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Phylogeny + genomics = genome-scale phylogeny estimation
. 



Phylogenomic pipeline
• Select taxon set and markers

• Gather and screen sequence data, possibly identify orthologs

• Compute multiple sequence alignments for each locus, and construct gene trees

• Compute species tree or network:
• Combine the estimated gene trees, OR
• Estimate a tree from a concatenation of the multiple sequence alignments 

• Get statistical support on each branch (e.g., bootstrapping)

• Estimate dates on the nodes of the phylogeny

• Use species tree with branch support and dates to understand biology



1KP: Thousand Transcriptome Project

l 2014 PNAS study: 103 plant transcriptomes, 400-800 single copy “genes”

l 2019 Nature study: much larger!  
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Major Challenges:
• Large alignments (and sequence length heterogeneity)
• Multi-copy genes omitted (9500 -> 400)
• Massive gene tree heterogeneity consistent with ILS
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•  Approx. 50 species, whole genomes 
•  14,000 loci 
•  Multi-national team (100+ investigators) 
•  8 papers published in special issue of Science 2014 

Biggest computational challenges:  
 1. Multi-million site maximum likelihood analysis (~300 CPU years, 
  and 1Tb of distributed memory, at supercomputers around world) 
 2. Constructing “coalescent-based” species tree from 14,000  
  different gene trees 
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Major challenge:
Multi-copy genes omitted
Massive gene tree heterogeneity consistent with ILS



Phylogenomic pipeline
• Select taxon set and markers

• Gather and screen sequence data, possibly identify orthologs

• Compute multiple sequence alignments for each locus, and construct gene trees

• Compute species tree or network:
• Combine the estimated gene trees, OR
• Estimate a tree from a concatenation of the multiple sequence alignments 

• Get statistical support on each branch (e.g., bootstrapping)

• Estimate dates on the nodes of the phylogeny

• Use species tree with branch support and dates to understand biology



Phylogeny/MSA estimation: CS and Statistics

•Assume DNA sequences are generated on an 
unknown model tree, and try to infer the tree 
(and/or alignment) from the observed 
sequences seen at the leaves



Large datasets are difficult

• Two dimensions: 
• Number of loci
• Number of species (or individuals)

• Missing data
• Heterogeneity
• Many analytical pipelines involve Maximum likelihood 

and Bayesian estimation  



This talk

1. Estimating species trees from gene trees  (“easy”) –
15 minutes

2. Maximum Likelihood for estimating large gene trees 
(very hard)  - 5 minutes

3. Multiple sequence alignment (harder, plus a 
conundrum) – 5 minutes



Orangutan Gorilla Chimpanzee Human

From the Tree of the Life Website,
University of Arizona

Part I: Species Tree Estimation



Phylogeny Estimation

TAGCCCA TAGACTT TGCACAA TGCGCTTAGGGCAT
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Is method M statistically consistent under 
model G?

Error
in species tree 
inferred by  
method M

Amount of data
generated under model G and 
then given to method M as input

Question answered by 
mathematical proof



Genome-scale data?

error

Length of the genome 



Gene tree discordance

3

Orang.Gorilla ChimpHuman Orang.Gorilla Chimp Human

gene1000gene 1

Multiple causes for discord, 
including 
• Incomplete Lineage Sorting 

(ILS), 
• Gene Duplication and Loss 

(GDL), and
• Horizontal Gene Transfer (HGT)
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OrangutanGorilla ChimpHuman

Gene evolution model
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Sequence evolution model
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Species tree

Gene tree

Sequence data
(Alignments)

Gene tree Gene tree Gene tree

Sequence data
(Alignments)

MSC+GTR Hierarchical Model

1. Gene trees evolve 
within the species 
tree (under the 
Multi-Species 
Coalescent model)

2. Sequences evolve 
down the gene 
trees (under GTR 
model)
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Gene tree Gene tree Gene tree Gene tree

Step 1: infer gene trees (traditional methods)

Step 2: infer species trees

Summary Method Protocol

1. Given gene sequence 
alignments, compute 
gene trees

2. Given gene trees, 
combine into species tree

Faster than concatenation,
and can be parallelized



Quartet trees and the MSC

• Allman, Degnan, and Rhodes (J. Mathematical Biology 2011) proved:
• For every four species, the most probable unrooted gene tree is topologically 

identical to the true species tree

• This is not true for five species (anomaly zone)



