Real Algebraic Geometry in Computational Game Theory Peter Bro Miltersen Aarhus University ctic.au.dk Solving Polynomial Equations, Berkeley, 15/10/14 ## Computational Game Theory - Input: Description of game. - Output: Solution to game. - Find value/minimax strategy - Find Nash equilibrium **—** ## R.A.G. in ``pure´´ game theory - Long history - Classics in the theory of stochastic games: - Truman Bewley and Elon Kohlberg. The asymptotic theory of stochastic games. Mathematics of Operations Research, 1:197-208, 1976. - J.F. Mertens and A. Neyman. Stochastic games. Int. J. of Game Theory, pages 53-66, 1981. - Emanuel Milman. The Semi-Algebraic Theory of Stochastic Games. Mathematics of Operations Research 27:2, 401-418, 2002. - A. Neyman. Real Algebraic tools in Stochastic Games. Stochastic Games and Applications. NATO Science Series Volume 570, 2003, pp 57-75 - Often relies on ``crude´´ tools (e.g. Tarski Transfer Principle) - Slogan of this talk: In the computational setting, fine tack are advantageous. ## Recent papers - Kristoffer Arnsfelt Hansen, Michal Koucký, and Peter Bro Miltersen. Winning concurrent reachability games requires doubly exponential patience. In *Proceedings of LICS'09*, pages 332–341. - Kristoffer Arnsfelt Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. The complexity of solving reachability games using value and strategy iteration. In *Proceedings of CSR'11*, volume 6651 of LNCS, pages 77–90. - Kristoffer Arnsfelt Hansen, Michal Koucký, Niels Lauritzen, Peter Bro Miltersen, and Elias P. Tsigaridas. Exact algorithms for solving stochastic games. In Proceedings of STOC'11, pages 205–214. - Søren Kristoffer Stiil Frederiksen and Peter Bro Miltersen. **Approximating the value of a concurrent reachability game in the polynomial time hierarchy**. In *Proceedings of ISAAC'13*, volume 8283 of LNCS, pages 457–467. - Søren Kristoffer Stiil Frederiksen and Peter Bro Miltersen. **Monomial strategies for concurrent reachability games and other stochastic games**. In *Proceedings of RP'13*, volume 8169 of LNCS, pages 122–134. - Kousha Etessami, Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, Troels Bjerre Sørensen. **The complexity of approximating a trembling hand perfect equilibrium of a multi-player game in strategic form**. In *Proceedings of SAGT'14*, volume 8768 of Lecture Notes in Computer Science, volume 8768, pages 231-243, 2014. ## Today: Just one example - Computing the value of a concurrent reachability game. - Worst case time complexity analysis of Strategy iteration algorithm. - [HKM'09, HKLMT'11, HIM'11] - Algorithm does not rely on R.A.G. - Quantitative but *not* algorithmic R.A.G. needed. ### R.A.G. engine: The Sampling Theorem Theorem 13.10. Let \mathcal{P} be a set of s polynomials each of degree at most d in k variables with coefficients in a real closed field R. Let D be the ring generated by the coefficients of \mathcal{P} . There is an algorithm that computes a set of $2\sum_{j\leq k}\binom{s}{j}4^j(2d+6)(2d+5)^{k-1}$ points meeting every semi-algebraically connected component of the realization of every realizable sign condition on \mathcal{P} in $R(\varepsilon, \delta)^k$, described by univariate representations of degree bounded by $$(2d+6)(2d+5)^{k-1}$$. The algorithm has complexity $\sum_{j \leq k} {s \choose j} 4^j d^{O(k)} = s^k d^{O(k)}$ in D. There is also an algorithm computing the signs of all the polynomials in \mathcal{P} at each of these points with complexity $s \sum_{j \leq k} {s \choose j} 4^j d^{O(k)} = s^{k+1} d^{O(k)}$ in D. If