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Computational Game Theory

* |nput: Description of game.
e Qutput: Solution to game.

— Find value/minimax strategy
— Find Nash equilibrium



R.A.G.in pure’” game theory

* Long history
e C(lassics in the theory of stochastic games:

— Truman Bewley and Elon Kohlberg. The asymptotic theory of
stochastic games. Mathematics of Operations Research, 1:197-208,

1976.
— J.F. Mertens and A. Neyman. Stochastic games. Int. J. of Game Theory,

pages 53-66, 1981.
— Emanuel Milman. The Semi-Algebraic Theory of Stochastic Games.
Mathematics of Operations Research 27:2,401-418, 2002.

— A. Neyman. Real Algebraic tools in Stochastic Games. Stochastic
Games and Applications. NATO Science Series Volume 570, 2003, pp
57-75

 Oftenrelies on crude’ tools (e.g. Tarski Transfer Principle)

* Slogan of this talk: In the computational setting, fine- *~~'~are
advantageous.
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Today: Just one example

 Computing the value of a concurrent
reachability game.

— Worst case time complexity analysis of Strategy iteration
algorithm.

— [HKM’09, HKLMT’11, HIM’11]

e Algorithm does not rely on R.A.G.

* Quantitative but not algorithmic R.A.G.
heeded.



R.A.G. engine: The Sampling Theorem

Theorem 13.10. Let P be a set of s polynomials each of degree at most
d in k variables with coefficients in a real closed field R. Let D be the ring
generated by the coefficients of P. There is an algorithm that computes a set
of QZJ. . (;) 43 (2d+6)(2d+5)% 1 points meeting every semi-algebraically
connected component of the realization of every realizable sign condition on P
in R(z,0)F, described by univariate representations of degree bounded by

(2d+6) (2d+5)1,

The algorithm has complexity 3, ( ;) 43 d°F) = sk @°F) in D. There is
also an algorithm computing the signs of all the polynomials in P at each of
these points with complexity s ch: - (;) 43 dOk) = k+14OK) 4n D,

If the polynomials in P have coefficients in Z of bitsize at most T, the
poLyr
bitsize of the coefficients of these univariate representations is bounded by
_ J0(k)
T d 7
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If a sign condition is realizable, then it is realized by a
point of “low algebraic complexity”.



Concurrent Reachability Game (CRG)

Row player wants pebble
to reach GOAL

Column player wants
to prevent pebble
#l from reaching GOAL
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Concurrent Reachability Game (CRG)

(\ — GOAL

Row player wants pebble
to reach GOAL

Column player wants
to prevent pebble
#l from reaching GOAL
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Row player wants pebble
to reach GOAL

Column player wants
to prevent pebble
#l from reaching GOAL

Solving Polynomial Equations, Berkeley,
15/10/14

11



Values and Near-Optimal Strategies
(Everett’57)

* Each positioniin a CRG has a value v, so that

Vi = mmstationaryy maxgeneral X ui(x'y)

= sup stationary x rnlngeneral Yy l“li(x'y)

where W(x,y) is the probability of reaching
GOAL when row player plays by strategy x and
column player plays by strategy y.



Howard’s algorithm (1960)

(aka policy iteration, policy improvement, strategy
iteration/improvement)

Basic algorithm for online, sequential
decision making in face of uncertainty
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Howard’s algorithm for CRGs

Chatterjee, de Alfaro, Henzinger ‘06, Etessami and Yannakakis ‘06

g |

10:
11:
12:
13:
14:
15:
16:

Wy

t._ it
v = il y)
end for

t:=t+1
forie {1,2,...,N} do
if val(4;(v'"1)) > »!~! then
r! := maximin(A;(v'71))
else
t t—1

&I =@y
end if
end for
end while
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for : € {O 1.2,....N.N + 1} do

i =1
21 := the uniform distribution at each position
while true do
gt = - 1 best revly to =t
y = an optimal best reply to ©°; <« Solve Markov

Decision Process

Solve matrix game
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Properties

* The valuations V!, converge to the values v; (from
below).

* The strategies x' guarantee the valuations v*; for row
player.

 What is the number of iterations required to
guarantee a good approximation?



Main theorem

For all games with N positions and m actions for each
player in each position, (1/e)mO(N) iterations is sufficient
to arrive at e-optimal strategy.

N = Number of positions
m = dimension of (largest) matrix



Step 1: Reduction to analysis of value
iteration

* We can relate the valuations computed by
strategy iteration to the valuations computed
by value iteration.

v < b < vy

Actual values

Valuations computed

by value iteration Valuations computed

by strategy iteration



10:

Value iteration (dynamic
programming)

)= (0,0,.... 1) {the vector oY is indexed 0.1,.... N, N + 1}

while true do
ti=1t+1
0h =0
U1 =1
forie{1.2,...,] N} do
ot := val(A; (0871))
end for

end while

Value iteration computes the value of a time bounded game,

for larger and larger values of the time bound t, by backward induction.
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Step 2: Reduction to bounding
patience

We need to upper bound the difference in value between
time bounded and infinite versions of the game.

The difference in value between a time bounded and the

infinite version of a concurrent reachability game is captured
by the patience of its stationary near-optimal strategies.

— Patience = 1/smallest non-zero probability used

Lemma: If the game has an &-optimal strategy with patience
L, then for 7=k N/ T/V, the value of the game with time

bound 7 differs from the value of the original game by at

most &+ elT— /X .




