On the Intersection of a Sparse Curve and a Low-degree Curve: A Polynomial Version of the Lost Theorem

Sébastien Tavenas

Joint work with Pascal Koiran and Natacha Portier

October 15, 2014

Sébastien Tavenas

Sevostyanov's Problem

October 15, 2014 1 / 21

Fundamental theorem of algebra

A complex polynomial P of degree d has exactly d roots counted with multiplicity.

3

- 4 ⊒ →

Fundamental theorem of algebra

A complex polynomial P of degree d has exactly d roots counted with multiplicity.

In the real world?

Fundamental theorem of algebra

A complex polynomial P of degree d has exactly d roots counted with multiplicity.

In the real world?

•
$$f(x) = x^2 - 1$$
 and $g(x) = x^{200} - 1$?

Fundamental theorem of algebra

A complex polynomial P of degree d has exactly d roots counted with multiplicity.

- In the real world?
- $f(x) = x^2 1$ and $g(x) = x^{200} 1$?

Descartes' estimate

If P is a real t-sparse polynomial, then P has at most t - 1 positive roots (counted with multiplicity). So, at most 2t - 1 distinct roots on \mathbb{R} .

In fact Descartes' rule is more precise.

Bézout's Theorem

Bézout's Theorem

The following $n \times n$ system

$$\begin{cases} f_1(x_1,\ldots,x_n)=0\\ \ldots\\ f_n(x_1,\ldots,x_n)=0 \end{cases}$$

has at most $d_1 d_2 \ldots d_n$ nondegenerate complex solutions.

- 34

Bézout's Theorem

Bézout's Theorem

The following $n \times n$ system

$$\begin{cases} f_1(x_1,\ldots,x_n)=0\\ \ldots\\ f_n(x_1,\ldots,x_n)=0 \end{cases}$$

has at most $d_1 d_2 \ldots d_n$ nondegenerate complex solutions.

• Similar result for sparse polynomials and real solutions?

- 20

Bézout's Theorem

Bézout's Theorem

The following $n \times n$ system

$$\begin{cases} f_1(x_1,\ldots,x_n)=0\\ \ldots\\ f_n(x_1,\ldots,x_n)=0 \end{cases}$$

has at most $d_1 d_2 \ldots d_n$ nondegenerate complex solutions.

- Similar result for sparse polynomials and real solutions?
- Kushnirenko's question (1977): bounded by a function $N(t_1, \ldots, t_n)$? What is the optimal bound?

3 × 4 3 ×

An initial case

Sevostyanov's problem (1977)

Let f and g be two real bivariate polynomials. f is of degree d and g is t-sparse. Is the number of distinct isolated real solutions of the system

$$\begin{cases} f(x,y) = 0\\ g(x,y) = 0 \end{cases}$$

bounded by a function N(d, t)? If so, what is this function?

An initial case

Sevostyanov's problem (1977)

Let f and g be two real bivariate polynomials. f is of degree d and g is t-sparse. Is the number of distinct isolated real solutions of the system

$$\begin{cases} f(x,y) = 0\\ g(x,y) = 0 \end{cases}$$

bounded by a function N(d, t)? If so, what is this function?

According to Kushnirenko, Sevostyanov proved the existence of N(d, t) in 1978.

Fewnomial bounds

Theorem (Khovanskii (1983))

System of n equations and n variables with ony n + l + 1 distinct monomials. Then, number of positive real solutions bounded by

 $2^{\binom{l+n}{2}}(n+1)^{l+n}$

Fewnomial bounds

Theorem (Khovanskii (1983))

System of n equations and n variables with ony n + l + 1 distinct monomials. Then, number of positive real solutions bounded by

$$2^{\binom{l+n}{2}}(n+1)^{l+n}$$

In particular,

• Kushnirenko's question: $N(t_1,\ldots,t_n) \leq 2^{\binom{t_1+\ldots+t_n}{2}}(n+1)^{t_1+\ldots+t_n}$

Improvement

Khovanskii's Theorem was improved by Bihan and Sottile.

Theorem (Bihan, Sottile (2007))

System of n equations and n variables with only n + l + 1 distinct monomials. Then, number of positive real solutions bounded by

$$\frac{e^2+3}{4}2\binom{2}{2}n'.$$

Intersection of a trinomial curve with a sparse curve

Theorem (Li, Rojas, Wang (2003))

f(x, y) is a trinomial and g(x, y) is t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $2^t - 2$ real solutions. Intersection of a trinomial curve with a sparse curve

Theorem (Li, Rojas, Wang (2003))

f(x, y) is a trinomial and g(x, y) is t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $2^t - 2$ real solutions.

