (ie L(h*) = 0),

|S|—>o0

then consistent: Lp(1INN(S)) — 0

e Hard Margin SVM with Gaussian Kernel (or other universal kernel)
or more generally min norm consistent solution: arg min||h|[x s.t. Lg(h) = 0

= argmin [|w||,
(W, (x))=y;



E.g., hard margin SVM: min ||w|| s.t. Lgnargin(w) =0

for h,, = (w, $(x)) with inf dim ¢






Learning with a Rich Function Class

* Learning rule A(S) s.t.
* For any data set, even with random labels, can fit data: LS(A(S)) =0
* For “real” data S ~ D™ sampled from reasonable reality D, we can generalize: LD(A(S)) is low

* Examples:
* 1-Nearest Neighbor: if realizable by some continuous h* (ie L(h*) = 0),

|S|—>o0

then consistent: Lp(1INN(S)) — 0

e Hard Margin SVM with Gaussian Kernel (or other universal kernel)
or more generally min norm consistent solution: arg min||h|[x s.t. Lg(h) = 0

= argmin [|w||,
(W, (x1))=y;
e Can always get L¢(h) =0

« If 3h*, Lp(h*) = 0, generalizes with sample complexity |S| = 0(||h||,2<)
 MDL: arg min|prog| s.t. Ls(prog) =0

L(MDL(S)) <0 (Ipqz‘lq*l) if realizable by prog*
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For valid generalization, the size of the
weights is more important than the size
of the network

1997

Peter L. Bartlett
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° H

 What is the relevant “complexity measure” (eg norm)?

ow is this minimized (or controlled) by the opt algorithm?

-

Peter L. Bartlett |




model # params random crop weight decay train accuracy test accuracy

yes yes 100.0 89.05

. yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 26.03
|___no no 100.0 85.75

(fitting random labels) no no 100.0 9.78
Inception w/o no yes 100.0 83.00
BatchNorm 1,649,402 | no no 100.0 82.00
(fitting random labels) no no 100.0 10.12
yes yes 99.90 81.22

yes no 99.82 79.66

Alexnet 1,387,786 o yes 100.0 77 36
l_ no no 100.0 76.07

(fitting random labels) no no 99.82 9.86
no yes 100.0 53.35

MLP 3x512 1,735,178 o o 100.0 5539
(fitting random labels) no no 100.0 10.48
no yes 99.80 50.39

MLP 1x512 1,209,866 ™o o 100.0 5051
(fitting random labels) no no 99.34 10.61

UNDERSTANDING DEEP LEARNING REQUIRES RE-THINKING GENERALIZATION
Zhang, Bengio, Hardt, Recht, Vinyals 2017



Where is the regularization?

min || Xw — vy||?
WEIRd” 4l

XeER™ yeR™, m«Kd

* Claim: Gradient Descent converges to min norm solution
min |(w
min [[wll

* Coordinate Descent, related to, but not quite

min ||w||; (Lasso)
Xw=y

(with stepsize 0 and particular tie-breaking =~ LARS)



Implicit Bias in Logistic Regression

arg min, L(w) —Zf(yxw ) e %

0(z) = log(l + e7%) o | ® o

Data {(x;, y;)}i2 linearly separable (3,,V;y;{w, x;) > 0)

Where does gradient descent converge?
w(t) = w(t) —nVL(w(t))
« inf £L(w) = 0, but minima unattainable

* GD diverges to infinity: w(t) — oo, L(W(t)) -0

In what direction? What does ”xgg” converge to?
(t) w ~ .
Theorem: —— w = arg min||w|l, s.t.V;y;{w,x;) = 1
||W(t)||2 ”WHZ g ” ”2 lyl< l)

[Soudry Hoffer S 2017] based on [Telgarsky 2013 “Margins, shrinkage, and boosting”]



Implicit Bias in Logistic Regression

Single linear unit, logistic loss
=» hard margin SVM solution

Multi-class problems with softmax loss
=» multiclass SVM solution

Steepest Descent w.r.t. ||w||
=>» arg min||w|| s.t.V;y;{w,x;) > 1
Coordinate Descent

=>» arg min||w||; s.t.V;y;{w,x;) > 1



0.06| — Training |
—Test (at convergence)
0.05¢
1 Ody

0.04}
g 0.03} ”% °
g 0. 0.5

@
0.02}
e
H_%
0.01¢ Path Norm
0

4 8 16 32 64 128 256 512 1K 2K 4K
# Hidden Units [Neyshabur Tomioka S ICLR’15]

 What is the relevant “complexity measure” (eg norm)?
 How is this minimized (or controlled) by the opt algorithm?

