
Applying Statistical Learning Theory to
Deep Learning:

What we understand, what we need understand,
and what we need to re-think

Or: what’s on the 𝑥 axis?

Nati Srebro (TTIC)

Based on joint work with many co-authors, including
Behnam Neyshabur (TTIC→Google) , Blake Woodworth (TTIC→INRIA), Suriya Gunasekar (TTIC→MSR),

Jason Lee (Princeton), and Daniel Soudry (Technion)

And recent work on Benign Overfitting with
Lijia Zhou (UChicago), Frederic Koehler (Stanford) and Danica Sutherland (TTIC→UBC)

Plan

• Recap from Yesterday: Classic view of Supervised Learning, Estimation vs
Approximation Error, Capacity/Uniform Convergence, Inductive Bias

• How does Deep Learning fit into classical view?

• Explicit vs Implicit Inductive Bias

• Benign Overfitting

• Supervised Learning: find ℎ:𝒳 → 𝒴 with small generalization error
𝐿 ℎ = 𝔼 𝑥,𝑦 ~𝒟 𝑙𝑜𝑠𝑠 ℎ 𝑥 ; 𝑦

based on samples 𝑆 (hopefully 𝑆 ∼ 𝒟𝑚) using learning rule:

𝐴: 𝑆 ↦ ℎ (i.e. 𝐴: 𝒳 × 𝒴 ∗ → 𝒴𝒳)

• No Free Lunch: For any learning rule, there exists a source 𝒟 (i.e. reality), for which the learning
rule yields expected error ½

• More formally for any 𝐴, 𝑚 there exists 𝒟 s.t. ∃ℎ∗𝐿 ℎ∗ = 0 but

𝔼𝑆∼𝒟𝑚 𝐿 𝐴 𝑆 ≥
1

2
−

𝑚

2 𝒳

• Inductive Bias:

• Some realities (sources 𝒟) are less likely; design 𝐴 to work well on more likely realities

e.g., by preferring certain 𝑦|𝑥 (i.e. ℎ(𝑥)) over others

• Assumption or property of reality 𝒟 under which 𝐴 ensures good generalization error

e.g., ∃ℎ ∈ ℋ with low 𝐿(ℎ)

e.g., ∃ℎ with low “complexity” 𝑐(ℎ) and low 𝐿(ℎ)

• “Flat” inductive bias: ∃ℎ∗ ∈ ℋ with low 𝐿(ℎ∗)

• (Almost) optimal learning rule:
𝐸𝑅𝑀ℋ 𝑆 = ℎ = argmin

ℎ∈ℋ
𝐿𝑆(ℎ)

• Guarantee (in expectation over 𝑆 ∼ 𝒟𝑚):

𝐿 𝐸𝑅𝑀ℋ 𝑆 ≤ 𝐿 ℎ∗ +ℛ𝑚 ℋ ≈ 𝐿 ℎ∗ +
𝑂 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ

𝑚

➔ can learn with𝑚 = 𝑂(𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ) samples

• E.g.

• For binary classification, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝑉𝐶𝑑𝑖𝑚(ℋ)

Vapnik-Chrvonenkis (VC) dimension: largest number of points 𝑫 that can be labeled
(by some 𝒉 ∈ 𝓗) in every possible way (i.e. for which the inductive bias is uninformative)

• For linear classifiers over 𝑑 features, 𝑉𝐶𝑑𝑖𝑚 ℋ = 𝑑

• Usually with 𝑑 parameters, 𝑉𝐶𝑑𝑖𝑚 ℋ ≈ ෨𝑂(#𝑝𝑎𝑟𝑎𝑚𝑠)

• Always: 𝑉𝐶𝑑𝑖𝑚 ℋ ≤ log ℋ ≤ #𝑏𝑖𝑡𝑠 = #𝑝𝑎𝑟𝑎𝑚𝑠 ⋅ #𝑏𝑖𝑡𝑠/𝑝𝑎𝑟𝑎𝑚

• For linear predictors with 𝑤 2 ≤ 𝐵, with logistic loss and normalized data: 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ = 𝐵2

Flat Inductive Bias

Machine Learning

• We want model classes (hypothesis classes) that:
• Are expressive enough to capture reality well

• Have small enough capacity to allow generalization

reality

Complexity Measure as Inductive Bias
• Complexity measure: mapping 𝑐: 𝒴𝒳 → [0,∞]

• Associated inductive bias: ∃ℎ∗ with small 𝑐(ℎ∗) and small 𝐿(ℎ∗)

• Learning rule: 𝑆𝑅𝑀ℋ 𝑆 = argmin 𝐿 ℎ , 𝑐(ℎ)

e.g. argmin 𝐿 ℎ + 𝝀 𝑐(ℎ) or argmin 𝐿 ℎ s.t. 𝑐 ℎ ≤ 𝑩

and choose 𝜆 or 𝐵 using cross-validation

• Guarantee:

𝐿 𝑆𝑅𝑀ℋ 𝑆 ≤≈ 𝐿 ℎ∗ +
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ𝑐 ℎ∗

𝑚

• E.g.:

• Degree of poly

• Sparsity

• ‖𝑤‖

Regularization Path
(Pareto Frontier)

𝜆 → ∞

𝜆 → 0

𝐿𝑆(ℎ)

𝑐(ℎ)

Complexity Measure as Inductive Bias
• Complexity measure: mapping 𝑐: 𝒴𝒳 → [0,∞]

• Associated inductive bias: ∃ℎ∗ with small 𝑐(ℎ∗) and small 𝐿(ℎ∗)

• Learning rule: 𝑆𝑅𝑀ℋ 𝑆 = argmin 𝐿 ℎ , 𝑐(ℎ)

e.g. argmin 𝐿 ℎ + 𝜆 𝑐(ℎ) or argmin 𝐿 ℎ s.t. 𝑐 ℎ ≤ 𝐵

and choose 𝜆 or 𝐵 using cross-validation

• Guarantee:

𝐿 𝑆𝑅𝑀ℋ 𝑆 ≤≈ 𝐿 ℎ∗ +
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ℋ𝑐 ℎ∗

𝑚

• E.g.:

• Degree of poly

• Sparsity

• ‖𝑤‖

ℋ𝐵 = ℎ 𝑐 ℎ ≤ 𝐵

reality

Feed-Forward Neural Networks
(The Multilayer Perceptron)

𝑣1

𝑣2

𝑣3

𝑣𝑑
𝑢

𝑣

𝑣𝑜𝑢𝑡

Architecture:

• Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.