Theorem (Li, Rojas, Wang (2003))

 f_1, \ldots, f_{n-1} are trinomials. f_n is t-sparse. Then the system $f_1 = \ldots = f_n = 0$ has at most $n + n^2 + \ldots + n^{t-1}$ positive real roots.

Intersection of a trinomial curve with a sparse curve

Theorem (Li, Rojas, Wang (2003))

f(x, y) is a trinomial and g(x, y) is t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $2^t - 2$ real solutions.

Theorem (Li, Rojas, Wang (2003))

 f_1, \ldots, f_{n-1} are trinomials. f_n is t-sparse. Then the system $f_1 = \ldots = f_n = 0$ has at most $n + n^2 + \ldots + n^{t-1}$ positive real roots.

Theorem (Koiran, Portier, T.)

f(x, y) is a trinomial and g(x, y) is t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $\frac{2}{3}t^3 + 5t$ positive real solutions.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二頁 - のへで

Sevostyanov's problem

Theorem (Koiran, Portier, T.)

f(x, y) non-zero polynomial of degree d and g(x, y) t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $O(d^3t + d^2t^3)$ real solutions.

→ < ∃→

Sevostyanov's problem

Theorem (Koiran, Portier, T.)

f(x, y) non-zero polynomial of degree d and g(x, y) t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $O(d^3t + d^2t^3)$ real solutions.

The best previous bound was $d(2+d)^{t+1}2^{\binom{t+1}{2}}$.

글 에 에 글 어

Sevostyanov's problem

Theorem (Koiran, Portier, T.)

f(x, y) non-zero polynomial of degree d and g(x, y) t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $O(d^3t + d^2t^3)$ real solutions.

The best previous bound was $d(2+d)^{t+1}2^{\binom{t+1}{2}}$. The constraint $f \neq 0$ is important.

Theorem

f(x, y) non-zero polynomial of degree d and g(x, y) t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $O(d^3t + d^2t^3)$ real solutions.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Theorem

f(x, y) non-zero polynomial of degree d and g(x, y) t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $O(d^3t + d^2t^3)$ real connected components.

イロト イポト イヨト イヨト 二日

Theorem

f(x, y) non-zero polynomial of degree d and g(x, y) t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $O(d^3t + d^2t^3)$ real connected components.

Theorem

f(x, y) non-zero polynomial of degree d and g(x, y) t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $O(d^3t + d^2t^3)$ real connected components.

Lemma

f(x, y) non-zero polynomial of degree d and g(x, y) t-sparse. Assume that:

- f irreducible in $\mathbb{C}[X, Y]$
- and finite number of solutions.

Then the system f(x, y) = g(x, y) = 0 has at most $O(d^3t + d^2t^3)$ distinct real solutions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Hypothesis

- finite number of solutions
- and f irreducible in $\mathbb{C}[X, Y]$.

< 行い

Hypothesis

- finite number of solutions
- and f irreducible in $\mathbb{C}[X, Y]$.
- If the number of solutions is infinite then f divides g. $\Rightarrow d(2d-1)$ connected components.

Hypothesis

- finite number of solutions
- and f irreducible in $\mathbb{C}[X, Y]$.
- If the number of solutions is infinite then f divides g. $\Rightarrow d(2d-1)$ connected components.
- Irreducibility of f.

Hypothesis

- finite number of solutions
- and f irreducible in $\mathbb{C}[X, Y]$.
- If the number of solutions is infinite then f divides g. $\Rightarrow d(2d-1)$ connected components.
- Irreducibility of f.

•
$$f = f_1 f_2 \dots f_k$$

$$\bigcup_{i} \text{ solutions of } \begin{cases} f_i = 0 \\ g = 0 \end{cases}$$

э

Outline of the proof

Lemma

f(x, y) irreducible polynomial of degree d and g(x, y) t-sparse. Then if the system f(x, y) = g(x, y) = 0 has a finite number of real solutions, it is at most $O(d^3t + d^2t^3)$ solutions.

Outline of the proof

Lemma

f(x, y) irreducible polynomial of degree d and g(x, y) t-sparse. Then if the system f(x, y) = g(x, y) = 0 has a finite number of real solutions, it is at most $O(d^3t + d^2t^3)$ solutions.