* How does it change if we change the opt algorithm?
N | Peter L. Bartlett |




With Dropout

CIFAR-10 MNIST

SVHN

:

CIFAR-100
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[Neyshabur Salakhudtinov S NIPS’15]



SGD vs ADAM

6.0 '
— SGD

— 5.8} =
é? > —  Adam
X 5.6 228 |
I3 >
9 Q

5.4/ Q.
8 8 56 Adam: 5.35
Qa 5.2¢ Q
. ~
2 5.0} O 54|
= 48| L
z o SGD: 5.09
T 4.6 & 52
z )

4.4 |

20 40 60 80 100 5.0 50 40 60 80 100

Epoch Epoch

Results on Penn Treebank using 3-layer LSTM

[Wilson Roelofs Stern S Recht, “The Marginal Value of
Adaptive Gradient Methods in Machine Learning”, NIPS’17]



Different optimization algorithm
=>» Different bias in optimum reached
=» Different Inductive bias
=>» Different generalization properties

Grad Descent Coordinate Descent
- min (sq loss) - =~ min ||w||1 (sq loss)
Xw=y Xw=y

Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum




Different optimization algorithm
=>» Different bias in optimum reached
=» Different Inductive bias
=>» Different generalization properties

All Functions

Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum
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* Underdetermined non-sensical problem, lots of useless global min

e Since U,V full dim, no constraint on X, all the same non-sense global min

0.8 27?7
07 C3 Trainerror  Grad Descent on U, V— min || X||, solution
Test error (with inf. small stepsize and initialization)

_ 06 —> good generalization if Y (aprox) low rank
% 0.5 [Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]
o4
3 When y = (4;, W*), W* low rank, A; RIP
¢ 03 [Yuanzhi Li, Hongyang Zhang and Tengyu Ma 2018]

0.2
0.1 1 J Not always min || X]|, !
0.0 _BPA WA [zhiyuan Li, Yuping Luo, Kaifeng Lyu ICLR 2021]

GDonX GDon U,V GDon U,V min|X||,
exact stepsize
linesearch  =0.01 n = 50, m = 300, A; iid Gaussian, X rank-2 ground truth
y=A(X*)+ N(0, 1073), Ytest = Atest (X*) + N (0, 1073)



Single Overparametrized Linear Unit

Train single unit with SGD using logistic (“cross entropy”) loss

— Hard Margin SVM predictor
w(oo) o argmin||w||, s.t.V;y;{w,x;) =1

Even More Overparameterization:
Deep Linear Networks

Network implements a linear mapping:

fw(x) = (By, x)
Training: same opt. problem as logistic regression:
min L(f,,) = mBinL(x - (B, x))
w

No><7 \ Train w with SGD
IO | - Hard Margin SVM predictor
KA o —

&\ .  \/
N 2\

Buw(ooy = argmin||Bll, s.t. ¥y (B, x;) = 1



Linear Conv Nets

L-1 hidden layers, h; € ]Rg, ?ach with (one channel) full-width cyclic “convolution” w, € RP?:

hild] = ) wilklhy_[d +kmod D] hoye = (w,hy_o)
k=0

With single conv layer (L=2), training weights with SGD
2> argmin||DFT(B)||1 s.t.V;y;(B,x;) = 1

[mourier Transform |
With multiple conv layers

—> critical point of minllDFT(B)IIz/L s.t.V;y{B,x;) =1

for £(z) = exp(—z), almost all linearly separable data sets and initializations w(0) and any
bounded stepsizes s.t. L = 0, and Aw(t) converge in direction

[Gunasekar Lee Soudry S 2018]
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e Binary matrix completion (also: reconstruction from linear measurements)

« X = UV is over-parametrization of all matrices Xe R™*™
e GDon U,V
=>» implicitly minimize || X||. [Gunasekar Lee Soudry S 2018a]

* Linear Convolutional Network:
* Complex over-parametrization of all linear predictors 3
* GD on weights

=> implicitly min [[DFT(B)|[, forp = 2

(sparsity in freq domain)

depth

[Gunasekar Lee Soudry S 2018b]

All Functions



e Binary matrix completion (also: reconstruction from linear measurements)
« X = UV is over-parametrization of all matrices Xe R™*™
e GDon U,V