• “Input Units” 𝑣1…𝑣𝑑 ∈ 𝑉, with no incoming edges and 𝑜 𝑣𝑖 = 𝑥[𝑖]

• “Output Unit” 𝑣𝑜𝑢𝑡 ∈ 𝑉, ℎ𝑤 𝑥 = 𝑜 𝑣𝑜𝑢𝑡

• “Activation Function” 𝜎:ℝ → ℝ. E.g. 𝜎𝑅𝐸𝐿𝑈 𝑧 = 𝑧 +

Parameters:

• Weight 𝑤[𝑢 → 𝑣] for each edge 𝑢 → 𝑣 ∈ 𝐸

𝑎[𝑣] =

𝑢→𝑣∈𝐸

𝑤[𝑢 → 𝑣] 𝑜[𝑢]

𝑜 𝑣 = 𝜎(𝑎 𝑣)

𝑥[1]

𝑥[2]

𝑥[3]

𝑥[𝑑]

⋯
ℎ𝐺 𝑉,𝐸 ,𝜎,𝑤 𝑥

Warren
McCulloch

Walter
Pitts

Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

What can Feed-Forward Networks Represent?

• ANDs (using a single unit)

• ORs (using a single unit)

• XORs (parities) (using 𝐸 = 𝑑2 with depth 2, or 𝐸 = 𝑂(𝑑) with depth log(𝑑))

• NOT (using a single weight)

• Any function over 𝒳 = ±1 𝑑

𝐶𝐼𝑅𝐶𝑈𝐼𝑇𝑛 𝑑𝑒𝑝𝑡ℎ, 𝑠𝑖𝑧𝑒 = functions 𝑓: ±1 𝑛 → 0,1 that can be implemented with logical circuits
with at most 𝑠𝑖𝑧𝑒 unlimited-fan-in AND, OR and NOT gates, and longest path from input to output at
most 𝑑𝑒𝑝𝑡ℎ (𝐴𝐶𝑖 ≈ 𝐶𝐼𝑅𝐶𝑈𝐼𝑇 𝑂 log𝑖 𝑛 , 𝑝𝑜𝑙𝑦 𝑛)

Learning a circuit (ie learning with the class 𝐶𝐼𝑅𝐶𝑈𝐼𝑇): learning the architecture

Claim: 𝐶𝐼𝑅𝐶𝑈𝐼𝑇𝑛 𝑑𝑒𝑝𝑡ℎ, 𝑠𝑖𝑧𝑒 ⊆ ℋ𝐺𝑛,𝐿=𝑑𝑒𝑝𝑡ℎ,𝑘=𝑠𝑖𝑧𝑒,𝑠𝑖𝑔𝑛

• Weights are ±1 if connected in the circuit (with/without a NOT gate in between), 0 otherwise;

• Bias terms are fanin-1 for AND, 1-fanin for OR

Fully connected layer graph, with 𝐿(=depth) layers
and 𝑘(=size) nodes in each layers.

Learning Circuits as Neural Networks

What can Feed-Forward Networks Represent?

• Any function over 𝒳 = ±1 𝑑

• As a circuit

• E.g. using DNF (OR of ANDS), with a single hidden layer of ANDs, output output unit implementing OR

• 𝑉 = 2𝑑, 𝐸 = 𝑑2𝑑

• Like representing the truth table directly…

• Universal Representation Theorem: Any continuous functions 𝑓: 0,1 𝑑 → ℝ can be
approximated to to within 𝜖 (for any 𝜖) by a feed-forward network with sigmoidal (or
almost any other) activation and a single hidden layer.
• Size of layer exponential in d

What can SMALL Networks Represent?

• Intersection of halfspaces
• Using single hidden layer (the halfspaces; output unit does AND)

• Union of intersection of halfspaces
• Using two hidden layers (halfspaces→OR→AND)

What can SMALL Networks Represent?

• Intersection of halfspaces
• Using single hidden layer (the halfspaces; output unit does AND)

• Union of intersection of halfspaces
• Using two hidden layers (halfspaces→OR→AND)

• Feature learning:
Linear predictors over (small number of) features,
in turn represented as linear predictors over more basic features,
that in turn are also represented as linear predictors

Multi-Layer Feature Learning

Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Realities captures by hierarchies of progressively complex features

• Any time T computable function with network of size ෩𝑶(𝑻)

Using a depth-T network, since anything computable in time T is also computable using a logical
circuit of size ෨𝑂(𝑇)

Free Lunches
• ML as an Engineering Paradigm: Use data and examples, instead of expert knowledge and

tedious programming, to automatically create efficient systems that perform complex tasks

• We only care about ℎ ℎ is an efficient system

• Free Lunch: 𝑻𝑰𝑴𝑬𝑻 = ℎ ℎ comp. in time 𝑇 has capacity 𝑂(𝑇) and hence learnable with 𝑂(𝑇)
samples, e.g. using ERM

• Even better: 𝑷𝑹𝑶𝑮𝑻 = program of length T has capacity 𝑂(𝑇)

• Problem: ERM for above is not computable!

• Modified ERM for 𝑻𝑰𝑴𝑬𝑻 (truncating exec. time) is NP-complete

• P=NP ➔ Universal Learning is possible! (Free Lunch)

• Crypto is possible (one-way functions exist)
➔ No poly-time learning algorithm for 𝑻𝑰𝑴𝑬𝑻
(that is: no poly-time 𝐴 and uses 𝑝𝑜𝑙𝑦(𝑇) samples s.t. if ∃ℎ∗ ∈ 𝑇𝐼𝑀𝐸𝑇 with 𝐿 ℎ∗ = 0 then
𝔼 𝐿 𝐴 𝑆 ≤ 0.4)

No Free (Computational) Lunch

• Statistical No-Free Lunch: For any learning rule A, there exists a source 𝒟 (i.e. reality), s.t.

∃ℎ∗ with 𝐿 ℎ∗ = 0 but 𝔼 𝐿 𝐴 𝑆 ≈
1

2
.

• Cheating Free Lunch: There exists A, s.t. for any reality 𝒟 and any efficiently computable
𝒉∗, 𝐴 learns a predictor almost as good as ℎ∗

(with #samples=O(runtime of ℎ∗), but a lot of time).

• Computational No-Free Lunch: For every computationally efficient learning algorithm 𝑨,
there is a reality 𝒟 s.t. there is some comp. efficient (poly-time) ℎ∗ with 𝐿 ℎ∗ = 0 but

𝔼 𝐿 𝐴 𝑆 ≈
1

2
.

• Inductive+Search Bias: Assumption or property of reality 𝒟 under which a learning
algorithm 𝐴 runs efficiently and ensures good generalization error.

• ℋ or 𝑐(ℎ) are not sufficient inductive bias if ERM/SRM not efficiently implementable, or
implementation doesn’t always work (runs quickly and returns actual ERM/SRM).

