
Statistical Learning Theory,
Optimization,

and
Neural Networks

Spencer Frei
(with thanks to Peter Bartlett and Alexander Rakhlin for slides)

UC Berkeley

August 1, 2022

1 / 58

Outline

Introduction

Uniform Laws of Large Numbers

Neural Network Optimization

2 / 58

Outline

Introduction
Setup
Approximation-Estimation Tradeoff

Uniform Laws of Large Numbers

Neural Network Optimization

3 / 58

Statistical Learning Theory

Aim: Predict an outcome y from some set Y of possible outcomes, on
the basis of some observation x from a feature space X .

Use data set of n pairs

S = {(x1, y1), . . . , (xn, yn)}

to choose a function f : X → Y so that, for subsequent (x , y) pairs, f (x)
is a good prediction of y .

“Good” defined in terms of loss function ` : Y × Y → R, e.g.,

I Y = {−1,+1}: `(f (x), y) = I{f (x) 6= y} (0 if equal, 1 otherwise).

I Y = R, might have `(f (x), y) = (f (x)− y)2.

4 / 58

Probabilistic Assumptions

Assume access to samples from unknown distribution:

I There is an (unknown) probability distribution P on X × Y,

I The pairs (X1,Y1), . . . , (Xn,Yn), (X ,Y) are chosen independently
according to P

The aim is to choose f with small risk:

L(f) = E`(f (X),Y).

For instance, in pattern classification, this is the misclassification
probability.

L(f) = L01(f) = EI{f (X) 6= Y } = Pr(f (X) 6= Y).

5 / 58

Key difficulty: our goals are in terms of unknown quantities related to
unknown P. Have to use empirical data instead. Purview of statistics.

For instance, we can calculate the empirical loss of f : X → Y

L̂(f) =
1

n

n∑
i=1

`(Yi , f (Xi))

The hope is that if L̂(f) (‘train error’) is small, so is L(f) = E`(Y , f (X)).

6 / 58

If we use data to construct an estimator f̂n(x) = f̂n(x ;X1,Y2, . . . ,Xn,Yn),

then the function x 7→ f̂n(x) is random, since it depends on the random
data S = (X1,Y1, . . . ,Xn,Yn). Thus, the risk

L(f̂n) = E
[
`(f̂n(X),Y)|S

]
= E

[
`(f̂n(X ;X1,Y1, . . . ,Xn,Yn),Y)|S

]
is a random variable. We might aim for EL(f̂n) small, or L(f̂n) small with
high probability (over the training data).

7 / 58

Competing with the best predictor

The big question: is there a way to construct a learning algorithm with a
guarantee that

L(f̂n)− L(f ∗) = L(f̂n)− inf
f :X→Y measurable

L(f)

is small for large enough sample size n?

Or, more generally, suppose you work with some class of functions F that
we hope captures well the relationship between X and Y (e.g. linear
classifiers, neural networks). Can we guarantee that

L(f̂n)− inf
f∈F

L(f)

is small for large n?

8 / 58

Outline

Introduction
Setup
Approximation-Estimation Tradeoff

Uniform Laws of Large Numbers

Neural Network Optimization

9 / 58

Approximation-Estimation Tradeoff

L(f̂n)− L(f ∗) = L(f̂n)− inf
f∈F

L(f)︸ ︷︷ ︸
Estimation Error

+ inf
f∈F

L(f)− L(f ∗)︸ ︷︷ ︸
Approximation Error

F

f̂n f⇤fF

Clearly, the two terms are at odds with each other:

I Making F larger means smaller approximation error but (as we will
see) larger estimation error

I Taking a larger sample n means smaller estimation error and has no
effect on the approximation error.

We next describe how to characterize the estimation error.

10 / 58

Outline

Introduction

Uniform Laws of Large Numbers
Motivation
VC Dimension
Rademacher Averages
Rademacher Complexity: Structural Results
Uniform Convergence and Benign Overfitting

Neural Network Optimization

11 / 58

Uniform Laws of Large Numbers: Motivation
Consider the performance of empirical risk minimization:

Choose f̂n ∈ F to minimize L̂(f), where L̂ is the empirical risk,

L̂(f) = Pn`(f (X),Y) =
1

n

n∑
i=1

`(f (Xi),Yi).

For pattern classification, this is the proportion of training examples
misclassified.