Step 3: Bounding patience using R.A.G.

e Everett’s characterization (1957) of value and near-optimal strategies:

Given valuations vy,.... vy for the positions and a given position k we define A*(v) to be
the my x nj matrix game where entry (i,4) is ;b5 + PO pf‘J'a, The wvalue mapping operator
M :RY — RV is then defined by M(v) = (val(A'(v)),.... val(A¥ (v))). Define relations > and <
on RV as follows:

u; >v; ifv; >0

u = v if and only if . , forallz .
u; vy iy <0

u; <wv; ifv; <0
u = v if and only if ' Lo , forallz .
w; <v; iy =0

Next, we define the regions Cy(I') and C3(T") as follows:

Ci0)={veRY | M(v) =v}.
C(0)={veRY | M(v) v}

A eritical vector of the game is a vector v such that v € C;(I') NC2(T"). That is, for every € > 0
there exists vectors vy € C1(T") and v € C3(T") such that |[v — vz <€ and ||v — w2 <e.

The following theorem of Everett characterizes the value of an Everett game and exhibits near-
optimal strategies.

Theorem 5 (Everett). There exists a unique critical vector v for the value mapping M, and this
is the value vector of T'. Furthermore, v is a fixed point of the value mapping. and if v, € Cy(')
and vo € Co(T) then vy < v < wvy. Let vy € C1(T'). Let x be the stationary strategy for player
I. where in position k an optimal strategy in the matriz game .4“(13.) is played. Then for any k,
starting play in position k., the strateqy x guarantees expected payoff at least vy g for player I. The
analogous statement holds for vo € Co(T") and Player II.
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Step 3: Bounding patience using R.A.G.

* Applying the fundamental theorem of linear
programming and Cramer’s rule:

Now we can rewrite the predicate \dl(»lk (1)) > vk to the following expression:
A k_ v e AX (v
Vi ((n € Fii* Adet((Mgy“)my11) > vk det (M )V (1 € ™ Adet(Me ™ Ymy11) <

Ak . s . o .
vk det(M, (“)))). wlwr( the disjunction is over all potential basis sets, and each of the expressions

."k . . . . - .
v1 € Fp,” and vy € F ~ are shorthands for the conjunction of the my + 1 polynomial inequalities
describing the (.orlvspuudlug sets.

Lemma 40. There is a quantifier free formula with 2
v1 € C1(T),v2 € Ca(T), and |lv; — va||? < 27°.

—_

The formula uses at most (2N + 1) + 2(m + 2 ZA— ("“;:L"“) different polynomaials, each of

degree at most m + 2 and having coefficients of bitsize at most max(o,2(N + 1)(m + 2) )

N free variables vy and vy that expresses
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Step 3: Bounding patience using R.A.G.

Lemma 40. There is a quantifier free formula with 2N free variables vy and vo that expresses
v) € (‘1(F) vo € ('_)(I') and "('1 — 1'2"2 <279, )

The formula uses at most (2N + 1) + 2(m + 2) Z';:l ("‘,::"“) different polynomials, each of
degree at most m + 2 and having coefficients of bitsize at most max(o,2(N + 1)(m + 2) )

Theorem 13.10. Let P be a set of s polynomials each of degree at most
d in k variables with coefficients in a real closed field R. Let D be the ring
generated by the coefficients of P. There is an algorithm that computes a set
of 221"»7\' (;) 47(2d+6)(2d+5)*—1 points meeting every semi-algebraically

+ connected component of the realization of every realizable sign condition on P
in R(z,8)¥, described by univariate representations of degree bounded by

(2d+6) (2d+5)+1.

The algorithm has complezity Zj<k (;) 43 d°%) = sk g9) in D. There is
also an algorithm computing the signs of all the polynomials in P at each of
these points with complezity s, - (J) 47 dOF) = gk+1g0k) in D.

If the polynomials in P have coefficients in Z of bitsize at most T, the

bitsize of the coefficients of these univariate representations is bounded by
7dOK)

Theorem 5 (Everett). There exists a unique critical vector v for the value mapping M, and this
is the value vector of T'. Furthermore, v is a fixred point of the value mapping. and if v, € C{(T)

+ and va € Co(T) then vy < v < wvy. Let vy € C1(I'). Let = be the stationary strategy for player
I, where in position k an optimal strategy in the matriz game A*(vy) is played. Then for any k,
starting play in position k, the strategy x quarantees expected payoff at least vy g for player I. The
analogous statement holds for vo £ Co(T') and Player I1.

+ separation bounds for roots of univariate polynomials (Cauchy)

An soptimal strategy with all probabilities either 0 or bounded
from below by srm1o(#)
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Main theorem

For all games with N positions and m actions for each
player in each position, (1/8)’”0(N)
to arrive at e-optimal strategy.

iterations is sufficient
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Tight example

Generalized Purgatory P(N,m):
 Column player repeatedly hides a number in {1,..,mj.
 Row player must try to guess the number.
* If he guesses correctly N times in a row, he wins the game.

* If he ever guesses incorrectly overshooting hidden
number, he loses the game.

— These games all have value 1(')

— Strategy iteration needs (1/€)m
strategy.

™M to get e-optimal
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R.A.G. engine: The sampling Theorem

Theorem 13.10. Let P be a set of s polynomials each of degree at most
d 1n k variables with coefficients in a real closed field R. Let D be the ring
generated by the coefficients of P. There is an algorithm that computes a set
of Qngk (;)41 (2d+6)(2d+5)* 1 points meeting every semi-algebraically
connected component of the realization of every realizable sign condition on P
in R{z,8)*, described by univariate representations of degree bounded by

(2d+6) (2d+5)k1.

The algorithm has complexity Zj<k (;) 43 d°%) = gk dO) in D. There is
also an algorithm computing the signs of all the polynomials in P at each of

these points with complezity Szjgk (;) 43 dOK) = gk+1gOk) 4n D,
If the polynomials in P have coefficients in Z of bitsize at most 7, the
bitsize of the coefficients of these univariate representations is bounded by

7dP®),
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Thank youl!
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