Feed Forward Neural Networks
• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)

• Computation / Optimization

• Non-convex

• No known algorithm guaranteed to work

• NP-hard to find weights even with 2 hidden units

• Even if function exactly representable with single hidden layer with
Θ log𝑑 units, even with no noise, and even if we train a much larger
network or use any other method when learning: no poly-time algorithm
can ensure better-than-chance prediction
[Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz ’14]

Choose your universal learner:
Short (or short runtime) Programs

• Universal

• Captures anything we want with reasonable
sample complexity

• ERM is NP-hard

• Provably hard to learn even improperly,
with any rule (subject to crypto)

• Hard to optimize in practice
Short programs: Incomputable.
Even if we limit to bounded-time:
• No practical local search
• Highly non-continuous, disconnected

discrete space
• Not much success

Deep Networks

• Universal

• Captures anything we want with reasonable
sample complexity

• ERM is NP-hard

• Provably hard to learn even improperly,
with any rule (subject to crypto)

• Often easy to optimize
• Continuous
• Amenable to local search with Grad Descent,

or SGD
• Lots of empirical success

Feed Forward Neural Networks
• Fix architecture (connection graph 𝐺(𝑉, 𝐸), transfer 𝜎)

ℋ𝐺 𝑉,𝐸 ,𝜎 = 𝑓𝑤 𝑥 = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑛𝑒𝑡 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤

• Capacity / Generalization ability / Sample Complexity

• ෩𝑶(𝑬) (number of edges, i.e. number of weights)
(with threshold 𝜎, or with RELU and finite precision; RELU with inf precision: ෩Θ 𝐸 ⋅ 𝑑𝑒𝑝𝑡ℎ)

• Expressive Power / Approximation

• Any continuous function with huge network

• Lots of interesting things naturally with small networks

• Any time T computable function with network of size ෩𝑶(𝑻)

• Computation / Optimization

• Even if function exactly representable with single hidden layer with
Θ log𝑑 units, even with no noise, and even if we allow a much larger
network when learning: no poly-time algorithm always works
[Kearns Valiant 94; Klivans Sherstov 06; Daniely Linial Shalev-Shwartz ’14]

• Magic property of reality that makes local search “work”

[Neyshabur Tomioka S ICLR’15]

Zhang, Bengio, Hardt, Recht, Vinyals 2017

Learning with a Rich Function Class

• Learning rule 𝐴(S) s.t.
• For any data set, even with random labels, can fit data: 𝐿𝑆 𝐴 𝑆 = 0

• For “real” data 𝑆 ∼ 𝒟𝑚 sampled from reasonable reality 𝒟, we can generalize: 𝐿𝒟 𝐴 𝑆 is low

• Examples:
• 1-Nearest Neighbor: if realizable by some continuous ℎ∗ (ie 𝐿 ℎ∗ = 0),

then consistent: 𝐿𝒟(1𝑁𝑁 𝑆)
𝑆 →∞

0

• Hard Margin SVM with Gaussian Kernel (or other universal kernel)
or more generally min norm consistent solution: argmin ℎ 𝐾 𝑠. 𝑡. 𝐿𝑆 ℎ = 0

≡ arg min
𝑤,𝜙 𝑥𝑖 =𝑦𝑖

𝑤 2

reality

fit random labels

E.g., hard margin SVM: min‖𝑤‖ s.t. 𝐿𝑆
𝑚𝑎𝑟𝑔𝑖𝑛

𝑤 = 0

for ℎ𝑤 = ⟨𝑤, 𝜙 𝑥 ⟩ with inf dim 𝜙

𝒉 ‖𝒉‖ ≤ 𝒓𝒆𝒂𝒍𝒊𝒕𝒚

reality

fit random labels

E.g., hard margin SVM: min‖𝑤‖ s.t. 𝐿𝑆
𝑚𝑎𝑟𝑔𝑖𝑛

𝑤 = 0

for ℎ𝑤 = ⟨𝑤, 𝜙 𝑥 ⟩ with inf dim 𝜙

𝒉 ‖𝒉‖ ≤ 𝒓𝒆𝒂𝒍𝒊𝒕𝒚

Learning with a Rich Function Class

• Learning rule 𝐴(S) s.t.
• For any data set, even with random labels, can fit data: 𝐿𝑆 𝐴 𝑆 = 0

• For “real” data 𝑆 ∼ 𝒟𝑚 sampled from reasonable reality 𝒟, we can generalize: 𝐿𝒟 𝐴 𝑆 is low

• Examples:
• 1-Nearest Neighbor: if realizable by some continuous ℎ∗ (ie 𝐿 ℎ∗ = 0),

then consistent: 𝐿𝒟(1𝑁𝑁 𝑆)
𝑆 →∞

0

• Hard Margin SVM with Gaussian Kernel (or other universal kernel)
or more generally min norm consistent solution: argmin ℎ 𝐾 𝑠. 𝑡. 𝐿𝑆 ℎ = 0

≡ arg min
𝑤,𝜙 𝑥𝑖 =𝑦𝑖

𝑤 2

• Can always get 𝐿𝑆 ℎ = 0

• If ∃ℎ∗, 𝐿𝒟 ℎ∗ = 0, generalizes with sample complexity 𝑆 = 𝑂 ℎ 𝐾
2

• MDL: argmin 𝑝𝑟𝑜𝑔 𝑠. 𝑡. 𝐿𝑆 𝑝𝑟𝑜𝑔 = 0

𝐿 𝑀𝐷𝐿 𝑆 ≤ 𝑂
𝑝𝑟𝑜𝑔∗

𝑆
if realizable by 𝑝𝑟𝑜𝑔∗

[Neyshabur Tomioka S ICLR’15]

Path Norm
0

0.5

1

T
e

s
t

E
rr

o
r

1997

[Neyshabur Tomioka S ICLR’15]

Path Norm
0

0.5

1

T
e

s
t

E
rr

o
r

1997

• What is the relevant “complexity measure” (eg norm)?

• How is this minimized (or controlled) by the opt algorithm?

Zhang, Bengio, Hardt, Recht, Vinyals 2017

Where is the regularization?

min
𝑤∈ℝ𝑑

‖𝑋𝒘 − 𝑦‖2

𝑋 ∈ ℝ𝑚×𝑑, 𝑦 ∈ ℝ𝑚 , 𝑚 ≪ 𝑑

• Claim: Gradient Descent (or SGD), initialized at 𝑤0 = 0, converges to min norm solution
min
𝑋𝒘=𝑦

𝒘 2

➢Proof: iterates always spanned by rows of 𝑋

• Coordinate Descent, initialized at 𝑤0 = 0, related to, but not quite

min
𝑋𝒘=𝑦

𝒘 1 (Lasso)

(with stepsize↘ 0 and particular tie-breaking ≈ LARS)

Implicit Bias in Logistic Regression

arg min
𝑤∈ℝ𝑛

ℒ 𝑤 =

𝑖=1

𝑚

ℓ 𝑦𝑖 𝑤, 𝑥𝑖

ℓ 𝑧 = log 1 + 𝑒−𝑧

• Data 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑚 linearly separable (∃𝑤∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 > 0)

• Where does gradient descent converge?
𝑤 𝑡 = 𝑤 𝑡 − 𝜂𝛻ℒ(𝑤(𝑡))

• inf ℒ 𝑤 = 0, but minima unattainable

• GD diverges to infinity: 𝑤 𝑡 → ∞, ℒ 𝑤 𝑡 → 0

• In what direction? What does
𝑤 𝑡

𝑤 𝑡
converge to?