How does the excess risk, L(f̂n)− L(fF) behave? We can write

L(f̂n)− L(fF) =
[
L(f̂n)− L̂(f̂n)

]
+
[
L̂(f̂n)− L̂(fF)

]
+
[
L̂(fF)− L(fF)

]
Therefore,

EL(f̂n)− L(fF) ≤ E
[
L(f̂n)− L̂(f̂n)

]
because second term is nonpositive and third is zero in expectation .

12 / 58

Uniform Laws of Large Numbers: Motivation

The term L(f̂n)− L̂(f̂n) is not necessarily zero in expectation, since output

on samples f̂n(xi) doesn’t have same distr. as f̂n(x) for test example
(x , y). An easy upper bound is

L(f̂n)− L̂(f̂n) ≤ sup
f∈F

∣∣∣L(f)− L̂(f)
∣∣∣ ,

and this motivates the study of uniform laws of large numbers.

Roadmap: study the sup to

I understand when learning is possible,

I understand implications for sample complexity,

I design new algorithms (regularizer arises from upper bound on sup)

13 / 58

Loss Class

In what follows, we will work with a function class G on Z, and for the
learning application, G = ` ◦ F :

G = {(x , y) 7→ `(f (x), y) : f ∈ F}

and Z = X × Y.

14 / 58

Uniform Laws of Large Numbers

For a class G of functions g : Z → [0, 1], suppose that Z1, . . . ,Zn,Z are
i.i.d. on Z, and consider

U = sup
g∈G

∣∣∣∣∣Eg(Z)− 1

n

n∑
i=1

g(Zi)

∣∣∣∣∣ = sup
g∈G
|Pg − Png | =: ‖P − Pn‖G .

If U converges to 0, this is called a uniform law of large numbers. If this
holds we can show estimation error goes to zero,

L(f̂n)− L̂(f̂n) = E`(f̂n(X);Y)− 1

n

n∑
i=1

`(f̂n(Xi),Yi)

≤ sup
f∈F

∣∣∣∣∣E[`(f (X);Y)]− 1

n

n∑
i=1

`(f (Xi);Yi)

∣∣∣∣∣
= sup

g∈G

∣∣∣∣∣E[g(Z)]− 1

n

n∑
i=1

g(Zi)

∣∣∣∣∣ = ‖P − Pn‖G → 0.

15 / 58

Glivenko-Cantelli Classes

G is a Glivenko-Cantelli class for P if ‖Pn − P‖G P→ 0.

Definition.

I P is a distribution on Z,

I Z1, . . . ,Zn are drawn i.i.d. from P,

I Pn is the empirical distribution (mass 1/n at each of Z1, . . . ,Zn),

I G is a set of measurable real-valued functions on Z with finite
expectation under P,

I Pn − P is an empirical process, that is, a stochastic process
indexed by a class of functions G, and

I ‖Pn − P‖G := supg∈G |Png − Pg |.

16 / 58

Glivenko-Cantelli Classes

Not all G are Glivenko-Cantelli classes. For instance,

G = {I{z ∈ S} : S ⊂ R, |S | <∞} .

Then for a continuous distribution P, Pg = 0 for any g ∈ G, but
supg∈G Png = 1 for all n.

So although Png
as→ Pg for all g ∈ G, this convergence is not uniform

over G. G is too large.

In general, how do we decide whether G is “too large”?

17 / 58

Outline

Introduction

Uniform Laws of Large Numbers
Motivation
VC Dimension
Rademacher Averages
Rademacher Complexity: Structural Results
Uniform Convergence and Benign Overfitting

Neural Network Optimization

18 / 58

Growth Function

For a class F ⊆ {0, 1}X and {x1, . . . , xn} ⊂ X , let

F(xn1) := {(f (x1), . . . , f (xn)) : f ∈ F} ⊂ {0, 1}n.

The growth function is

ΠF (n) = max{|F(xn1)| : x1, . . . , xn ∈ X}

Definition.

I E‖P − Pn‖F = O

(√
log(ΠF (n))

n

)
.

I ΠF (n) ≤ |F|.
I ΠF (n) ≤ 2n.

I If equals 2n, F can fit any possible set of (random!) labels in
{0, 1}n; no useful bound on E‖P − Pn‖F .

19 / 58

Vapnik-Chervonenkis Dimension

A class F ⊆ {0, 1}X shatters {x1, . . . , xd} ⊆ X means that
|F(xd1)| = 2d . The Vapnik-Chervonenkis dimension of F is

dVC (F) = max {d : some x1, . . . , xd ∈ X is shattered by F}
= max

{
d : ΠF (d) = 2d

}
.