=>» implicitly minimize || X||. [Gunasekar Lee Soudry S 2018a]

* Linear Convolutional Network:
* Complex over-parametrization of all linear predictors 3
* GD on weights

=> implicitly min [[DFT(B)|[, forp = 2

depth

(sparsity in freq domain)

[Gunasekar Lee Soudry S 2018b]

* Infinite Width RelLU Net:
* Parametrization of essentially all functions h: R — R
* GD on weights

=» implicitly minimize max( [|R"|dx ,|h' (—o0) + h’(-I—OO)I) (d=1)
J |8¢**Radon(h)| (d>1)

(need to define more carefully to handle non-smoothness; correction term for linear part)
[Savarese Evron Soudry S 2019][Ongie Willett Soudry S 2020][Chizat Bach 2020]



All Functions Parameter Space

Optimization Geometry and hence Inductive Bias effected by:
* Choice of parameterization (architecture)
 Geometry of local search in parameter space

* Optimization choices: Initialization, Batch Size, Step Size, etc




Understanding Learning via Local Search
in Highly Underdetermined Models

The “complexity measure” approach:

* Identify c(h) such that optimization implicitly seek low c(h) solution
argminc(h) s.t. L(h) = 0, or at least approximately

* How do different optimization choices affect c(h)?
* |nitialization scale [Woodworth Gunasekar Lee Moroshko Sevarese Golan Soudry S 2019]

* Stepsize [Nacson Ravichandran S Soudry 2022]
* Early stopping / Optimization accuracy [Moroshko Gunasekar Woodworth Lee S Soudry 2020]

* Stochasticity: - Batchsize [Pesme Pillaud-Vivien Flammarion 2021]
- Label noise [HaoChen, Wei, Lee, Ma 2020][Blanc, Gupta, Valiant, Valiant 2020]
* How does architecture choice effect c(h)?
* Understand generalization properties ensures by low c(h)
* Understand why in reality 3h™ with low c(h) and low L(h)

* In general, optimization bias not captured by distribution-independent c(h)
* Distribution-specific characterization of implicit bias
e Or: direct analysis of generalization properties



0.06-‘ | | | | I—Trlalininé H
—Test (at convergence)

4 8 16 32 64 128 256 512 1K 2K 4k
# Hidden Units

Yy = (W, ¢ (X)) ([[¢er ()| bounded)

¢4 (x) = random projection of ¢, (x)
e.8. {Poo (1), poo (x)) = eIl
and ¢4 (x)[i] = \/iacos((a)i,x) + 6;)

A(S) = argmin ||w|| s.t.Ls(x » (w, p4(x)) =0

What fits our understanding:

e (Can get generalization even if can fit random labels
[we’re controlling some other complexity measure]

e Can get implicit regularization (seek small “norm”) from
optimization algorithm, even if not explicit

* Generalization becomes better as size increases

A similar example:

Matrix completion using a rank-d factorization:

L(X) = ||1X — A||3, L based on nk observed entries
X=UVT, U, VeR™ = rank(X) <d

Le. Vi ypesyi = (W, @a (X)) (e g o 1. argminL(X) s.t. rank(X) < d

Ifd > k:argmin||X||, s.t. L(X) = 0,rank(X) <d



What fits our understanding:

0.06( — Training | * Can get generalization even if can fit random labels
—Test (at convergence) , ) )
0.05! [we’re controlling some other complexity measure]
e Can get implicit regularization (seek small “norm”) from

0.04f optimization algorithm, even if not explicit
o * Generalization becomes better as size increases
[j 0-03f

0.02f What doesn’t fit:

e Even when the approximation error>0 (with noise),
0.01f | . :
we get good generalization with Lg(h) = 0
0 1 L 1 1 . L L . L I I A
4 8 16 32 64 128 256 512 1K 2K 4K Ls(h)
# Hidden Units
Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.
A > o
model # params random crop weightdecay train accuracy test accuracy
yes yes 100.0 89.05 SRM:
; yes no 100.0 89.31 :
Inception 1,649,402 ” s 1000 i argmin Lg(h) + Ac(h)
no no 100.0 85.75 ERMs
| no yes 100.0 53.35 150 1
MLP 3x512 1,735,178 o o 100.0 5235 c(h)
(fitting random labels) no no 100.0 10.48 MDL:

argminc(h) s.t.Lg(h) =0
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Intro to Machine Learning, Lecture 2