• Theorem:
𝑤 𝑡

𝑤 𝑡 2
→

ෝ𝑤

ෝ𝑤 2
ෝ𝑤 = argmin 𝑤 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1

[Soudry Hoffer S 2017] based on [Telgarsky 2013 “Margins, shrinkage, and boosting”]

• Single linear unit, logistic loss
➔ hard margin SVM solution (regardless of init)

• Multi-class problems with softmax loss
➔multiclass SVM solution (regardless of init)

• Steepest Descent w.r.t. ‖𝑤‖

➔ argmin 𝑤 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1 (regardless of init)

• Coordinate Descent

➔ argmin 𝑤 1 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1 (regardless of init)

Implicit Bias in Logistic Regression

[Neyshabur Tomioka S ICLR’15]

Path Norm
0

0.5

1

T
e

s
t

E
rr

o
r

1997

• What is the relevant “complexity measure” (eg norm)?

• How is this minimized (or controlled) by the opt algorithm?

• How does it change if we change the opt algorithm?

Cross-Entropy
Training Loss

0/1 Training Error 0/1 Test Error

M
N

IS
T

0 50 100 150 200 250 300
0.015

0.02

0.025

0.03

0.035

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

Epoch EpochEpoch

0 50 100 150 200 250 300
0.4

0.42

0.44

0.46

0.48

0.5
Path-SGD
SGD

C
IF

A
R

-1
0

0 50 100 150 200 250 300
0.4

0.42

0.44

0.46

0.48

0.5

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

SV
H

N

0 100 200 300 400
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0 100 200 300 400
0

0.5

1

1.5

2

2.5

0 100 200 300 400
0.65

0.7

0.75

0 100 200 300 400
0

0.2

0.4

0.6

0.8

0 100 200 300 400
0

1

2

3

4

5

Epoch Epoch

C
IF

A
R

-1
0

0

W
it

h
 D

ro
p

o
u

t

Epoch

[Neyshabur Salakhudtinov S NIPS’15]

SGD vs ADAM

Te
st

 E
rr

o
r

(P
re

p
le

xi
ty

)

Tr
ai

n
iE

rr
o

r
(P

re
p

le
xi

ty
)

Results on Penn Treebank using 3-layer LSTM

[Wilson Roelofs Stern S Recht, “The Marginal Value of
Adaptive Gradient Methods in Machine Learning”, NIPS’17]

Different optimization algorithm
➔ Different bias in optimum reached
➔ Different Inductive bias
➔ Different generalization properties

Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum

Grad Descent
→ min

𝑋𝑤=𝑦
𝑤 𝟐 (sq loss)

Coordinate Descent
→ ≈ min

𝑋𝑤=𝑦
𝑤 𝟏 (sq loss)

Different optimization algorithm
➔ Different bias in optimum reached
➔ Different Inductive bias
➔ Different generalization properties

Need to understand optimization alg. not just as reaching
some (global) optimum, but as reaching a specific optimum

All Functions

min
𝑋∈ℝ𝑛×𝑛

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑋 − 𝑦 2
2 ≡ min

𝑈,𝑉∈ℝ𝑛×𝑛
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑈𝑉⊤ − 𝑦 2

2

• Underdetermined non-sensical problem, lots of useless global min

• Since 𝑈, 𝑉 full dim, no constraint on 𝑋, all the same non-sense global min

𝑈 ×

2 4 5 1 4 2
3 1 2 2 5 4
4 2 4 1 3 1
3 3 4 2 4
2 3 1 4 3 2

2 2 1 4 5
2 4 1 4 2 3

1 3 1 1 4 3
4 2 2 5 3 1

𝒚 𝑉⊤𝑋 =≈

Grad Descent on 𝑈, 𝑉
???

min 𝑿 ∗ solution
(with inf. small stepsize and initialization)
→ good generalization if Y (aprox) low rank

[Gunasekar Woodworth Bhojanapalli Neyshabur S 2017]

When 𝑦 = 𝑨𝑖 ,𝑊
∗ , 𝑊∗ low rank, 𝑨𝑖 RIP

[Yuanzhi Li, Hongyang Zhang and Tengyu Ma 2018]

Not always min 𝑿 ∗ !
[Zhiyuan Li, Yuping Luo, Kaifeng Lyu ICLR 2021]

GD on 𝑋 GD on 𝑈, 𝑉
exact

linesearch

GD on 𝑈, 𝑉
stepsize

=0.01

min 𝑋 ∗

Single Overparametrized Linear Unit

Train single unit with SGD using logistic (“cross entropy”) loss
→ Hard Margin SVM predictor
𝑤 ∞ ∝ argmin 𝑤 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝑤, 𝑥𝑖 ≥ 1

Even More Overparameterization:
Deep Linear Networks

Network implements a linear mapping:
𝑓𝑤 𝑥 = ⟨𝛽𝑤 , 𝑥⟩

Training: same opt. problem as logistic regression:
min
𝑤

ℒ(𝑓𝑤) ≡ min
𝛽

ℒ 𝑥 ↦ 𝛽, 𝑥

Train 𝑤 with SGD
→ Hard Margin SVM predictor
𝛽𝑤(∞) → argmin 𝛽 2 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

Linear Conv Nets

L-1 hidden layers, ℎ𝑙 ∈ ℝ
𝑛, each with (one channel) full-width cyclic “convolution” 𝑤ℓ ∈ ℝ

𝐷:

ℎ𝑙 𝑑 =

𝑘=0

𝐷−1

𝑤𝑙 𝑘 ℎ𝑙−1[𝑑 + 𝑘 𝑚𝑜𝑑 𝐷] ℎ𝑜𝑢𝑡 = 𝑤𝐿, ℎ𝐿−1

With single conv layer (L=2), training weights with SGD

→ 𝐚𝐫𝐠𝐦𝐢𝐧 𝑫𝑭𝑻(𝜷) 𝟏 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

With multiple conv layers

→ critical point of 𝐦𝐢𝐧 𝑫𝑭𝑻(𝜷) ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

for ℓ 𝑧 = exp(−𝑧), almost all linearly separable data sets and initializations 𝑤(0) and any
bounded stepsizes s.t. ℒ → 0, and Δ𝑤(𝑡) converge in direction