Definition.

For n ≥ dVC (F),

E‖P − Pn‖F = O

(√
dVC log(n/dVC)

n

)
.

Theorem (Vapnik-Chervonenkis).

Uniform convergence holds if VC dimension is finite.
20 / 58

VC-Dimension of ReLU Networks

Consider the class F of {−1, 1}-valued functions computed by a
network with L layers, p parameters, and k hidden units with ReLU
activations. Then,

VCdim(F) = Θ̃ (pL) .

Theorem (Bartlett-Harvey-Liaw-Mehrabian’19).

In particular, for n� pL, empirical will be close to population:

E‖P − Pn‖F ≤ Õ

(√
pL log(n/pL)

n

)
.

Of course, in modern neural nets, not always the case that n� pL. Can
we do better?

21 / 58

Outline

Introduction

Uniform Laws of Large Numbers
Motivation
VC Dimension
Rademacher Averages
Rademacher Complexity: Structural Results
Uniform Convergence and Benign Overfitting

Neural Network Optimization

22 / 58

Rademacher Averages
Let εi

i.i.d.∼ Unif({−1,+1}) be ‘random labels’. Conditionally on samples
Z n

1 , measure a predictor g ∈ G’s fit with these random labels:

1

n

n∑
i=1

εig(Zi).

If g fits random labels well: close to 1; if not: on(1).

Given dataset S = (Zi)
n
1

i.i.d.∼ P, the empirical Rademacher complexity
of a function class G is

R̂S(G) := Eε

[
sup
g∈G

1

n

n∑
i=1

εig(Zi)

]
.

If for any εi exists g ∈ G that can fit random labels, then RS(G) = 1.

The Rademacher complexity of G is

R(G) := ESR̂S(G) = ESEε

[
sup
g∈G

1

n

n∑
i=1

εig(Zi)

]
.

23 / 58

Uniform Laws and Rademacher Complexity

For any G,
E‖P − Pn‖G ≤ 2Rn(G)

If G ⊂ [0, 1]Z , then

1

2
Rn(G)−

√
log 2

2n
≤ E‖P − Pn‖G ≤ 2Rn(G),

Thus, Rn(G)→ 0 iff E‖P − Pn‖G → 0.

Theorem.

Thus, uniform convergence over g ∈ G equivalent to Rademacher
complexity is on(1).

24 / 58

Outline

Introduction

Uniform Laws of Large Numbers
Motivation
VC Dimension
Rademacher Averages
Rademacher Complexity: Structural Results
Uniform Convergence and Benign Overfitting

Neural Network Optimization

25 / 58

Rademacher Complexity: Structural Results
There is a ‘Rademacher calculus’ which makes calculating Rademacher
complexity of a function class easier easier.

Subsets F ⊆ G implies R̂n(F) ≤ R̂n(G).

Scaling R̂n(cF) = |c |R̂n(F).

Plus Constant For |g(X)| ≤ 1,
|E‖Rn‖F+g − E‖Rn‖F | ≤

√
2 log 2/n.

Convex Hull R̂n(coF) = ‖Rn‖F , where coF is the convex hull
of F .

Contraction If ` : R× R→ [−1, 1] has ŷ 7→ `(ŷ , y) 1-Lipschitz
for all y , then for ` ◦ F = {(x , y) 7→ `(f (x), y)},
Rn(` ◦ F) ≤ 2Rn(F) + c/

√
n.

Theorem.

26 / 58

Rademacher Complexity of ReLU Networks

Consider L-layer ReLU networks σ(t) = max(0, t) with bounded norm:

FB :=
{
x 7→WLσ(WL−1 · · ·σ(W1x) · · ·), Wk ∈ Rmk×mk−1 ,

m0 = dim(x), mL = 1, mk ∈ N (k 6= 1, L), ‖Wi‖F ≤ B ∀i
}
.

For a training set (X1,Y1), . . . , (Xn,Yn) ∈ X×{±1} with ‖Xi‖ ≤ 1
a.s.,

Rn(FB) ≤ (2B)L√
n
.

Theorem.

Note that the width of the network (maxk mk) does not play a role
here—only the norms.

This means that we do not need number of samples to be larger than the
width of the network provided the norms of the weights are bounded.