the polynomials in \mathcal{P} have coefficients in \mathbb{Z} of bitsize at most τ , the bitsize of the coefficients of these univariate representations is bounded by $\tau d^{O(k)}$. If a sign condition is realizable, then it is realized by a point of "low algebraic complexity". Row player wants pebble to reach GOAL ## Values and Near-Optimal Strategies (Everett'57) • Each position i in a CRG has a value v_i so that ``` v_i = \min_{\text{stationary } x} \max_{\text{general } x} \mu_i(x,y) = \sup_{\text{stationary } x} \min_{\text{general } y} \mu_i(x,y) ``` where $\mu_i(\mathbf{x}, \mathbf{y})$ is the probability of reaching GOAL when row player plays by strategy \mathbf{x} and column player plays by strategy \mathbf{y} . ## Howard's algorithm (1960) (aka policy iteration, policy improvement, strategy iteration/improvement) Basic algorithm for online, sequential decision making in face of uncertainty ## Howard's algorithm for CRGs Chatterjee, de Alfaro, Henzinger '06, Etessami and Yannakakis '06 ``` 1: t := 1 2: x^1 := the uniform distribution at each position 3: while true do y^t := \text{an optimal } best \ reply \ \text{to} \ x^t; \ \text{Solve Markov} for i \in \{0, 1, 2, \dots, N, N + 1\} do Decision Process v_i^t := \mu_i(x^t, y^t) end for 8: t := t + 1 for i \in \{1, 2, ..., N\} do if \operatorname{val}(A_i(v^{t-1})) > v_i^{t-1} then 10: x_i^t := \operatorname{maximin}(A_i(v^{t-1})) Solve matrix game 11: 12: else x_i^t := x_i^{t-1} 13: end if 14: end for 15: 16: end while ``` ## **Properties** - The valuations v_i^t converge to the values v_i (from below). - The strategies x^t guarantee the valuations v_i^t for row player. What is the number of iterations required to guarantee a good approximation? #### Main theorem For all games with N positions and m actions for each player in each position, $(1/\epsilon)^{m^{O(N)}}$ iterations is sufficient to arrive at ϵ -optimal strategy. *N* = Number of positions m = dimension of (largest) matrix ## Step 1: Reduction to analysis of value iteration We can relate the valuations computed by strategy iteration to the valuations computed by value iteration. $\tilde{v}_i^t \leq v_i^t \leq v_i$ Actual values Valuations computed by value iteration Valuations computed by strategy iteration ## Value iteration (dynamic programming) ``` 1: t := 0 2: \tilde{v}^0 := (0, 0, ..., 1) {the vector \tilde{v}^0 is indexed 0, 1, ..., N, N + 1} 3: while true do 4: t := t + 1 5: \tilde{v}_0^t := 0 6: \tilde{v}_{N+1}^t := 1 7: for i \in \{1, 2, ..., N\} do 8: \tilde{v}_i^t := \text{val}(A_i(\tilde{v}^{t-1})) 9: end for 10: end while ``` Value iteration computes the value of a time bounded game, for larger and larger values of the time bound *t*, by *backward induction*. ## Step 2: Reduction to bounding patience - We need to upper bound the difference in value between time bounded and infinite versions of the game. - The difference in value between a time bounded and the infinite version of a concurrent reachability game is captured by the *patience* of its stationary near-optimal strategies. - Patience = 1/smallest non-zero probability used - Lemma: If the game has an \mathcal{E} -optimal strategy with patience L, then for $T = kNL \uparrow N$, the value of the game with time bound T differs from the value of the original game by at most $$\mathcal{E}+e\hat{1}-k$$. ## Step 3: Bounding patience using R.A.G. #### Everett's characterization (1957) of value and near-optimal strategies: Given valuations v_1, \ldots, v_N for the positions and a given position k we define $A^k(v)$ to be the $m_k \times n_k$ matrix game where entry (i,j) is $s_{ij}^k b_{ij}^k + \sum_{l=1}^N p_{ij}^{kl} v_l$. The value mapping operator $M: \mathbb{R}^N \to \mathbb{R}^N$ is then defined by $M(v) = (\operatorname{val}(A^1(v)), \ldots, \operatorname{val}(A^N(v)))$. Define relations \succeq and \preceq on \mathbb{R}^N as follows: $$\begin{aligned} u &\succcurlyeq v \quad \text{if and only if} \quad \begin{cases} u_i > v_i & \text{if } v_i > 0 \\ u_i \geq v_i & \text{if } v_i \leq 0 \end{cases}, \quad \text{for all } i \ . \\ u &\preccurlyeq v \quad \text{if and only if} \quad \begin{cases} u_i < v_i & \text{if } v_i < 0 \\ u_i \leq v_i & \text{if } v_i \geq 0 \end{cases}, \quad \text{for all } i \ . \end{aligned}$$ Next, we define the regions $C_1(\Gamma)$ and $C_2(\Gamma)$ as follows: $$C_1(\Gamma) = \{v \in \mathbb{R}^N \mid M(v) \succcurlyeq v\},$$ $C_2(\Gamma) = \{v \in \mathbb{R}^N \mid M(v) \preccurlyeq v\}.$ A critical vector of the game is a vector v such that $v \in \overline{C_1(\Gamma)} \cap \overline{C_2(\Gamma)}$. That is, for every $\epsilon > 0$ there exists vectors $v_1 \in C_1(\Gamma)$ and $v_2 \in C_2(\Gamma)$ such that $||v - v_1||_2 \le \epsilon$ and $||v - v_2||_2 \le \epsilon$. The following theorem of Everett characterizes the value of an Everett game and exhibits nearoptimal strategies. **Theorem 5** (Everett). There exists a unique critical vector v for the value mapping M, and this is the value vector of Γ . Furthermore, v is a fixed point of the value mapping, and if $v_1 \in C_1(\Gamma)$ and $v_2 \in C_2(\Gamma)$ then $v_1 \leq v \leq v_2$. Let $v_1 \in C_1(\Gamma)$. Let x be the stationary strategy for player I, where in position k an optimal strategy in the matrix game $A^k(v_1)$ is played. Then for any k, starting play in position k, the strategy x guarantees expected payoff at least $v_{1,k}$ for player I. The analogous statement holds for $v_2 \in C_2(\Gamma)$ and Player II. ## Step 3: Bounding patience using R.A.G. Applying the fundamental theorem of linear programming and Cramer's rule: Now we can rewrite the predicate $val(A^k(v_1)) > v_{1k}$ to the following expression: $\forall_{B^k}((v_1 \in F_{B^k}^{A^k+} \land \det((M_{B^k}^{A^k(v_1)})_{m_k+1}) > v_{1k} \det(M_{B^k}^{A^k(v_1)}))) \lor ((v_1 \in F_{B^k}^{A^k-} \land \det((M_{B^k}^{A^k(v_1)})_{m_k+1}) < v_{1k} \det(M_{B^k}^{A^k(v_1)})))$, where the disjunction is over all potential basis sets, and each of the expressions $v_1 \in F_{B^k}^{A^k+}$ and $v_1 \in F_{B^k}^{A^k-}$ are shorthands for the conjunction of the m_k+1 polynomial inequalities describing the corresponding sets. **Lemma 40.** There is a quantifier free formula with 2N free variables v_1 and v_2 that expresses $v_1 \in C_1(\Gamma), v_2 \in C_2(\Gamma), \text{ and } ||v_1 - v_2||^2 \le 2^{-\sigma}.$ The formula uses at most $(2N+1) + 2(m+2) \sum_{k=1}^{N} {n_k + m_k \choose m_k}$ different polynomials, each of degree at most m+2 and having coefficients of bitsize at most $\max(\sigma, 2(N+1)(m+2))$ ## Step 3: Bounding patience using R.A.G. **Lemma 40.** There is a quantifier free formula with 2N free variables v_1 and v_2 that expresses $v_1 \in C_1(\Gamma), v_2 \in C_2(\Gamma), \text{ and } ||v_1 - v_2||^2 \leq 2^{-\sigma}.$ The formula uses at most $(2N+1)+2(m+2)\sum_{k=1}^{N}\binom{n_k+m_k}{m_k}$ different polynomials, each of degree at most m+2 and having coefficients of bitsize at most $\max(\sigma, 2(N+1)(m+2))$ **Theorem 13.10.