“underfitting”
not fitting the signal

“overfitting”
fitting the noise
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“a model with zero training error is overfitting [...] and will
typically generalize poorly”

Ls(h)

A —> o0

SRM:
argmin Lg(h) + Ac(h)

ERMs -

A-0

c(h)

argminc(h) s.t.Lg(h) =0

Trevor Hastie
Robert Tibshirani
Jerome Friedman

The Elements of

“underfitting” “overfitting” Statistical Learning

not fitting the signal

0.4

0.35

mean squared error

fitting the noise

log | H| + 210g2/5

heH n

L(h) < inf L(k) +

f L Y ’
apprOX|mat|on error estimation error




Reconciling modern machine-learning practice and
the classical bias—variance trade-off

Mikhail Belkin®®', Daniel Hsu®, Siyuan Ma?, and Soumik Mandal®

under-parameterized

Test risk

under-fitting over-fitting

. Test risk

over-parameterized

’CMD % “classical” “modern”
o p— o — . . . .
m Q’-). regime interpolating regime
\ 1 L ]
~ o Training risk ~ JTraining risk:
sweet Spot\:.‘ - _ T~ . _interpolation threshold

Capacity of H



Lw) = E[(W,¢a () =% LWw) =~ i, da(x)) — y1)?

¢q(x) € RY
arg min L(w) arg min||lw||, s.t. L(w) = 0

e / \

over-parameterized

w = GD on Z,(W) under-parameterized

Test risk

>> w = PhiX \ vy

“modern”
interpolating regime

“classical”
regime

Y
>>> w = np.linalg.lstsq(PhiX,y)[0] é

~ JTraining risk:

X = (W*;¢w(x)) (||¢OO(X)” < 1) -~ - _ . _interpolation threshold
¢4 (x) = random projection of ¢, (x)

e.8. (oo (1), oo (1)) = eI
and ¢4 (x)[i] = zcos({w;, x) + 6;)

— - — — — — — — — — m— m— —

dimension d



10 100 1000
# rounds
[Bartlett et al “Boosting the Margin” 1998]

under-parameterized

argmin||w||, s.t. L(w) =0

\

over-parameterized

Test risk

“classical”
regime

“modern”
interpolating regime

~ JTraining risk:

- . _interpolation threshold
— — = — — — — — — — — — — — — —
0.14 T T I : L T T ——
— Training —Training
0.09- —&— Test (at convergence) —&— Test (at convergence)
—A— Test (early stopping) 0.6 —i— Test (early stopping) ||

0.08
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N 0.06 - o4
2 0.05 g
w w

0.3

0.04-

0.03 0.2|

0.02-

0.1f
0.01-
ol . " . . . ol . . . . . . .
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H H



Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset. L ( h)T

model # params random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05
. yes no 100.0 89.31
Inception 1,649,402 no yes 100.0 86.03
no no 100.0 85.75 A — oo
[Zhang et al “Rethinking generalization” ICLR 2017] SRM:
arg min L(w) + A||w||?
. 2 “s . - N . ERMs R
We can learn with MDL (L(w) = 0, “interpolation learning”) in many settings 150 ||w'||

where L(w*) > 0, eg noisy settings where y = h,,=(x) + noise.
Often, overfitting (fitting the noise) is benign, and not as harmful as theory tells us.
-Misha Belkin, 2018

MDL:
argmin ||w|| s.t.L(w) =0

MNIST CIFAR-10
I ‘ '—Tr;-)ining‘ ‘ ‘ I I I ;Tr;i"ingl

—&— Test (at convergence) —&— Test (at convergence)
—A— Test (early stopping) 0.6 —i— Test (early stopping) ||

0.5

0.4

Error

0.3

0.2
10 100 1000 o " - | oal

# rounds . o o - o
[Bartlett et al ”BOOSting the Margin” 1998] - ; "» ’ 4 8 16 32 64 1;8 256 512 1K 2K 4K 4 8 16 32 64 ‘1:8 256 512 1K 2K 4K




Reconciling modern machine-learning practice and
the classical bias—variance trade-off

Mikhail Belkin®®', Daniel Hsu®, Siyuan Ma?, and Soumik Mandal®
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Test risk

under-fitting over-fitting

. Test risk

over-parameterized
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Lw) = E[(W,¢a () =% LWw) =~ i, da(x)) — y1)?