27 / 58

Rademacher Complexity of ReLU Networks: Proof Sketch
Consider two-layer f (x) = u>σ(Wx) first. For W> = (w1 · · ·wk), we use

positive homogeneity, i.e. σ(|c |t) = |c |σ(t) :

R̂(FR) =
1

n
Eεi

 sup
‖u‖,‖W‖F≤B

n∑
i=1

εi

n∑
j=1

ujσ(〈wj , xi 〉)

=

1

n
Eεi

 sup
‖u‖,‖W‖F≤B

m∑
j=1

uj‖wj‖2

n∑
i=1

εiσ(〈wj/‖wj‖2, xi 〉)

≤ 1

n
Eεi

 sup
‖u‖,‖W‖F≤B

m∑
j=1

|uj |‖wj‖2

max
j∈[m]

∣∣∣∣∣
n∑

i=1

εiσ(〈wj/‖wj‖2, xi 〉)
∣∣∣∣∣

≤ B2

n
Eεi

[
max
j∈[m]

∣∣∣∣∣
n∑

i=1

εiσ(〈wj/‖wj‖2, xi 〉)
∣∣∣∣∣
]

(Cauchy-Schwarz)

≤ B2

n
Eεi

[
sup
‖w̄‖≤1

∣∣∣∣∣
n∑

i=1

εiσ(〈w̄ , xi 〉)
∣∣∣∣∣
]

(then use contraction, C-S)

28 / 58

Recap

We showed that the excess risk of ERM f̂n can be bounded by

E[L(f̂n)− L̂(f̂n)] = E`(f̂n(x); y)]− 1

n

n∑
i=1

`(f̂n(Xi),Yi)

≤ E‖P − Pn‖G ≤ 2Rn(G).

Rademacher complexity is easier to deal with due to Rademacher
calculus.

For ReLU networks with each layer’s weights bounded by B, we can
guarantee that excess risk is small if n� (2B)2L.

A natural question is whether or not we can truly find the ERM f̂n, since
neural network optimization is non-convex in general. More details on
this in next tutorial.

29 / 58

Outline

Introduction

Uniform Laws of Large Numbers
Motivation
VC Dimension
Rademacher Averages
Rademacher Complexity: Structural Results
Uniform Convergence and Benign Overfitting

Neural Network Optimization

30 / 58

Uniform convergence and benign overfitting

The last slides have focused on trying to establish conditions under which

E[L(f̂n)− L̂(f̂n)] ≤ 2Rn(` ◦ F)
n→∞−→ 0.

We saw that Rademacher complexity of a function class grows as its
ability to fit random labels increases:

R̂n(F) = E
εi

i.i.d.∼ Unif({±1})

[
sup
f∈F

1

n

n∑
i=1

εi f (xi)

]
.

What if we consider a distribution P and hypothesis class F where
L(f) ≥ σ2 > 0 for all f ∈ F , and f̂n is an interpolator : it achieves

L̂(f̂n) = 0. Then f̂n must fit the noise, and R̂n(F) = 1.

Cannot hope for E[L(f̂n)− L̂(f̂n)]→ 0 in this setting! At best, can get

E[L(f̂n)− L̂(f̂n)] = E[L(f̂n)]→ σ2.

31 / 58

Uniform convergence and benign overfitting
Consider the following experiment: you have Gaussian mixture model
data, but you have a ‘noisy’ distribution where every sample has 15%
chance of having a random label. Then train a two-layer network by
gradient descent on this (noisy) data.

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

0.5

0.6

0.7

0.8

0.9

1.0

101 102 103 104 105

step
ac

cu
ra

cy metric
valid_acc
train_acc

n = 100, p = 3500

The neural network achieves 100% training accuracy and simultaneously
optimal test accuracy (85%)—provably so [F.–Chatterji–Bartlett’22].

This seems in conflict with many intuitions developed by uniform

convergence. See: tutorial & talks tomorrow .
32 / 58

Outline

Introduction

Uniform Laws of Large Numbers

Neural Network Optimization
Introduction
Convexity
Non-convexity and Polyak–Lojasiewicz Inequality
Neural Tangent Kernel
Generalizations of PL inequality and beyond NTK

33 / 58

Neural Network Optimization

In the previous slides, we focused on the generalization aspect of neural
networks and identified conditions under which L̂(f̂n) ≈ L(f̂n).

In the remainder, we will discuss approaches for showing L̂(f̂n) is small

when f̂n is a neural network trained by gradient descent.