Discrete Fourier Transform

[Gunasekar Lee Soudry S 2018]

min 𝜷 𝟐 𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

min 𝑫𝑭𝑻(𝜷) ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

min 𝜷 ൗ𝟐 𝑳
𝑠. 𝑡. ∀𝑖𝑦𝑖 𝛽, 𝑥𝑖 ≥ 1

𝑳 = 𝟐

𝑳 = 𝟓

𝑳 = 𝟓

• Binary matrix completion (also: reconstruction from linear measurements)
• 𝑿 = 𝑈𝑉 is over-parametrization of all matrices 𝑋∈ ℝ𝑛×𝑚

• GD on 𝑈, 𝑉 (or explicitly minimize 𝑼 𝑭
𝟐 + 𝑽 𝑭

𝟐)
➔ implicitly minimize 𝑋 ∗ [Gunasekar Lee Soudry S 2018a]

• Linear Convolutional Network:
• Complex over-parametrization of all linear predictors 𝛽
• GD on weights (or explicitly minimize 𝒘𝒆𝒊𝒈𝒉𝒕𝒔 𝟐

𝟐)

➔ implicitly min 𝑫𝑭𝑻 𝜷 𝒑 for 𝑝 =
2

𝑑𝑒𝑝𝑡ℎ
(sparsity in freq domain)

[Gunasekar Lee Soudry S 2018b]

• Infinite Width ReLU Net:
• Parametrization of essentially all functions ℎ:ℝ𝑑 → ℝ
• GD on weights (or explicitly min 𝒘𝒆𝒊𝒈𝒉𝒕𝒔 𝟐

𝟐)

➔ implicitly minimize max ∫ 𝒉′′ 𝒅𝒙 , ℎ′ −∞ + ℎ′ +∞ (d=1)

∫ 𝝏𝒃
𝒅+𝟏𝑹𝒂𝒅𝒐𝒏 𝒉 (d>1)

(need to define more carefully to handle non-smoothness; correction term for linear part)

[Savarese Evron Soudry S 2019][Ongie Willett Soudry S 2020][Chizat Bach 2020]

All Functions

• Binary matrix completion (also: reconstruction from linear measurements)
• 𝑿 = 𝑈𝑉 is over-parametrization of all matrices 𝑋∈ ℝ𝑛×𝑚

• GD on 𝑈, 𝑉 (or explicitly minimize 𝑼 𝑭
𝟐 + 𝑽 𝑭

𝟐)
➔ implicitly minimize 𝑋 ∗ [Gunasekar Lee Soudry S 2018a]

• Linear Convolutional Network:
• Complex over-parametrization of all linear predictors 𝛽
• GD on weights (or explicitly minimize 𝒘𝒆𝒊𝒈𝒉𝒕𝒔 𝟐

𝟐)

➔ implicitly min 𝑫𝑭𝑻 𝜷 𝒑 for 𝑝 =
2

𝑑𝑒𝑝𝑡ℎ
(sparsity in freq domain)

[Gunasekar Lee Soudry S 2018b]

• Infinite Width ReLU Net:
• Parametrization of essentially all functions ℎ:ℝ𝑑 → ℝ
• GD on weights (or explicitly min 𝒘𝒆𝒊𝒈𝒉𝒕𝒔 𝟐

𝟐)

➔ implicitly minimize max ∫ 𝒉′′ 𝒅𝒙 , ℎ′ −∞ + ℎ′ +∞ (d=1)

∫ 𝝏𝒃
𝒅+𝟏𝑹𝒂𝒅𝒐𝒏 𝒉 (d>1)

(need to define more carefully to handle non-smoothness; correction term for linear part)

[Savarese Evron Soudry S 2019][Ongie Willett Soudry S 2020][Chizat Bach 2020]

All Functions Parameter Space

𝑓

Optimization Geometry and hence Inductive Bias effected by:

• Choice of parameterization (architecture)

• Geometry of local search in parameter space

• Optimization choices: Initialization, Batch Size, Step Size, etc

𝑤

Understanding Learning via Local Search
in Highly Underdetermined Models

The “complexity measure” approach:

• Identify 𝒄(𝒉) such that optimization implicitly seek low 𝒄(𝒉) solution
𝐚𝐫𝐠𝐦𝐢𝐧 𝒄 𝒉 𝒔. 𝒕. 𝑳 𝒉 = 𝟎, or at least approximately

• How do different optimization choices affect 𝑐(ℎ)?

• Initialization scale [Woodworth Gunasekar Lee Moroshko Sevarese Golan Soudry S 2019]

• Stepsize [Nacson Ravichandran S Soudry 2022]

• Early stopping / Optimization accuracy [Moroshko Gunasekar Woodworth Lee S Soudry 2020]

• Stochasticity: - Batchsize [Pesme Pillaud-Vivien Flammarion 2021]

- Label noise [HaoChen, Wei, Lee, Ma 2020][Blanc, Gupta, Valiant, Valiant 2020]

• How does architecture choice effect 𝑐(ℎ)?

• Understand generalization properties ensures by low 𝒄(𝒉)

• Understand why in reality ∃𝒉∗ with low 𝒄(𝒉) and low 𝑳(𝒉)

• In general, optimization bias not captured by distribution-independent 𝑐(ℎ)

• Distribution-specific characterization of implicit bias

• Or: direct analysis of generalization properties

What fits our understanding:
• Can get generalization even if can fit random labels

[we’re controlling some other complexity measure]
• Can get implicit regularization (seek small “norm”) from

optimization algorithm, even if not explicit
• Generalization becomes better as size increases

𝑦 = 𝑤∗, 𝜙∞ 𝑥 (𝜙∞ 𝑥 bounded)
𝜙𝑑 𝑥 = random projection of 𝜙∞(𝑥)

e.g. 𝜙∞ 𝑥 , 𝜙∞ 𝑥′ = 𝑒− 𝑥−𝑥′
2

and 𝜙𝑑 𝑥 𝑖 = 1

𝑑
cos 𝜔𝑖 , 𝑥 + 𝜃𝑖

𝐴 𝑆 = argmin ‖𝑤‖ 𝑠. 𝑡. 𝐿𝑆(𝑥 ↦ 𝑤, 𝜙𝑑 𝑥 = 0

i.e. ∀ 𝑥𝑖,𝑦𝑖 ∈𝑆𝑦𝑖 = 𝑤,𝜙𝑑 𝑥𝑖

A similar example:
Matrix completion using a rank-d factorization:
𝐿 𝑋 = 𝑋 − 𝐴 2

2, 𝐿 based on 𝑛𝑘 observed entries
𝑋 = 𝑈𝑉⊤, 𝑈, 𝑉 ∈ ℝ𝑛×𝑑

➔ 𝑟𝑎𝑛𝑘 𝑋 ≤ 𝑑
If 𝑑 < 𝑘: argmin 𝐿(𝑋) s. t. 𝑟𝑎𝑛𝑘 𝑋 ≤ 𝑑
If 𝑑 > 𝑘: argmin 𝑋 ∗ 𝑠. 𝑡. 𝐿 𝑋 = 0, 𝑟𝑎𝑛𝑘 𝑋 ≤ 𝑑