¢q(x) € RY
arg min L(w) arg min||lw||, s.t. L(w) = 0

e / \

over-parameterized

w = GD on Z,(W) under-parameterized

Test risk

>> w = PhiX \ vy

“modern”
interpolating regime

“classical”
regime

Y
>>> w = np.linalg.lstsq(PhiX,y)[0] é

~ JTraining risk:

X = (W*;¢w(x)) (||¢OO(X)” < 1) -~ - _ . _interpolation threshold
¢4 (x) = random projection of ¢, (x)

e.8. (oo (1), oo (1)) = eI
and ¢4 (x)[i] = zcos({w;, x) + 6;)

— - — — — — — — — — m— m— —

dimension d



Consider the following experiment: you have Gaussian mixture model
data, but you have a ‘noisy’ distribution where every sample has 15%
chance of having a random label. Then train an overparameterized
two-layer network by gradient descent on this (noisy) data.

n =100, p = 3500

o
o

metric

== valid_acc
== train_acc

accuracy

o
N

©
o

O
o

| @ | | | 10" 10 10° 10* 10°
—4 _9 0 2 4 step

The neural network achieves 100% training accuracy and simultaneously
optimal test accuracy (85% )—nprovably SO [F.—Chatterji-Bartlett'22].



ce % (test)

Interpolation does not overfit even for

very noisy data

A1l methods (except Bayes optimal) have zero training sguare loss.

100
DA ol it i e SR P S S R D RS SR s
i
80 - e &
< Neural net e
./‘ ’/ B
70 /_/ o
7 ,’,
- @uss kernel 2
./-/ //’,...
‘d -
50 A .,' ,(/ .,'
VA Laplace kernel >
40 A d ”/f.'
7 o
g A _
= A Best possible >
- % (Bayes opt|4n‘1al)/
10 A ,,if
°o 1o 20 30 40 50 0 7 8 %0 100

added label noise %

[Belkin Ma Mandal, ICML 18]

L(h)

A - o

SRM: R
arg min L(w) + A||lw

|2

A—-0
MDL:
argmin ||w|| s.t.L(w) =0



Harmful Overfitting Benign Overfitting
(fitting noise has large effect everywhere, (fitting noise has measure =0 effect)
overwhelms signal fit)
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= (w*,x) + N(0,0%)

W*,xERd d:d5+d] >
wo = (W§ ’Od])
X = (xS, x]) x5~N(O IdS) x;~N {0, nId])
4=, =7 [y
Proof: Gram matrix is
= (XsXd + X,X) - (XsXd + AD)

Wyn = argglvizl},”W“z

d;— oo
Equivalent to Ridge Regression: (W, X) AN (W, xs)

[wA—arg min_ [|Y — Xswsl|? + Allws]|?
WselRS

For A = o(n) and d; — o, L(Wyy) = L(W;) —> L(w*) = o7

[ Lw) = uz[<<w,x>/—y>%




Goal: consistency in a noisy (non-realizable) setting
Nn—>00
Lw,) —Lw*) =0%>0

For a balanced predictor, arg min L(W,), ||W,,||, e.g. with L(W,,) = a2 and ||W,]| small:

ensuring w,, € W, —
e.g. 0 /”Wn” /.

L(Wn)<L(Wn)+ sup L(W) L(W)

[

L(w*) = ¢?




Goal: consistency in a noisy (non-realizable) setting

~ n—o>00 N 2
L(w,) —Lw*)=0°>0
For an interpolating predictor:

ensuring w,, € W, <
1Wnli* /
n

L(w,) < m + 'sup (




Can Uniform Convergence
Explain Benign Overtitting?

with

Lijia Zhou Frederic Koehler Danica Sutherland
UChicago Stanford TTIC = UBC



Via Uniform Convergence?

A 2 2
For Lipschitz Loss: sup |L(W) — L(W)| <2Lip \/B ENX 0, (1)
lwl|2<B? " "
2

%12 0'2
||W||2IE[||X||2] B <||WS” +En>(ds+ln) /Ol-—nn'/ln 2

Setting B = ||w||, relevant quantity is - = - _T) — =0
1K, <n
d, d; » o
Recall junk feature setting: y={w"x)+&E~N(0,0°) 0

* * o
w* = (w5 ,04))

x = (xs5,%)) xs~N(0,1q5) x)~N (O’difld’)
E[llx|[*] = ds + 2

A * é - 2
P = (3,0) + ) Z1(0,x;)) S E[lyyll?] = w2 +Zn
i



Via Uniform Convergence?