34 / 58

Outline

Introduction

Uniform Laws of Large Numbers

Neural Network Optimization
Introduction
Convexity
Non-convexity and Polyak–Lojasiewicz Inequality
Neural Tangent Kernel
Generalizations of PL inequality and beyond NTK

35 / 58

Convexity and gradient descent

A differentiable function g : Rd → R is convex if for all w , v ∈ Rd ,

g(w) + 〈∇g(w), v − w〉 ≤ g(v).

If twice-differentiable, convex if ∇2g(w) � 0.

Gradient descent with learning rate η > 0 is,

wt+1 = wt − η∇g(wt).

36 / 58

Convexity and gradient descent

Gradient descent can efficiently find minimizers of smooth convex

functions. For example, consider ‖∇g(w)‖ ≤ L1 . Short proof: let w∗

be a minimizer of g . Then for η ≤ ε/L2
1 ,

‖wt − w∗‖2 − ‖wt+1 − w∗‖2

= 2η 〈∇g(wt),wt − w∗〉 − η2‖∇g(wt)‖2

≥ 2η
[

(g(wt)− g(w∗)) − η L2
1 /2

]
(convexity , smoothness)

≥ 2η
[
g(wt)− g(w∗)− ε/2

]
(η ≤ ε/L2

1).

If g(wt) ≥ g(w∗) + ε, then we get:

‖wt+1 − w∗‖2 ≤ ‖wt − w∗‖2 − ηε.

So, distance from optimal point will decrease until we get optimal value,
thus will eventually get g(wt) ≤ g(w∗) + ε.

37 / 58

Outline

Introduction

Uniform Laws of Large Numbers

Neural Network Optimization
Introduction
Convexity
Non-convexity and Polyak–Lojasiewicz Inequality
Neural Tangent Kernel
Generalizations of PL inequality and beyond NTK

38 / 58

Nonconvexity and gradient descent

In general, if your objective is non-convex but smooth, the best you can
hope for is to find stationary points: ‖∇g(w)‖ ≈ 0.

In some structured non-convex problems, we can guarantee that
‖∇g(w)‖ ≈ 0 implies g(w) ≈ OPT.

39 / 58

Polyak–Lojasiewicz (PL) inequality

A differentiable function g : Rd → R≥0 achieving minimum value
OPT satisfies the PL inequality if there exist α, µ > 0 such that,

for all w , ‖∇g(w)‖α ≥ µ(g(w)− OPT).

Definition.

PL inequality can be satisfied by non-convex functions.

If PL inequality is satisfied and g is smooth, gradient descent drives
‖∇g(wt)‖ → 0 and thus g(wt)→ OPT.

PL inequality appears to unify much of neural network optimization
works [F.-Gu’21, Liu-Zhu-Belkin’21]

40 / 58

Establishing PL inequality for neural networks

0

2

4

6

−2 −1 0 1
x

y

loss

exponential
logistic
zero−one

Consider a classification task (yi ∈ {±1}), training with the exponential
loss (similar analysis for logistic loss):

`(yf (x ;W)) := exp
(
− yf (x ;W)

)
, L̂(W) :=

1

n

n∑
i=1

`(yi f (xi ;W)).

The exponential loss is a convex surrogate for the 0-1 loss (classification
error). If we can minimize this, we get an upper bound for 0-1 loss.
Same idea holds for logistic loss.

41 / 58

Establishing PL inequality for neural networks

PL holds if ∃α, c > 0 s.t. ‖∇L̂(W)‖α ≥ cL̂(W) = c ·1
n

n∑
i=1

`(yi f (xi ;W)).

To show PL, can use variational def’n of norm: for any V , ‖V ‖ ≤ 1,∥∥∥∇L̂(W (t))
∥∥∥ ≥ 〈∇L̂(W (t)),−V 〉

=
1

n

n∑
i=1

−`′(yi f (xi ;W
(t)) · yi 〈∇f (xi ;W

(t)),V 〉

=
1

n

n∑
i=1

`(yi f (xi ;W
(t))) · yi 〈∇f (xi ;W

(t)),V 〉︸ ︷︷ ︸
(∗): ‘gradient margin’

.

If we can show (∗) ≥ c , then we have established PL inequality.

42 / 58

Establishing PL inequalities for neural networks

For any V , ‖V ‖F ≤ 1, we have the lower bound∥∥∥∇L̂(W (t))
∥∥∥ ≥ 1

n

n∑
i=1

`(yi f (xi ;W
(t))) · yi 〈∇f (xi ;W

(t)),V 〉︸ ︷︷ ︸
(∗): ‘gradient margin’

.