• Rewrite f(x, y) = 0 as y = h(x) (*h* nice). To bound the number of roots of $g(x, (h(x))) = \sum^{k} a_{i} x^{\alpha_{i}} h(x)^{\beta_{i}}$.

Outline of the proof

Lemma

f(x, y) irreducible polynomial of degree d and g(x, y) t-sparse. Then if the system f(x, y) = g(x, y) = 0 has a finite number of real solutions, it is at most $O(d^3t + d^2t^3)$ solutions.

- Rewrite f(x, y) = 0 as y = h(x) (*h* nice). To bound the number of roots of $g(x, (h(x))) = \sum^{k} a_{i} x^{\alpha_{i}} h(x)^{\beta_{i}}$.
- 2 To bound the number of roots of a sum.

• Solutions of f(x, y) = 0.

Image: A matrix

• Solutions of f(x, y) = 0.

Sébastien Tavenas

Sevostyanov's Problem

October 15, 2014

∃ →

< A

э

• Solutions of f(x, y) = 0.

Sébastien Tavenas

October 15, 2014

• Solutions of f(x, y) = 0.

Sébastien Tavenas

October 15, 2014

• Solutions of f(x, y) = 0.

Sébastien Tavenas

October 15, 2014

To bound the number of roots of a sum

To bound the number of roots of

$$g(x,h(x))=\sum_{i=1}^t a_i x^{\alpha_i} h(x)^{\beta_i}.$$

< A

To bound the number of roots of a sum

To bound the number of roots of

$$g(x,h(x)) = \sum_{i=1}^{t} a_i x^{\alpha_i} h(x)^{\beta_i}.$$

We will use the Wronskian.

• Pólya, Szegö (1925) used it for proving Descartes' rule.

< A

- Pólya, Szegö (1925) used it for proving Descartes' rule.
- Some connections with the number of roots of a sum already known by Voorhoeve and van der Poorten (1975).

- Pólya, Szegö (1925) used it for proving Descartes' rule.
- Some connections with the number of roots of a sum already known by Voorhoeve and van der Poorten (1975).

Definition: Let $f_1, \ldots, f_k \in C^{k-1}(I)$ with $I \subseteq \mathbb{R}$. The *Wronskian* of the family is the determinant of the matrix:

$$W(f_1, \dots, f_k) = \det \begin{bmatrix} f_1 & f_2 & \dots & f_k \\ f'_1 & f'_2 & \dots & f'_k \\ \vdots & \vdots & & \vdots \\ f_1^{(k-1)} & f_2^{(k-1)} & \dots & f_k^{(k-1)} \end{bmatrix}$$

- Pólya, Szegö (1925) used it for proving Descartes' rule.
- Some connections with the number of roots of a sum already known by Voorhoeve and van der Poorten (1975).

Definition: Let $f_1, \ldots, f_k \in C^{k-1}(I)$ with $I \subseteq \mathbb{R}$. The *Wronskian* of the family is the determinant of the matrix:

$$W(f_1, \dots, f_k) = \det \begin{bmatrix} f_1 & f_2 & \dots & f_k \\ f'_1 & f'_2 & \dots & f'_k \\ \vdots & \vdots & & \vdots \\ f_1^{(k-1)} & f_2^{(k-1)} & \dots & f_k^{(k-1)} \end{bmatrix}$$

• Idea: upper bound the number of roots of a sum by the number of roots of some particular Wronskians.

Lemma

Let I be a real interval. If $W(f_1), W(f_1, f_2), \ldots, W(f_1, f_2, \ldots, f_k)$ have no zero on I, then $Z_I(f_1 + \ldots + f_k) \leq k - 1$.

Lemma

Let I be a real interval. If $W(f_1), W(f_1, f_2), \ldots, W(f_1, f_2, \ldots, f_k)$ have no zero on I, then $Z_I(f_1 + \ldots + f_k) \leq k - 1$.

• $f_1 + f_2 =$

Lemma

Let I be a real interval. If $W(f_1), W(f_1, f_2), \ldots, W(f_1, f_2, \ldots, f_k)$ have no zero on I, then $Z_I(f_1 + \ldots + f_k) \leq k - 1$.

•
$$f_1 + f_2 = f_1 \left(1 + \frac{f_2}{f_1} \right)$$

不得入 不良入 不良入 一度

Lemma

Let I be a real interval. If $W(f_1), W(f_1, f_2), \ldots, W(f_1, f_2, \ldots, f_k)$ have no zero on I, then $Z_I(f_1 + \ldots + f_k) \le k - 1$.

