Computational Challenges in a Densely Sequenced Tree of Life

Katie Pollard

Gladstone Institutes
Chan Zuckerberg Biohub UC San Francisco

Computational Challenges in Very Large-Scale 'Omics Workshop July 21, 2022 • Simons Institute for the Theory of Computing

Microbiome Precision Medicine

Sequencing

Genetic Biomarkers
DNA
RNA
Protein
Immune markers

Pooled Microbe
DNA
RNA
Protein

Bugs as drugs Microbial drug modification Immune modulation Microbial products Microbe friendly drug

A very large-scale 'omics problem

Problems we solved

ACTGATG CATCGAT ATGCTAC GATCGAT CGATCTT ATCGAAG

Code to search for matches

ATGCATC GATCTAC GATCGAT TTCGATC AAATCGA

50 million sequences 300 bp each from 100s of species mixed
~300K genomes
~5 million bp each

- 50\% of species have no genome: <10\% now
- Code takes years to run or costs $\$ 10 \mathrm{~K} /$ month in cloud: ruins on laptop

Microbiome Science

Metagenotyping single nucleotide variants (SNVs)

(A)

Using Genetic Variation

- Phenotype associations
- human traits
- microbe traits
- Microbiome evolution
- mutation
- selection
- recombination
- demography / ancestry
- Strain / gene tracking
- Human evolution
- Genomic technologies
- Precision therapies

Similar approach for gene copy number variants (CNVs)

- Clinical decision making

Challenge 0 :

Species without a genome in the database are invisible

Most species had no genome

Host-associated Metagenomes Human Skin Human Airways Human Urogenital Tract Human Mouth Human Stool Laboratory Mouse Stool Wild Baboon Stool Marine Metagenomes Surface Water Layer Dcm Layer Mixed Layer Mesopelagic Zone Soil Metagenomes Temperate Grasslands Temperate Forest Tropical Forest Deserts

Species-level database coverage

But this is changing

UHGG Resource

Shotgun metagenomes

- 31 countries, 6 continents
- Different lifestyles \& ages

286,799 gut genomes 4,644 species
81\% of species MAG-only
50\% increase in diversity
>2K disease associations
Nayfach et al (2019)
Almeida et al (2019)
Also: Culturomics, single-cell

But this is changing

Species-level database coverage

MAGs are closing the gap

Genome explosion

NCBI Assembly

MAG DBs

More Genomes = Good News?

Human gut microbiome alignment rate now > 80\%

But... new problems arise

Challenge 1:

Closely related species "compete" for reads and bias metagenotypes

Closely related species are common

> CRS = two species with at least one pair of genomes that have average nucleotide identity (ANI) 92\%-95\%

Read competition in dense lineages

On-target Off-target
genome genome

Alignment similarity
Alignment uniqueness
Probability correctly aligned

Zhao et. al (2022b)

98.4%
Medium
Medium

Aligned w/
low uniqueness

Unaligned
multimapping

Aligned
crossmapping

Read competition in dense lineages

Intra-species
ANI

- 100
- 99
- 98
- 97
- 96
- 95

Zhao et. al (2022b)
Average nucleotide identity of closest relative in database (\%)

MIDAS2 mitigates low alignment uniqueness \& cross-mapping

Paired-end filtering, MAPQ<10

Dropping undetected species from db

Mitigation strategies help...

But can we do better by avoiding alignment?

GT-PRO strategy works for metagenomes, genomes, contigs, unassembled reads

GTPRO: $100 \times$ faster, more accurate

Unique k-mers beat alignment at known SNVs

But current approach only works on SNVs discovered in genomes

Challenge 2: How to align and call variants in so many genomes?

Maast: fast variant discovery from genomes

DynaCC algorithm flowchart

Genome redundancy offers solution

No. of clusters10002000 \square 3000

Species

Maast: fast variant discovery from genomes

Maast: fast variant discovery from genomes

Maast: fast variant discovery from genomes

Maast: fast variant discovery from genomes

3,068 H. pylori strains
Also: 37,096 SARS-CoV-2 strains

Tag genomes speed up variant discovery and improve accuracy

Sequencing effort should focus on new lineages not redundant ones

Future Prospects

- Strategies beyond short-read aligners are needed, e.g.,
- faster genome graph algorithms
- probabilistic read mapping
- read-to-read comparisons (reference databases for interpretation)
- long reads / haplotypes
- Tools that use reference databases need to be flexibly implemented so that the algorithms and database can be tailored to the community

Future Prospects

- Not just problems for bacterial communities.
- CRS and redundant genomes in some lineages of archaea, eukaryotes, and viruses.
- These challenges affect all bioinformatics methods that compare reads to databases, not just metagenotyping.
- Democratizing large-scale bioinformatics is critical!

Collaborators: Boris Dimitrov (CZI), Ben Good (Stanford), Oskar Hallatschek (UCB), NikostKíf pues (GG) Funded by NIH, NSF, Gladstone, UCSF, Chan-Zuckerberg Biohub

 \(\pm=;\)E=:
 $=$3