The hope is (∗) ≥ c .

In words: can we construct a linear combination of the features (given by
xi 7→ ∇f (xi ;W

(t))) to classify the labels yi well? If so, then PL inequality
holds at time t.

The quantity ∇f (xi ;W
(t)) changes in hard-to-predict ways over time. A

more tractable quantity to understand: ∇f (xi ;W
(0)), where W (0) is

randomly-initialized. Then, at least, if ‖W (t) −W (0)‖ is small, we could
hope that ∇f (xi ;W

(t)) ≈ ∇f (xi ;W
(0)), and then a path forward is to

bound from below

yi 〈∇f (xi ;W
(0)),V 〉

(?)

≥ c .

43 / 58

Outline

Introduction

Uniform Laws of Large Numbers

Neural Network Optimization
Introduction
Convexity
Non-convexity and Polyak–Lojasiewicz Inequality
Neural Tangent Kernel
Generalizations of PL inequality and beyond NTK

44 / 58

Neural Tangent Kernel

For simplicity consider two-layer networks with activation φ:

f (x ;W) =
m∑
j=1

ajφ(〈wj , x〉), aj ∼ Unif({±1/
√
m}), a = (aj) ∈ Rm.

The gradient of f with respect to W is,

∇f (x ;W) = DW
x ax>, DW

x = diag
(
φ′(〈wj , x〉)

)
∈ Rm×m.

Suppose W = W (0) ∈ Rm×d has i.i.d. N(0, 1) entries. Clearly,
∇f (x ;W (0)) is random. We want to understand when we can construct
V> = (v1 v2 . . . vm) s.t.

yi 〈∇f (xi ;W
(0)),V 〉 = yi

m∑
j=1

aj〈vj , xiφ′(〈w (0)
j , xi 〉) 〉

(?)

≥ c .

45 / 58

Neural Tangent Kernel
Can define a (random) function K̂ in terms of ‘features’ of gradient of
network at initialization:

K̂ (x , z) = 〈∇f (x ;W (0)),∇f (z ;W (0))〉
= 〈DW

x ax>,DW
z az>〉

= trace(xa>DW
x DW

z az>)

= 〈x , z〉 · a>DW
x DW

z a>

= 〈x , z〉 · 1

m

m∑
j=1

φ′(〈w (0)
j , x〉)φ′(〈w (0)

j , z〉)

=
1

m

m∑
j=1

〈xφ′(〈w (0)
j , x〉), zφ′(〈w (0)

j , z〉)〉

As the width of the network m→∞, this becomes deterministic.

K̂ (x , z)
m→∞−→ K (x , z) := Ew∼N(0,I)[〈xφ′(〈w , x〉), zφ′(〈w , z〉)〉].

This limiting kernel is the NTK. Extends to different architectures, too.
[Jacot–Gabriel–Hongler’18], [AllenZhu–Li–Song’19], [Arora–Du–Hu–Li–Wang’19], [Du–Zhai–Poczos–Singh’19],

[Zou–Cao–Zhou–Gu’19], and many others 46 / 58

Neural Tangent Kernel
Gradients of network at random init serve as (random) feature
embeddings. These embeddings determine the random kernel
K̂ (x , z) = 〈∇f (x ;W (0)),∇f (z ;W (0))〉, whose ∞-width limit is NTK:

K (x , z) = Ew∼N(0,I)[〈xφ′(〈w , x〉), zφ′(〈w , z〉)〉]

=

∫
〈 xφ′(〈w , x〉) , zφ′(〈w , z〉)〉pN(0,I)(w)dw .

This motivates assumptions like the following [Ji–Telgarsky’20]:

There exists u = u(w) : Rd → {w ∈ Rd : ‖w‖ ≤ 1}, s.t.

∀i , yi
∫
〈xiφ′(〈w , xi 〉) , u(w)〉pN(0,I)(w)dw ≥ γ > 0.

Assumption.

In words: the data can be classified well in infinite-dimensional space

using the ‘tangent features’ ∇φ(〈w , x〉) using weights v(w)p(w)dw .

47 / 58

Optimization with NTK

There exists u = u(w) : Rd → {z ∈ Rd : ‖z‖ ≤ 1}, s.t.

∀i , yi
∫
〈xiφ′(〈w , xi 〉), u(w)〉pN(0,I)(w)dw ≥ γ > 0 .

Assumption.