ASTRAL 
[Mirarab, et al., ECCB/Bioinformatics, 2014]

• Optimization Problem (NP-Hard):

• Theorem: Statistically consistent under the multi-
species coalescent model when solved exactly

15

Find the species tree with the maximum number of induced 
quartet trees shared with the collection of input gene trees

Set of quartet trees 
induced by T

a gene tree

Score(T ) =
X

t2T
|Q(T ) \ Q(t)|

all input gene trees
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dynamic 
programming 
to solve a 
constrained 
version of this 
problem, and is 
provably 
statistically 
consistent



ASTRAL 
[Mirarab, et al., ECCB/Bioinformatics, 2014]

• Optimization Problem (NP-Hard):

• Theorem: Statistically consistent under the multi-
species coalescent model when solved exactly

15

Find the species tree with the maximum number of induced 
quartet trees shared with the collection of input gene trees

Set of quartet trees 
induced by T

a gene tree

Score(T ) =
X

t2T
|Q(T ) \ Q(t)|

all input gene trees

ASTRAL runs in 
O(|X|2kn) 
where there 
are n species 
and k genes, 
and X is the set 
of allowed 
bipartitions





Syst Biol, Volume 67, Issue 2, March 2018, Pages 285–303, https://doi.org/10.1093/sysbio/syx077

Figure 1. The impact of gene tree estimation error (GTEE) and incomplete lineage sorting (ILS) on species tree error, 
all datasets with 26 species and 1000 genes.

Concatenation 
using 
Maximum 
Likelihood 
(RAxML) vs. 
ASTRAL:
depends on  
levels of ILS  
and GTEE

https://doi.org/10.1093/sysbio/syx077


Summary and two key ideas for ILS-based 
species tree estimation

• Theorem: For every four species, the most probable (unrooted) gene tree is 
topologically identical to the true species tree

• ASTRAL can find the “Maximum Quartet Support Species Tree” (MQSST) in 
low degree polynomial time, in a constrained search space 

• Maintains statistical consistency if the constraint space is defined from the gene 
trees

• Fast in practice
• Highly accurate if there are enough gene trees (even when there is gene tree 

estimation error and missing data)

• Concatenation using ML (e.g., RAxML) sometimes more accurate, despite 
not having guarantee of statistical consistency



1KP: Thousand Transcriptome Project

l 2014 PNAS study: 103 plant transcriptomes, 400-800 single copy “genes”
l 2019 Nature study: much larger!  

G. Ka-Shu Wong
U Alberta

N. Wickett
Northwestern

J. Leebens-Mack
U Georgia

N. Matasci
iPlant

T. Warnow,                S. Mirarab,                     N. Nguyen
UT-Austin/UIUC          UT-Austin /UCSD          UT-Austin/UCSD

Major Challenges:
• Multi-copy genes omitted (9500 -> 400)
• Massive gene tree heterogeneity consistent with ILS



Figure by Luay Nakhleh, TREE 2013

The species tree has one 
duplication (at the root), 
which produces a gene 
family tree that has two 
copies of the species tree!

Multi-copy trees: MUL-trees

Gene Family Trees



Species tree estimation under GDL

Options:
1. Throw out multi-copy genes
2. Figure out orthology
3. Run methods (like gene tree parsimony) that combine gene 

family trees into a species tree

Note: 
Nothing proven to be statistically consistent under GDL… 

until 2019



Problem: Given set of MUL-trees, infer the species tree

FastMulRFS 7

Y

A B C D

(a) Species tree T ⇤

dup

D

Y1

A1 B1 C1

Y2

A2 B2 C2

(b) Gene tree M1 with one duplication.

dup

D

Y1

A1 X C1

Y2

A2 B2 X

(c) Gene tree M2 with one duplication
and two losses.

dup

D

Y1

A1 X C1

Y2

X B2 X

(d) Gene tree with one duplication and
three losses.