For Lipschitz Loss: sup |L(w) — f(w)| < 2Lip \/BZIE[IIxIIZ] 0, (1)

n n
lwl|[?<B?

* || 2 0'2
IIWIIZIE[IIxIIZ] B <||WS” +En>(d5+}tn) /Ol-_n'/ln

n n n

Setting B = ||w||, relevant quantity is

But:
« Weget2-Lip-Vo2=2-Lip-o instead of g
* Squared loss isn’t even Lipschitz

e We know such a bound is loose when L(w) = 0
(variance of bias p of coin = p(1 — p) = p, Chernoff vs Hoeffding)



Uniform Convergence of Interpolators
e Instead of: sup |L(w) — L(w)|

wew
« Bound: sup |L(w)—L(w)| = sup L(w)
weW,L(w)=0 weW,L(w)=0

Used in the noiseless setting since at least Vapnik. Below: [Devroy et al "96]
based on the random permutation argument developed in the original proof of the
Vapnik-Chervonenkis inequality (1971).

PROOF. For ne < 2, the inequality is clearly true. So, we assume that ne > 2. First
observe that since infsec L(¢) = 0, L,(¢p)) = 0 with probability one. It is easily

seen that _
L)) < sup |L(@)— Lu(@).
Estimation of ¢:Ln(¢)=0 Foundations of itk s e
DePEend_e!‘c‘—ISDBaSEd Machine Learning scondeion UNDERSTANDING
on Empirical Data se Devioye
Second Edition %ﬁfﬁ M A CH I N E
Viadimir Vapnik &mﬁi‘z)g‘;‘g




Realizable, Non-Realizable and Optimistic

[ high prob bond on || x||

- ~ [ B2lIxII® | [ N\B2lx]I?
v||W||2SBZ L(W) — L(W) < Op ” + L(W

B?||x]|?
Vilwli2=52 Low)=0 LW) < c———+ 0p(1)

=% lwyn |l llx1?

Ifc =1: L(wyy) < sup(:) n
[S Sridharan Tewari 2010]: ¢ < 200,000 log> n

= 0% (forl K 1, K n)

[Koehler Zhou Southerland S 2021] : at least for Gaussian x ~ N (i, 2):c =1



* Recall Expected Rademacher Complexity of {x = (w, x)|lw € W} when x~N (0, X):

%Z zi(w, x;) |

l

Rn(W, Z) — IE:xl,..,xn~]\f(0,2}),zl..anvUnif(i1) Sup
_WEW

* Theorem (informal): For any X, and any splitting X = 2, + X, s.t. rank(2;) = o(n), it holds
with high probability that for allw € W

Lw) < (1 + o(D)) ( L(w) + Rn(W,ZZ))Z

= sup L(w) < (1 + 0(1))72,21(127,22)
weW,L(w)=0

B2E[]|x||*]

, then w.h.p.

B?E,_5, [|1x][?
sup Lw) < (1+0(1) vz | ]
lwll<B ,L(W)=0 n

=>» Establishes consistency in Junk Features model (for 0 < 1,, < n)
And unlike direct approach: applies also to approx min norm near-interpolators

e Corollary: Since R,,({/|lwl|l, < B}, %) =J




Benign Overfitting Condition

Following [Bartlett et al 19][Tsigler Bartlett 20]

Fory = (w*,x) + N(0,0%),x ~ N(0,%)

X4 0]
d(wlog)w"=1,% = )
and (w.l.o.g.) w 0 %,
2
If: rank(X;) = o(n), tr(X,) = o(n), and eff—rank(Z,) < t;(ézz)) = w(n)
2

Then W,y = argmin ||w|| s.t.L(w) = 0 is consistent: L(W,;y) — o2

2
Recovered from uniform convergence analysis by calculating: ||Wyy||? = (1 + 0(1)) t:(zn)
2
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summary

 What we understand well using old theory:
* Learning with overparametrized models

* Learning improving when dimensionality increasing (since true complexity measure is not
dimensionality)

* Implicit regularization from optimization

* Questions we need to answer:
 What is the implicit bias of the optimization methods we use?
 How does the architecture affect the implicit bias?
* What is the true complexity measure/inductive bias

* What requires rethinking:
* Benign overfitting (interpolation learning in a noisy setting)

* Can we use uniform convergence to understand benign overfitting and
generalization with an implicit inductive bias?

* Maybe...