For m large and w
(0)
j

i.i.d.∼ N(0, I) we have by law of large numbers,

yi ·
1

m

m∑
j=1

〈xiφ′(〈w (0)
j , xi 〉), u(w

(0)
j)〉

≈ yi ·
∫
〈xiφ′(〈w , xi 〉), u(w)〉pN(0,I)(w)dw ≥ γ .

If we let vj := aju(w
(0)
j), using ∇f (x ;W) = Diag

(
φ′(〈wj , x〉)

)
ax>,

yi 〈∇f (xi ;W
(0)),V 〉 =

1

m

m∑
j=1

yi 〈xiφ′(〈w (0)
j , xi 〉), u(w

(0)
j)〉 & γ .

48 / 58

Optimization with NTK

If there exists u = u(w) : Rd → {z ∈ Rd : ‖z‖ ≤ 1}, s.t.

∀i , yi
∫
〈xiφ′(〈w , xi 〉), u(w)〉pN(0,I)(w)dw ≥ γ > 0,

then for m large, there exists ‖V ‖F ≤ 1 s.t. for all i ,

∀i , yi 〈∇f (xi ;W
(0)),V 〉 ≥ γ/2 .

Lemma.

This gives PL inequality when ‖W (t) −W (0)‖ small (‘NTK regime’):∥∥∥∇L̂(W (t))
∥∥∥ ≥ 1

n

n∑
i=1

`(yi f (xi ;W
(t))) · yi 〈∇f (xi ;W

(t)),V 〉

≈ 1

n

n∑
i=1

`(yi f (xi ;W
(t))) · yi 〈∇f (xi ;W

(0)),V 〉

≥ γ

2
· 1

n

n∑
i=1

`(yi f (xi ;W
(t))) =

γ

2
L̂(W (t)).

49 / 58

Limitations of Neural Tangent Kernel
The NTK approximation relies upon the fact that

∇f (xi ;W
(t)) ≈ ∇f (xi ;W

(0)).

This ignores the ability for neural networks to learn data-dependent
features: the weights W (0) do not incorporate any data-dependent
information, which should enable better sample complexity.

NTK seems to be
missing a very key
part of neural net
training in
practice.

Sample complexity scaling laws on variant of CIFAR10, taken from [Vyas–Bansal–Nakkiran’22]
50 / 58

Limitations of Neural Tangent Kernel

A number of works provide explicit separations between what is learnable
with any kernel method (e.g., NTK) and neural networks in the ‘feature
learning regime’ [Yehudai–Shamir’19; AllenZhu–Li’19; Damian–Lee–Soltanolkotabi’22;. . .]

For instance, consider learning a single ReLU neuron from i.i.d. samples,

xi ∼ Unif({x ∈ Rd : ‖x‖ ≤ 1}), yi = max(0, 〈w∗, xi 〉+ b).

Then the NTK cannot efficiently (poly(d)-size weights/random features)
approximate the labels y [Yehudai–Shamir’19], but neural networks in the
‘feature learning’ regime can [Mei–Bai–Montanari’18; Soltanolkotabi’17; Yehudai–Shamir’20;

F.–Cao–Gu’20; . . .].

51 / 58

Optimization without NTK for linearly separable data

Recall the PL inequality idea from before: for f (x ;W) neural net,
`(z) = exp(−z), and for any V , ‖V ‖ ≤ 1,∥∥∥∇L̂(W (t))

∥∥∥ ≥ 〈∇L̂(W (t)),−V 〉

=
1

n

n∑
i=1

`(yi f (xi ;W
(t))) · yi 〈∇f (xi ;W

(t)),V 〉︸ ︷︷ ︸
(∗): ‘gradient margin’

.

Restrict to two-layer nets f (x ;W) = a>φ(Wx) with ‘leaky’ activations,
φ′(z) ≥ α > 0. Then

∇f (xi ;W
(t)) = Diag

(
φ′(〈w (t)

j , xi 〉)
)
ax>, and so

yi 〈∇f (xi ;W
(t)),V 〉 =

m∑
j=1

ajφ
′(〈w (t)

j , xi 〉)〈yixi , vj〉
(?)

≥ c .