•
$$f_1 + f_2 = f_1 \left(1 + \frac{f_2}{f_1} \right)$$

 $\left(1 + \frac{f_2}{f_1} \right)' = \frac{W(f_1, f_2)}{f_1^2}$

/

Lemma

Let I be a real interval. If $W(f_1), W(f_1, f_2), \ldots, W(f_1, f_2, \ldots, f_k)$ have no zero on I, then $Z_I(f_1 + \ldots + f_k) \leq k - 1$.

•
$$f_1 + f_2 = f_1 \left(1 + \frac{f_2}{f_1} \right)$$

 $\left(1 + \frac{f_2}{f_1} \right)' = \frac{W(f_1, f_2)}{f_1^2}$

•
$$f_1 + f_2 + \ldots + f_p = f_1 \left(1 + \frac{f_2}{f_1} + \ldots + \frac{f_p}{f_1} \right)$$

`

/

`

Lemma

Let I be a real interval. If $W(f_1), W(f_1, f_2), \ldots, W(f_1, f_2, \ldots, f_k)$ have no zero on I, then $Z_I(f_1 + \ldots + f_k) \le k - 1$.

•
$$f_1 + f_2 = f_1 \left(1 + \frac{f_2}{f_1} \right)$$

 $\left(1 + \frac{f_2}{f_1} \right)' = \frac{W(f_1, f_2)}{f_1^2}$
• $f_1 + f_2 + \ldots + f_p = f_1 \left(1 + \frac{f_2}{f_1} + \ldots + \frac{f_p}{f_1} \right)$
 $W \left(\left(\left(\frac{f_2}{f_1} \right)', \ldots, \left(\frac{f_q}{f_1} \right)' \right) = \left(\frac{1}{f_1} \right)^p W(f_1, \ldots, f_q).$

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

Theorem (Koiran, Portier, T.)

$$Z(f_1 + \ldots + f_k) \le k - 1 + 2\sum_{j=1}^{k-2} Z(W(f_1, \ldots, f_j))$$

Sébastien Tavenas

Sevostyanov's Problem

October 15, 2014

3

16 / 21

(日) (同) (三) (三)

What remains to be done

Theorem

f(x, y) polynomial of degree d and g(x, y) t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $O(d^3t + d^2t^3)$ real solutions.

< 47 > <

3

What remains to be done

Theorem

f(x, y) polynomial of degree d and g(x, y) t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $O(d^3t + d^2t^3)$ real solutions.

 We have rewritten f(x, y) = 0 as y = h(x) (h nice). We have bounded the number of roots of g(x, h(x)) = ∑^t a_ix^{α_i}h(x)^{β_i}.

What remains to be done

Theorem

f(x, y) polynomial of degree d and g(x, y) t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $O(d^3t + d^2t^3)$ real solutions.

- We have rewritten f(x, y) = 0 as y = h(x) (h nice). We have bounded the number of roots of g(x, h(x)) = ∑^t a_ix^{α_i}h(x)^{β_i}.
- **2** To bound the number of roots of $W_s = W(a_1 x^{\alpha_1} h^{\beta_1}(x), \dots, a_s x^{\alpha_s} h^{\beta_s}(x)).$

Bounds for W_3

$$\det \begin{bmatrix} x^{\alpha_1} h^{\beta_1} & x^{\alpha_2} h^{\beta_2} & x^{\alpha_3} h^{\beta_3} \\ (x^{\alpha_1} h^{\beta_1})' & (x^{\alpha_2} h^{\beta_2})' & (x^{\alpha_3} h^{\beta_3})' \\ (x^{\alpha_1} h^{\beta_1})'' & (x^{\alpha_2} h^{\beta_2})'' & (x^{\alpha_3} h^{\beta_3})'' \end{bmatrix}$$

Ξ.