What fits our understanding:
• Can get generalization even if can fit random labels

[we’re controlling some other complexity measure]
• Can get implicit regularization (seek small “norm”) from

optimization algorithm, even if not explicit
• Generalization becomes better as size increases

What doesn’t fit:
• Even when the approximation error>0 (with noise),

we get good generalization with 𝐿𝑆 ℎ = 0

𝐿𝑆(ℎ)

𝜆 → ∞

𝜆 → 0 𝑐(ℎ)

ERMs

MDL:
argmin 𝑐(ℎ) 𝑠. 𝑡. 𝐿𝑆 ℎ = 0

argmin 𝐿𝑆(ℎ) + 𝜆𝑐(ℎ)
SRM:

Intro to Machine Learning, Lecture 2

Intro to Machine Learning, Lecture 2

Intro to Machine Learning, Lecture 2

Intro to Machine Learning, Lecture 2

Intro to Machine Learning, Lecture 2

Intro to Machine Learning, Lecture 2

Intro to Machine Learning, Lecture 2

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

degree

m
ea

n
 s

q
u

ar
ed

 e
rr

o
r

Training error, 𝐿(ℎ)

Test error 𝐿(ℎ)

Approx error, min
ℎ∈ℋ

𝐿(ℎ)

“underfitting”
not fitting the signal

“overfitting”
fitting the noise

𝐿 ℎ ≤ inf
ℎ∈ℋ

𝐿(ℎ) +
log |ℋ| + 2 log ൗ2 𝛿

𝑛

approximation error estimation error

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

degree

m
ea

n
 s

q
u

ar
ed

 e
rr

o
r

Training error, 𝐿(ℎ)

Test error 𝐿(ℎ)

Approx error, min
ℎ∈ℋ

𝐿(ℎ)

“underfitting”
not fitting the signal

“overfitting”
fitting the noise

𝐿 ℎ ≤ inf
ℎ∈ℋ

𝐿(ℎ) +
log |ℋ| + 2 log ൗ2 𝛿

𝑛

approximation error estimation error

“a model with zero training error is overfitting […] and will
typically generalize poorly”

𝐿𝑆(ℎ)

𝜆 → ∞

𝜆 → 0 𝑐(ℎ)

ERMs

MDL:
argmin 𝑐(ℎ) 𝑠. 𝑡. 𝐿𝑆 ℎ = 0

argmin 𝐿𝑆(ℎ) + 𝜆𝑐(ℎ)
SRM:

𝐿 𝑤 = 𝔼 𝑤,𝜙𝑑 𝑥 − 𝑦 2 𝐿 𝑤 =
1

𝑛
σ𝑖 𝑤,𝜙𝑑(𝑥𝑖) − 𝑦𝑖

2

𝜙𝑑 𝑥 ∈ ℝ𝑑

ෝ𝑤 = argmin 𝐿(𝑤)

ෝ𝑤 = GD on 𝐿(𝑤)

>> w = PhiX \ y

𝑥 = 𝑤∗, 𝜙∞ 𝑥 (𝜙∞ 𝑥 ≤ 1)
𝜙𝑑 𝑥 = random projection of 𝜙∞(𝑥)

e.g. 𝜙∞ 𝑥 , 𝜙∞ 𝑥′ = 𝑒− 𝑥−𝑥′
2

and 𝜙𝑑 𝑥 𝑖 = 1

𝑑
cos 𝜔𝑖 , 𝑥 + 𝜃𝑖

argmin 𝐿(𝑤) argmin 𝑤 2 s. t. 𝐿 𝑤 = 0

dimension 𝑑

>>> w = np.linalg.lstsq(PhiX,y)[0]

argmin 𝑤 2 s. t. 𝐿 𝑤 = 0

dimension 𝑑

Train err

Test
error

[Bartlett et al “Boosting the Margin” 1998]

dimension 𝑑

Train err

Test
error

[Zhang et al “Rethinking generalization” ICLR 2017]

[Bartlett et al “Boosting the Margin” 1998]

𝐿(ℎ)

𝜆 → ∞

𝜆 → 0 ‖𝑤‖

ERMs

MDL:
argmin ‖𝑤‖ 𝑠. 𝑡. 𝐿 𝑤 = 0

argmin 𝐿 𝑤 + 𝜆 𝑤 2
SRM:

We can learn with MDL (𝐿 𝑤 = 0, “interpolation learning”) in many settings
where 𝐿 𝑤∗ ≫ 0, eg noisy settings where 𝑦 = ℎ𝑤∗ 𝑥 + 𝑛𝑜𝑖𝑠𝑒.
Often, overfitting (fitting the noise) is benign, and not as harmful as theory tells us.

-Misha Belkin, 2018

𝐿 𝑤 = 𝔼 𝑤,𝜙𝑑 𝑥 − 𝑦 2 𝐿 𝑤 =
1

𝑛
σ𝑖 𝑤,𝜙𝑑(𝑥𝑖) − 𝑦𝑖

2

𝜙𝑑 𝑥 ∈ ℝ𝑑

ෝ𝑤 = argmin 𝐿(𝑤)

ෝ𝑤 = GD on 𝐿(𝑤)

>> w = PhiX \ y

𝑥 = 𝑤∗, 𝜙∞ 𝑥 (𝜙∞ 𝑥 ≤ 1)
𝜙𝑑 𝑥 = random projection of 𝜙∞(𝑥)

e.g. 𝜙∞ 𝑥 , 𝜙∞ 𝑥′ = 𝑒− 𝑥−𝑥′
2

and 𝜙𝑑 𝑥 𝑖 = 1

𝑑
cos 𝜔𝑖 , 𝑥 + 𝜃𝑖

argmin 𝐿(𝑤) argmin 𝑤 2 s. t. 𝐿 𝑤 = 0

dimension 𝑑

>>> w = np.linalg.lstsq(PhiX,y)[0]

[Belkin Ma Mandal, ICML 18]

𝐿(ℎ)

𝜆 → ∞

𝜆 → 0 ‖𝑤‖

ERMs

MDL:
argmin ‖𝑤‖ 𝑠. 𝑡. 𝐿 𝑤 = 0

argmin 𝐿 𝑤 + 𝜆 𝑤 2
SRM:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

1.5

2

Harmful Overfitting
(fitting noise has large effect everywhere,

overwhelms signal fit)

Benign Overfitting
(fitting noise has measure ≈0 effect)

