Computational Challenges in a Densely Sequenced Tree of Life

Katie Pollard Gladstone Institutes Chan Zuckerberg Biohub UC San Francisco

Computational Challenges in Very Large-Scale 'Omics Workshop July 21, 2022 • Simons Institute for the Theory of Computing

Microbiome Precision Medicine

Sequencing

Human **DNA RNA** Protein **Immune markers**

Pooled Microbe DNA **RNA Protein Metabolites**

A very large-scale 'omics problem

ACTGATG CATCGAT ATGCTAC GATCGAT CGATCTT ATCGAAG

50 million sequences 300 bp each from 100s of species mixed

Code to search for matches

ATGCATC GATCTAC GATCGAT TTCGATC AAATCGA

~300K genomes ~5 million bp each

Problems we solved

50% of species have no genome: <10% now

 Code takes years to run or costs \$10K/month in cloud: runs on laptop

Microbiome Science

Sequencing

Pooled Microbe DNA Metagenomics

Joint Pain

Inflamed

Gut

Percent Sequences from Each Microbe

Metagenotyping single nucleotide variants (SNVs)

Similar approach for gene copy number variants (CNVs)

Zhao et al. (2022)

Using Genetic Variation

- Phenotype associations
 - human traits
 - microbe traits
- Microbiome evolution
 - mutation
 - selection
 - recombination
 - demography / ancestry
- Strain / gene tracking
- Human evolution
- Genomic technologies
- Precision therapies
- Clinical decision making

Garud & Pollard (2019)

<u>Challenge 0:</u> Species without a genome in the database are invisible

Most species had no genome

But this is changing

UHGG Resource Shotgun metagenomes 31 countries, 6 continents Different lifestyles & ages

286,799 gut genomes 4,644 species 81% of species MAG-only 50% increase in diversity >2K disease associations

> Nayfach et al (2019) Almeida et al (2019) <u>Also</u>: Culturomics, single-cell

Genome explosion

Zhao et. al (2022b)

More Genomes = Good News?

Human gut microbiome alignment rate now > 80%

But... new problems arise

Challenge 1: Closely related species "compete" for reads and bias metagenotypes

Closely related species are common

CRS = two species with at least one pair of genomes that have average nucleotide identity (ANI) 92%-95%

Zhao et. al (2022b)

Read competition in dense lineages

Zhao et. al (2022a)

https://github.com/czbiohub/MIDAS2

But can we do better by avoiding alignment?

Mitigation strategies help...

GT-PRO strategy works for metagenomes, genomes, contigs, unassembled reads

Compression > bzip2, rapid exact matching Prefix filter, Suffix array, Colex sort

Shi et al. (2021)

https://github.com/zjshi/gt-pro https://github.com/zjshi/Maast

GTPRO: 100x faster, more accurate

Unique k-mers beat alignment at known SNVs

But current approach only works on SNVs discovered in genomes

Challenge 2: How to align and call variants in so many genomes?

https://github.com/zjshi/Maast

Shi et al. (2022)

Genome redundancy offers solution

Species

Shi et al. (2022)

https://github.com/zjshi/Maast Shi et al. (2022)

Maast: fast variant discovery from genomes

https://github.com/zjshi/Maast Shi et al. (2022)

Maast: fast variant discovery from genomes

https://github.com/zjshi/Maast Shi et al. (2022)

Maast: fast variant discovery from genomes

3,068 *H. pylori* strains Also: 37,096 SARS-CoV-2 strains

https://github.com/zjshi/Maast Shi et al. (2022)

Sequencing effort should focus on new lineages not redundant ones

Tag genomes speed up variant discovery and improve accuracy

Future Prospects

- Strategies beyond short-read aligners are needed, e.g.,
 - faster genome graph algorithms
 - probabilistic read mapping
 - read-to-read comparisons (reference databases for interpretation)
 - long reads / haplotypes
- Tools that use reference databases need to be flexibly implemented so that the algorithms and database can be tailored to the community

Future Prospects

- Not just problems for bacterial communities. - CRS and redundant genomes in some lineages of archaea, eukaryotes, and viruses.
- compare reads to databases, not just metagenotyping.
- These challenges affect all bioinformatics methods that • Democratizing large-scale bioinformatics is critical!

Acknowledgements

Alumni: Stephen Nayfach (JGI), Nandita Garud (UCLA) by NIH, NSF, Gladstone, UCSF, Chan-Zuckerberg Biohub Funded