イロン 不聞と 不同と 不同と

Bounds for W_3

$$\det \begin{bmatrix} x^{\alpha_1} h^{\beta_1} & x^{\alpha_2} h^{\beta_2} & x^{\alpha_3} h^{\beta_3} \\ (x^{\alpha_1} h^{\beta_1})' & (x^{\alpha_2} h^{\beta_2})' & (x^{\alpha_3} h^{\beta_3})' \\ (x^{\alpha_1} h^{\beta_1})'' & (x^{\alpha_2} h^{\beta_2})'' & (x^{\alpha_3} h^{\beta_3})'' \end{bmatrix}$$

$$\det \begin{bmatrix} x^{\alpha_1} h^{\beta_1} & x^{\alpha_2} h^{\beta_2} & x^{\alpha_3} h^{\beta_3} \\ \left(x^{\alpha_1 - 1} h^{\beta_1 - 1}\right) \left(\alpha_1 h + \beta_1 x h'\right) & \dots & \dots \\ \left(x^{\alpha_1 - 2} h^{\beta_1 - 2}\right) \left(P_2(x, h, h', h'')\right) & \dots & \dots \end{bmatrix}$$

Sébastien Tavenas

Sevostyanov's Problem

October 15, 2014

Ξ.

18 / 21

イロン 不聞と 不同と 不同と

Bounds for W_3

$$\det \begin{bmatrix} x^{\alpha_1} h^{\beta_1} & x^{\alpha_2} h^{\beta_2} & x^{\alpha_3} h^{\beta_3} \\ (x^{\alpha_1} h^{\beta_1})' & (x^{\alpha_2} h^{\beta_2})' & (x^{\alpha_3} h^{\beta_3})' \\ (x^{\alpha_1} h^{\beta_1})'' & (x^{\alpha_2} h^{\beta_2})'' & (x^{\alpha_3} h^{\beta_3})'' \end{bmatrix}$$

$$\det \begin{bmatrix} x^{\alpha_1} h^{\beta_1} & x^{\alpha_2} h^{\beta_2} & x^{\alpha_3} h^{\beta_3} \\ \left(x^{\alpha_1 - 1} h^{\beta_1 - 1}\right) \left(\alpha_1 h + \beta_1 x h'\right) & \dots & \dots \\ \left(x^{\alpha_1 - 2} h^{\beta_1 - 2}\right) \left(P_2(x, h, h', h'')\right) & \dots & \dots \end{bmatrix}$$

$$x^{\alpha_1+\alpha_2+\alpha_3-6}h^{\beta_1+\beta_2+\beta_3-6}\det\begin{bmatrix}x^2h^2 & x^2h^2 & x^2h^2\\xh(\alpha_1h+\beta_1xh') & \dots & \dots\\P_2(x,h,h',h'') & \dots & \dots\end{bmatrix}$$

Sébastien Tavenas

October 15, 2014

Ξ.

18 / 21

イロン 不聞と 不同と 不同と

Consequently

Theorem

f(x, y) non-zero polynomial of degree d and g(x, y) t-sparse. Then the system f(x, y) = g(x, y) = 0 has at most $O(d^3t + d^2t^3)$ real connected components.

< 4 ₽ > <

• Generalisations of Sevostyanov's problem

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Generalisations of Sevostyanov's problem

•
$$f_1 = \ldots = f_n = g = 0$$
 (f_i dense, g sparse)

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Generalisations of Sevostyanov's problem

• $f_1 = \ldots = f_n = g = 0$ (f_i dense, g sparse) (almost done)

• Generalisations of Sevostyanov's problem

•
$$f_1 = \ldots = f_n = g = 0$$
 (f_i dense, g sparse) (almost done)

•
$$f = g = 0$$
 (f and g sparse)

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Generalisations of Sevostyanov's problem
 - $f_1 = \ldots = f_n = g = 0$ (f_i dense, g sparse) (almost done)
 - f = g = 0 (f and g sparse)
 - Algorithms for detecting/counting/isolating the real solutions?

< 67 ▶

3

- Generalisations of Sevostyanov's problem
 - $f_1 = \ldots = f_n = g = 0$ (f_i dense, g sparse) (almost done)
 - f = g = 0 (f and g sparse)
 - Algorithms for detecting/counting/isolating the real solutions?
- Real τ -conjecture (one motivation)

There exists c such that the univariate polynomial $\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i,j}$ (with $f_{i,j}$ t-sparse) has at most $(m + k + t)^{c}$ real roots.

- Generalisations of Sevostyanov's problem
 - $f_1 = \ldots = f_n = g = 0$ (f_i dense, g sparse) (almost done)
 - f = g = 0 (f and g sparse)
 - Algorithms for detecting/counting/isolating the real solutions?
- Real τ -conjecture (one motivation)

There exists c such that the univariate polynomial $\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i,j}$ (with $f_{i,j}$ t-sparse) has at most $(m + k + t)^{c}$ real roots.