ෝ𝒘𝑴𝑵 = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝑿𝒘=𝒀

𝒘 𝟐

Equivalent to Ridge Regression: ⟨ෝ𝑤𝑀𝑁 , 𝑥⟩
𝑑𝐽→∞

⟨ෝ𝑤𝜆, 𝑥𝑆⟩

For 𝝀 = 𝒐(𝒏) and 𝒅𝑱 → ∞, 𝐿 ෝ𝑤𝑀𝑁 = 𝐿 ෝ𝑤𝜆
𝑛→∞

𝐿 𝑤∗ = 𝜎2

ෝ𝑤𝜆 = arg min
𝑤𝑆∈ℝ

𝑑𝑆
𝑌 − 𝑋𝑆𝑤𝑆

2 + 𝜆 𝑤𝑆
2

signal 𝑥𝑠 junk 𝑥𝑗

𝑤𝑠
∗ 0

𝑦 = 𝑤∗, 𝑥 +𝒩 0, 𝜎2

𝑤∗, 𝑥 ∈ ℝ𝑑 𝑑 = 𝑑𝑆 + 𝑑𝐽
𝑤∗ = 𝑤𝑆

∗ , 0𝑑𝐽

𝑥 = 𝑥𝑆, 𝑥𝐽 𝑥𝑆~𝒩 0, 𝐼𝑑𝑆 𝑥𝐽~𝒩 0, 𝜂𝐼𝑑𝐽

𝑑𝐽 → ∞, 𝜂 =
𝜆

𝑑𝐽
➔ 𝑥𝐽

2
= 𝜆

𝑑𝑠 𝑑𝐽 → ∞

𝐿 𝑤 = 𝔼 𝑤, 𝑥 − 𝑦 2

Proof: Gram matrix is

𝑋𝑋⊤ = 𝑋𝑆𝑋𝑆
⊤ + 𝑋𝐽𝑋𝐽

⊤ → (𝑋𝑆𝑋𝑆
⊤ + 𝜆𝐼)

𝐿 ෝ𝑤𝑛 ≤ 𝐿 ෝ𝑤𝑛 + sup
𝑤∈𝒲𝑛

𝐿 𝑤 − 𝐿 𝑤

ensuring ෝ𝑤𝑛 ∈ 𝒲𝑛

e.g. ෝ𝑤𝑛 ≤ 𝐵 and 𝒲𝑛 = { 𝑤 ≤ 𝐵}

Goal: consistency in a noisy (non-realizable) setting

𝐿 ෝ𝑤𝑛
𝑛→∞

𝐿 𝑤∗ = 𝜎2 > 0

𝐿 𝑤∗ = 𝜎2

e.g. 𝑂 ൗෝ𝑤𝑛
2

𝑛

0

For a balanced predictor, argmin 𝐿 ෝ𝑤𝑛 , ‖ෝ𝑤𝑛‖ , e.g. with 𝐿 ෝ𝑤𝑛 = 𝜎2 and ෝ𝑤𝑛 small:

𝐿 ෝ𝑤𝑛 ≤ 𝐿 ෝ𝑤𝑛 + sup
𝑤∈𝒲𝑛

𝐿 𝑤 − 𝐿 𝑤

ensuring ෝ𝑤𝑛 ∈ 𝒲𝑛

e.g. ෝ𝑤𝑛 ≤ 𝐵 and 𝒲𝑛 = { 𝑤 ≤ 𝐵}

Goal: consistency in a noisy (non-realizable) setting

𝐿 ෝ𝑤𝑛
𝑛→∞

𝐿 𝑤∗ = 𝜎2 > 0

e.g. 𝑂 ൗෝ𝑤𝑛
2

𝑛

= 0

𝜎2

For an interpolating predictor:

Can Uniform Convergence
Explain Benign Overfitting?

with

Lijia Zhou
UChicago

Danica Sutherland
TTIC → UBC

Frederic Koehler
Stanford

Via Uniform Convergence?

For Lipschitz Loss: sup
𝑤 2≤𝐵2

𝐿 𝑤 − 𝐿 𝑤 ≤ 2𝐿𝑖𝑝
𝐵2𝔼 𝑥 2

𝑛
+ 𝑂𝑝

1

𝑛

Setting 𝐵 = ‖ෝ𝑤‖, relevant quantity is
ෝ𝑤 2𝔼 𝑥 2

𝑛
=

𝑤𝑆
∗ 2

+
𝝈𝟐

𝝀𝒏
𝒏 𝑑𝑆+𝝀𝑛

𝑛
→

𝜎2

𝜆𝑛
𝑛⋅𝜆𝑛

𝑛
= 𝜎2

Recall junk feature setting: 𝑦 = 𝑤∗, 𝑥 + 𝜉, 𝜉~𝒩 0, 𝜎2

𝑤∗ = 𝑤𝑆
∗ , 0𝑑𝐽

𝑥 = 𝑥𝑆, 𝑥𝐽 𝑥𝑆~𝒩 0, 𝐼𝑑𝑆 𝑥𝐽~𝒩 0,
𝜆

𝑑𝐽
𝐼𝑑𝐽

signal 𝑥𝑠 junk 𝑥𝑗

𝑤𝑠
∗ 0

𝑑𝑠 𝑑𝐽 → ∞

𝔼 𝑥 2 = 𝑑𝑆 + 𝜆

ෝ𝑤𝑀𝑁 = (𝑤𝑆
∗, 0) +

𝑖

𝜉𝑖
𝜆
(0, 𝑥𝑖𝐽) ➔ 𝔼 ෝ𝑤𝑀𝑁

2 = 𝑤𝑆
∗ 2 +

𝜎2

𝜆
𝑛

1 ≪ 𝜆𝑛 ≪ 𝑛

Via Uniform Convergence?

For Lipschitz Loss: sup
𝑤 2≤𝐵2

𝐿 𝑤 − 𝐿 𝑤 ≤ 2𝐿𝑖𝑝
𝐵2𝔼 𝑥 2

𝑛
+ 𝑂𝑝

1

𝑛

Setting 𝐵 = ‖ෝ𝑤‖, relevant quantity is
ෝ𝑤 2𝔼 𝑥 2

𝑛
=

𝑤𝑆
∗ 2

+
𝝈𝟐

𝝀𝒏
𝒏 𝑑𝑆+𝝀𝑛

𝑛
→

𝜎2

𝜆𝑛
𝑛⋅𝜆𝑛

𝑛
= 𝜎2

But:

• We get 2 ⋅ 𝐿𝑖𝑝 ⋅ 𝜎2 = 2 ⋅ 𝐿𝑖𝑝 ⋅ 𝜎 instead of 𝜎2

• Squared loss isn’t even Lipschitz

• We know such a bound is loose when 𝐿 𝑤 ≈ 0
(variance of bias 𝑝 of coin = 𝑝 1 − 𝑝 ≈ 𝑝, Chernoff vs Hoeffding)

Uniform Convergence of Interpolators
• Instead of: sup

𝑤∈𝒲
|𝐿 𝑤 − 𝐿 𝑤 |

• Bound: sup
𝑤∈𝒲,𝐿 𝑤 =0

|𝐿 𝑤 − 𝐿 𝑤 | = sup
𝑤∈𝒲,𝐿 𝑤 =0

𝐿(𝑤)