Fig. 2: Impact of gene duplications and losses on species tree estimation

using RFS-multree methods. Subfigure (a) shows a species tree T
⇤ and

subfigures (b) through (d) show three gene family trees that evolved within
the species tree. Subfigure (b) shows gene family tree M1 with a duplication
event in species Y (i.e., the most recent common ancestor of species A, B, and
C). Note that all edges in M1 below the duplication node (shown in red) fail
to induce bipartitions and so will be contracted, and will therefore not impact
the solution space for the RFS-multree criterion. Subfigure (c) shows gene tree
M2 with a duplication event in species Y followed by the first copy of the gene
being lost from species B and the second copy of the gene being lost from
species C. Because one of the species that evolved from Y retains both copies of
the gene, the non-trivial edges in M2 below the duplication node fail to induce
bipartitions, and so these edges also do not impact the solution space for RFS-
multree. Subfigure (d) shows gene family tree M3 with a duplication event in
species Y followed by the first copy of the gene being lost from species B and
the second copy of the gene being lost from both species A and C. None of the
species that evolved from Y retain both copies of the gene, so all edges below the
duplication node induce bipartitions and hence will not be contracted; we refer
to this situation as “adversarial gene duplication and loss,” because it produces
bipartitions in the singly-labeled trees in PX that conflict with the species tree
(shown in blue). Such a scenario leads to the possibility that the true species
tree may not be an optimal solution to the RFS-multree problem.

Note: no orthology 
detection 



Theorem (Legried, Molloy, Warnow, and 
Roch, 2019): ASTRAL-multi is statistically 
consistent under GDL and runs in 
polynomial time.

Theorem (Molloy and Warnow, 2019): 
FastMulRFS is statistically consistent under a 
generic duplication-only or loss-only model, and 
runs in polynomial time.

Note: Both methods use dynamic programming 
to solve NP-hard discrete optimization problems 
within constrained search space in polynomial 
time.

Theorem: Under GDL,  most probable quartet tree is the species tree



But…ASTRAL-multi is not as accurate as other methods!

28 Molloy and Warnow
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Fig. 5: Species tree error (i.e., normalized RF distance) and running time (sec-
onds) are shown for FastMulRFS, MulRF, ASTRAL-multi, and DupTree under
the easier model conditions, each with 100 species. The model conditions have
substantial GTEE (52%), low GDL (D/L rate: 1⇥ 107), very low ILS (2%), and
varying numbers of genes. Red dots (first row of each subfigure) and bars (second
row of each subfigure) are means for 10 replicate data sets.
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Fig. 6: Species tree error (i.e., normalized RF distance) and running time (sec-
onds) are shown for FastMulRFS, MulRF, ASTRAL-multi, and DupTree, under
the harder model conditions, each with 100 species. The model conditions have
substantial GTEE (52%), high GDL (D/L rate: 5⇥ 107), moderate ILS (12%),
and varying numbers of genes. Red dots (first row of each subfigure) and bars
(second row of each subfigure) are means for 10 replicate data sets.

Results on 100-species datasets with moderate GDL, moderately high ILS, and high GTEE





ASTRAL-pro

• Input: Set of unrooted multi-copy gene family trees (mul-trees)
• Output: Species tree

• Step 1: ”root and tag” every mul-tree
• Step 2: Use the rooting to define “speciation quartets”
• Step 3: Run ASTRAL’s DP algorithm with modified weights, reflecting 

speciation quartets

Theorem: ASTRAL-pro is statistically consistent if it correctly roots-and-
tags every mul-tree
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Results on 1000-taxon Species Trees

1000 species and 1000 gene trees estimated from 100bp alignments (approx. 44% mean gene tree error), AD=20%,  
duplication rate of 5.0 × 10−10, and loss/dup = 1.
James Willson et al. AlCoB 2021. Lecture Notes in Computer Science, vol 12715. 

Accuracy: no important 
accuracy differences on these 
large datasets. 

Speed: ASTRID-multi fastest, 
but ASTRAl-Pro nearly same. 
FastMulRFS slowest (max about 
7 hours).  



Summary and two key ideas for species tree 
estimation under ILS

• Theorem: For every four species, the most probable (unrooted) gene tree is 
topologically identical to the true species tree

• ASTRAL can find the “Maximum Quartet Support Species Tree” (MQSST) in 
low degree polynomial time, in a constrained search space 

• Maintains statistical consistency if the constraint space is defined from the gene 
trees

• Fast in practice
• Highly accurate if there are enough gene trees (even when there is gene tree 

estimation error and missing data)

• Concatenation using ML (not consistent) sometimes more accurate, despite 
not having guarantee of statistical consistency



Summary and three key ideas for species tree 
estimation under ILS+GDL
• Theorem: For every four species, the most probable (unrooted) gene 

tree is topologically identical to the true species tree
• ASTRAL-multi and ASTRAL-one: can find the “Maximum Quartet 

Support Species Tree” (MQSST) in low degree polynomial time, in a 
constrained search space – and are statistically consistent

• ASTRAL-Pro (not guaranteed statistically consistent) but:
• Roots and tags gene trees
• Statistically consistent if rooting and tagging is correct
• Highly accurate if there are enough gene trees (even when there is gene tree 

estimation error and missing data)



What about HGT?