52 / 58

Optimization without NTK for linearly separable data
Suppose the data is linearly separable, so ∃u, ‖u‖ ≤ 1, s.t. yi 〈xi , u〉 ≥ γ
for all i . Then let V be the matrix with rows

vj = aju, ‖V ‖2
F =

m∑
j=1

a2
j ‖u‖2 ≤ 1,

and thus

yi 〈∇f (xi ;W
(t)),V 〉 =

m∑
j=1

ajφ
′(〈w (t)

j , xi 〉)〈yixi , vj〉

=
1

m

m∑
j=1

φ′(〈w (t)
j , xi 〉) · yi 〈xi , u〉 (a2

j = 1/m)

≥ α · γ . (φ′(z) ≥ α)

This gives,∥∥∥∇L̂(W (t))
∥∥∥ ≥ 1

n

n∑
i=1

`(yi f (xi ;W
(t))) · yi 〈∇f (xi ;W

(t)),V 〉 ≥ αγ L̂(W (t)).

53 / 58

Outline

Introduction

Uniform Laws of Large Numbers

Neural Network Optimization
Introduction
Convexity
Non-convexity and Polyak–Lojasiewicz Inequality
Neural Tangent Kernel
Generalizations of PL inequality and beyond NTK

54 / 58

Generalizations of the PL inequality

0

2

4

6

−2 −1 0 1
x

y

loss

exponential
logistic
zero−one

For classification problems, we never minimize the 0-1 loss directly, but
instead minimize convex, decreasing, nonnegative surrogates of the 0-1
loss: exponential, logistic loss, hinge loss, sigmoid loss, etc. Key reason:

P(yf (x ;W) < 0) = P(`(yf (x ;W)) > `(0)) ≤ E[`(yf (x ;W))]

`(0)
.

Calculations above relied upon exponential loss satisfying −`′(z) = `(z).
But if ` is convex and decreasing, then −`′(z) is non-negative and
decreasing, so −`′(yf (x ;W)) can also serve as a proxy for the 0-1 loss.

55 / 58

Generalizations of the PL inequality
Suppose we have a convex, non-negative, decreasing `, so −`′ is
non-negative and decreasing. Further suppose we have for all t, there is
some V = V (t) with ‖V ‖ ≤ 1 and

for all i , yi 〈∇f (xi ;W
(t)),V 〉 ≥ c .

If we use variational definition of norm again,∥∥∥∇L̂(W (t))
∥∥∥ ≥ 〈∇L̂(W (t)),−V 〉

=
1

n

n∑
i=1

−`′(yi f (xi ;W
(t))) · yi 〈∇f (xi ;W

(t)),V 〉

≥ c · 1

n

n∑
i=1

−`′(yi f (xi ;W
(t))) =: cĜ (W (t)),

where we have a proxy loss Ĝ (W (t)) := 1
n

∑n
i=1−`′(yi f (xi ;W

(t))), and
have thus established a proxy PL inequality [F.–Gu’21]. Thus stationary
points have small Ĝ (W (t)), and thus small 0-1 loss.

56 / 58

Optimization without NTK?

Understanding optimization without NTK in finite-width neural networks
is a (big) open problem, even for two layer nets.

Via PL-inequality, to show optimization it suffices to show that you can
classify points well using the net’s gradient as features:

Construct V = V (t) s.t. ∀i , yi 〈∇f (xi ;W
(t)),V 〉 ≥ c .

Current approaches generally rely upon considering structured data

distributions D with {(xi , yi)} i.i.d.∼ D, then understanding the types of
features that different neurons in the neural net learn. This gives a
handle on ∇f (xi ;W

(t)).

See, e.g., [AllenZhu–Li’20], [Zou–Cao–Li–Gu’21], [F.–Chatterji–Bartlett’22], [Cao–Belkin–Gu’22], . . .

57 / 58

Some questions we haven’t discussed yet

I “Implicit bias”: there are many neural networks that can achieve
zero training error, thanks to overparameterization.

I Can we differentiate between those minima found by gradient
descent from others?

I What does this mean for generalization?
I How does this depend on architecture?
I What role do regularizers/optimization parameters play here?

I How do we ‘optimally’ choose optimization hyperparameters? Step
size, initialization variance, and how these depend on width, depth,
architecture, . . .

58 / 58

	Introduction
	Setup
	Approximation-Estimation Tradeoff

	Uniform Laws of Large Numbers
	Motivation
	VC Dimension
	Rademacher Averages
	Rademacher Complexity: Structural Results
	Uniform Convergence and Benign Overfitting

	Neural Network Optimization
	Introduction
	Convexity
	Non-convexity and Polyak–Lojasiewicz Inequality
	Neural Tangent Kernel
	Generalizations of PL inequality and beyond NTK