Used in the noiseless setting since at least Vapnik. Below: [Devroy et al ’96]

Realizable, Non-Realizable and Optimistic

∀ 𝑤 2≤𝐵2 𝐿 𝑤 − 𝐿 𝑤 ≤ ෨𝑂𝑃
𝐵2 𝑥 2

𝑛
+ 𝐿 𝑤

𝐵2 𝑥 2

𝑛

∀ 𝑤 2≤𝐵2,𝑳 𝒘 =𝟎 𝐿 𝑤 ≤ 𝑐
𝐵2 𝑥 2

𝑛
+ 𝑜𝑃 1

If 𝑐 = 1: 𝐿 𝑤𝑀𝑁 ≤ sup ⋯
𝑛→∞ 𝑤𝑀𝑁

2 𝑥 2

𝑛
= 𝜎2 (for 1 ≪ 𝜆𝑛 ≪ 𝑛)

[S Sridharan Tewari 2010]: 𝑐 ≤ 200,000 log3 𝑛

[Koehler Zhou Southerland S 2021] : at least for Gaussian 𝑥 ∼ 𝒩 𝜇, Σ : 𝑐 = 1

high prob bond on ‖𝑥‖

• Recall Expected Rademacher Complexity of 𝑥 ↦ 𝑤, 𝑥 𝑤 ∈ 𝒲 when 𝑥~𝒩(0, Σ):

ℛ𝑛 𝒲,Σ = 𝔼𝑥1,..,𝑥𝑛∼𝒩 0,Σ ,𝑧1..𝑧𝑛~𝑈𝑛𝑖𝑓(±1) sup
𝑤∈𝒲

1

𝑛

𝑖

𝑧𝑖⟨𝑤, 𝑥𝑖⟩

• Theorem (informal): For any Σ, and any splitting Σ = Σ1 + Σ2 s.t. 𝑟𝑎𝑛𝑘 Σ1 = 𝑜(𝑛), it holds
with high probability that for all 𝑤 ∈ 𝒲

𝐿 𝑤 ≤ 1 + 𝑜 1 𝐿 𝑤 + ℛ𝑛 𝒲,Σ2

2

⇒ sup
𝑤∈𝒲,𝐿 𝑤 =0

𝐿(𝑤) ≤ 1 + 𝑜 1 ℛ𝑛
2 𝒲,Σ2

• Corollary: Since ℛ𝑛 𝑤 2 ≤ 𝐵 , Σ =
𝐵2𝔼 𝑥 2

𝑛
, then w.h.p.

sup
𝑤 ≤𝐵 ,𝐿 𝑤 =0

𝐿(𝑤) ≤ 1 + 𝑜 1
𝐵2𝔼𝑥∼Σ2 𝑥 2

𝑛

➔Establishes consistency in Junk Features model (for 0 < 𝜆𝑛 ≪ 𝑛)

And unlike direct approach: applies also to approx min norm near-interpolators

Benign Overfitting Condition
Following [Bartlett et al 19][Tsigler Bartlett 20]

For 𝑦 = 𝑤∗, 𝑥 +𝒩(0, 𝜎2), 𝑥 ∼ 𝒩 0, Σ

and (w.l.o.g.) 𝑤∗ = 1, Σ = 𝑅
Σ1 0
0 Σ2

𝑅𝑇 (with 𝑅𝑅𝑇 = 𝐼),

If: 𝒓𝒂𝒏𝒌 𝚺𝟏 = 𝒐 𝒏 , 𝒕𝒓 𝚺𝟐 = 𝒐(𝒏), and eff−rank 𝚺𝟐 ≝
𝒕𝒓 𝚺𝟐

𝟐

𝒕𝒓 𝚺𝟐
𝟐 = 𝝎(𝒏)

Then ෝ𝑤𝑀𝑁 = argmin ‖𝑤‖ 𝑠. 𝑡. 𝐿 𝑤 = 0 is consistent: 𝐿 ෝ𝑤𝑀𝑁 → 𝜎2

Recovered from uniform convergence analysis by calculating: ෝ𝑤𝑀𝑁
2 = 1 + 𝑜 1

𝜎2𝑛

𝑡𝑟 Σ2

log 1/𝜆

underfitting

benign overfitting

harmful
overfitting

underfitting

‖ෝ𝑤‖

‖ෝ𝑤‖

signal 𝑥𝑆 junk 𝑥𝐽

𝑤𝑠
∗ 0

𝑑𝑠 𝑑𝐽 = 3000 ≫ 𝑛 = 300

𝜎𝑖 =
1

𝑑
(flat)

Effective rank:

𝑡𝑟 Σ𝐽
2

𝑡𝑟 Σ𝐽
2
=

σ𝑖
1

𝑑

2

σ𝑖
1

𝑑2

= 𝑑

𝜎𝑖 =
1

𝑖2

Effective rank:

𝑡𝑟 Σ𝐽
2

𝑡𝑟 Σ𝐽
2
=

σ𝑖
1

𝑖2

2

σ𝑖
1

𝑖4

=
5

2

≅

≅

log 1/𝜆

underfitting

benign overfitting

harmful
overfitting

underfitting

‖ෝ𝑤‖

‖ෝ𝑤‖

signal 𝑥𝑆 junk 𝑥𝐽

𝑤𝑠
∗ 0

𝑑𝑠 𝑑𝐽 = 3000 ≫ 𝑛 = 300

𝜎𝑖 =
1

𝑑
(flat)

Effective rank:

𝑡𝑟 Σ𝐽
2

𝑡𝑟 Σ𝐽
2
=

σ𝑖
1

𝑑

2

σ𝑖
1

𝑑2

= 𝑑

𝜎𝑖 =
1

𝑖2

Effective rank:

𝑡𝑟 Σ𝐽
2

𝑡𝑟 Σ𝐽
2
=

σ𝑖
1

𝑖2

2

σ𝑖
1

𝑖4

=
5

2

Consistency for all 𝜆 < 𝜆𝑐
(requires 𝐿-attuned

bound, not just 𝐿 = 0)

𝐿(ℎ)

𝜆 → 0 ‖𝑤‖

ERMs

Summary
• What we understand well using old theory:

• Learning with overparametrized models
• Learning improving when dimensionality increasing (since true complexity measure is not

dimensionality)
• Implicit regularization from optimization

• Questions we need to answer:
• What is the implicit bias of the optimization methods we use?
• How does the architecture affect the implicit bias?
• What is the true complexity measure/inductive bias

• What requires rethinking:
• Benign overfitting (interpolation learning in a noisy setting)

• Can we use uniform convergence to understand benign overfitting and
generalization with an implicit inductive bias?
• Maybe…