This conjecture implies lower bounds on the size of the arithmetic circuits for the permanent.

- Generalisations of Sevostyanov's problem
 - $f_1 = \ldots = f_n = g = 0$ (f_i dense, g sparse) (almost done)
 - f = g = 0 (f and g sparse)
 - Algorithms for detecting/counting/isolating the real solutions?
- Real τ -conjecture (one motivation)

There exists c such that the univariate polynomial $\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i,j}$ (with $f_{i,j}$ t-sparse) has at most $(m + k + t)^{c}$ real roots.

This conjecture implies lower bounds on the size of the arithmetic circuits for the permanent.

• If you want to play:

- Generalisations of Sevostyanov's problem
 - $f_1 = \ldots = f_n = g = 0$ (f_i dense, g sparse) (almost done)
 - f = g = 0 (f and g sparse)
 - Algorithms for detecting/counting/isolating the real solutions?
- Real τ -conjecture (one motivation)

There exists c such that the univariate polynomial $\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i,j}$ (with $f_{i,j}$ t-sparse) has at most $(m + k + t)^{c}$ real roots.

This conjecture implies lower bounds on the size of the arithmetic circuits for the permanent.

• If you want to play:

$$f,g$$
 t-sparse $2t-1$ real roots

- Generalisations of Sevostyanov's problem
 - $f_1 = \ldots = f_n = g = 0$ (f_i dense, g sparse) (almost done)
 - f = g = 0 (f and g sparse)
 - Algorithms for detecting/counting/isolating the real solutions?
- Real τ -conjecture (one motivation)

There exists c such that the univariate polynomial $\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i,j}$ (with $f_{i,j}$ t-sparse) has at most $(m + k + t)^{c}$ real roots.

This conjecture implies lower bounds on the size of the arithmetic circuits for the permanent.

• If you want to play:

 $\begin{array}{lll} f,g & t\mbox{-sparse} & 2t-1 \mbox{ real roots} \\ fg & 4t-3 \mbox{ real roots} \end{array}$

- Generalisations of Sevostyanov's problem
 - $f_1 = \ldots = f_n = g = 0$ (f_i dense, g sparse) (almost done)
 - f = g = 0 (f and g sparse)
 - Algorithms for detecting/counting/isolating the real solutions?
- Real τ -conjecture (one motivation)

There exists c such that the univariate polynomial $\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i,j}$ (with $f_{i,j}$ t-sparse) has at most $(m + k + t)^{c}$ real roots.

This conjecture implies lower bounds on the size of the arithmetic circuits for the permanent.

• If you want to play:

- Generalisations of Sevostyanov's problem
 - $f_1 = \ldots = f_n = g = 0$ (f_i dense, g sparse) (almost done)
 - f = g = 0 (f and g sparse)
 - Algorithms for detecting/counting/isolating the real solutions?
- Real τ -conjecture (one motivation)

There exists c such that the univariate polynomial $\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i,j}$ (with $f_{i,j}$ t-sparse) has at most $(m + k + t)^{c}$ real roots.

This conjecture implies lower bounds on the size of the arithmetic circuits for the permanent.

• If you want to play:

 $\begin{array}{lll} f,g & t\mbox{-sparse} & 2t-1 \mbox{ real roots} \\ fg & 4t-3 \mbox{ real roots} \\ fg+1 & \leq 2t^2-1 \end{array}$

3

- Generalisations of Sevostyanov's problem
 - $f_1 = \ldots = f_n = g = 0$ (f_i dense, g sparse) (almost done)
 - f = g = 0 (f and g sparse)
 - Algorithms for detecting/counting/isolating the real solutions?
- Real τ -conjecture (one motivation)

There exists c such that the univariate polynomial $\sum_{i=1}^{k} \prod_{j=1}^{m} f_{i,j}$ (with $f_{i,j}$ t-sparse) has at most $(m + k + t)^{c}$ real roots.

This conjecture implies lower bounds on the size of the arithmetic circuits for the permanent.

• If you want to play:

 $\begin{array}{lll} f,g & t\mbox{-sparse} & 2t-1 \mbox{ real roots} \\ fg & 4t-3 \mbox{ real roots} \\ fg+1 & O(t)? \end{array}$

Thank you!

50	haction	L DV/AD DC
26	Dastiell	lavenas

æ

イロト イヨト イヨト イヨト