** Let \mathcal{P} be a set of s polynomials each of degree at most d in k variables with coefficients in a real closed field R. Let D be the ring generated by the coefficients of \mathcal{P} . There is an algorithm that computes a set of $2\sum_{j\leq k}\binom{s}{j}4^{j}(2d+6)(2d+5)^{k-1}$ points meeting every semi-algebraically connected component of the realization of every realizable sign condition on \mathcal{P} in $R\langle \varepsilon, \delta \rangle^k$, described by univariate representations of degree bounded by $$(2d+6)(2d+5)^{k-1}$$. The algorithm has complexity $\sum_{j \leq k} \binom{s}{j} 4^j d^{O(k)} = s^k d^{O(k)}$ in D. There is also an algorithm computing the signs of all the polynomials in \mathcal{P} at each of these points with complexity $s \sum_{j < k} \binom{s}{j} 4^j d^{O(k)} = s^{k+1} d^{O(k)}$ in D. If the polynomials in \mathcal{P} have coefficients in \mathbb{Z} of bitsize at most τ , the bitsize of the coefficients of these univariate representations is bounded by $\tau d^{O(k)}$. **Theorem 5** (Everett). There exists a unique critical vector v for the value mapping M, and this is the value vector of Γ . Furthermore, v is a fixed point of the value mapping, and if $v_1 \in C_1(\Gamma)$ and $v_2 \in C_2(\Gamma)$ then $v_1 \leq v \leq v_2$. Let $v_1 \in C_1(\Gamma)$. Let x be the stationary strategy for player I, where in position k an optimal strategy in the matrix game $A^k(v_1)$ is played. Then for any k, starting play in position k, the strategy x guarantees expected payoff at least $v_{1,k}$ for player I. The analogous statement holds for $v_2 \in C_2(\Gamma)$ and Player II. + separation bounds for roots of univariate polynomials (Cauchy) = An ε -optimal strategy with all probabilities either 0 or bounded from below by $\varepsilon 1m10(N)$ #### Main theorem For all games with N positions and m actions for each player in each position, $(1/\epsilon)^{m^{O(N)}}$ iterations is sufficient to arrive at ϵ -optimal strategy. ## Tight example #### Generalized Purgatory P(N,m): - Column player repeatedly hides a number in {1,..,m}. - Row player must try to guess the number. - If he guesses correctly N times in a row, he wins the game. - If he ever guesses incorrectly *overshooting* hidden number, he loses the game. - These games all have value 1(!) - Strategy iteration needs $(1/ε)^{m^{N-o(N)}}$ to get ε-optimal strategy. #### Main theorem For all games with N positions and m actions for each player in each position, $(1/\epsilon)^{m^{O(N)}}$ iterations is sufficient to arrive at ϵ -optimal strategy. ### R.A.G. engine: The sampling Theorem **Theorem 13.10.** Let \mathcal{P} be a set of s polynomials each of degree at most d in k variables with coefficients in a real closed field R. Let D be the ring generated by the coefficients of \mathcal{P} . There is an algorithm that computes a set of $2\sum_{j\leq k}\binom{s}{j}4^j(2d+6)(2d+5)^{k-1}$ points meeting every semi-algebraically connected component of the realization of every realizable sign condition on \mathcal{P} in $R(\varepsilon, \delta)^k$, described by univariate representations of degree bounded by $$(2d+6)(2d+5)^{k-1}$$. The algorithm has complexity $\sum_{j \leq k} \binom{s}{j} 4^j d^{O(k)} = s^k d^{O(k)}$ in D. There is also an algorithm computing the signs of all the polynomials in $\mathcal P$ at each of these points with complexity $s \sum_{j \leq k} \binom{s}{j} 4^j d^{O(k)} = s^{k+1} d^{O(k)}$ in D. If the polynomials in \mathcal{P} have coefficients in \mathbb{Z} of bitsize at most τ , the bitsize of the coefficients of these univariate representations is bounded by $\tau d^{O(k)}$. ## Thank you!