• HGT also makes heterogeneous gene trees
• Under some assumptions of random HGT operating, it may be 

possible to define the “underlying” species tree.
• Statistical consistency of quartet-based methods for computing the 

underlying species tree established by:
• Roch & Snir, JCB 2013
• Daskalakis & Roch, arXiv 2015

• Simulation study (Davidson et al. 2015) shows ASTRAL and wQMC
(Snir et al.) more accurate than concatenation and NJst when ILS+HGT 
is present



Gene trees -> Species trees, using Quartet Trees

• Recurring theme: the most probable quartet tree is the species tree 
for:

• ILS (Multi-species coalescent)
• ILS+GDL (DLCOAL)
• Random (but bounded) HGT

• Hence, quartet-based species tree estimation (from gene trees) is 
often statistically consistent, if performed properly.

• Finding MQSST (within a constrained search space) a powerful 
approach that maintains consistency and is computationally efficient

• Interestingly, MQSST is also fairly robust



Part II: Large-scale gene tree estimation



Phylogeny Problem

TAGCCCA TAGACTT TGCACAA TGCGCTTAGGGCAT

U V W X Y

U
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DNA Sequence Evolution (Idealized)

AAGACTT

TGGACTTAAGGCCT

-3 mil yrs

-2 mil yrs

-1 mil yrs

today

AGGGCAT TAGCCCT AGCACTT

AAGGCCT TGGACTT

TAGCCCA TAGACTT AGCGCTTAGCACAAAGGGCAT

AGGGCAT TAGCCCT AGCACTT

AAGACTT

TGGACTTAAGGCCT

AGGGCAT TAGCCCT AGCACTT

AAGGCCT TGGACTT

AGCGCTTAGCACAATAGACTTTAGCCCAAGGGCAT



Markov Models of Sequence Evolution (Gene Tree)
The different sites are assumed to evolve i.i.d. down the model tree, so it suffices to 

model a single site
Jukes-Cantor, 1969 (simplest DNA site evolution model):
• The state at the root is randomly drawn from {A,C,T,G} (nucleotides)
• The model tree T is binary and has substitution probabilities p(e) on each edge e, 

with 0<p(e)<3/4
• If a site (position) changes on an edge, it changes with equal probability to each of 

the remaining states
• The evolutionary process is Markovian.

More complex models are also considered, often with little change to the theory.  



Phylogeny estimation as a statistical problem

• Assume DNA sequences are generated on an unknown model tree, and try 
to infer the tree from the observed sequences seen at the leaves

• Many methods:
• Maximum likelihood: Find the model tree that maximizes the probability of 

generating the observed sequences
• Bayesian estimation 
• Distance-based methods (e.g., neighbor joining)
• Maximum parsimony

NP-hard optimization problems, heuristics



Maximum likelihood for gene tree estimation

• Theory:
• Statistically consistent 
• Low sample complexity (Roch & Sly, Prob. Theory and Related Fields, 2017): 

phase transition (logarithmic then polynomial)  
• NP-hard 

• Empirical (based on heuristics) – using RAxML (leading ML heuristic)
• Outstanding accuracy on simulated data
• Challenging on large datasets (best methods can take CPU years or fail to run 

on large datasets)



Decompose 
species set into 
pairwise disjoint 
subsets.Full

species
set

Build a tree on each
subset

Compute tree on entire set of species 
using “Disjoint Tree Merger” method

Tree
on full

species set

Auxiliary
Info

(e.g., distance
matrix)

Divide-and-Conquer using Disjoint Tree Mergers
Note: use most 
accurate method 
on subsets, and 
treat as absolute 
constraints

Erin Molloy,
Introduced this
approach



Decompose 
species set into 
pairwise disjoint 
subsets.Full

species
set

Build a tree on each
subset

Compute tree on entire set of species 
using “Disjoint Tree Merger” method

Tree
on full

species set

Auxiliary
Info

(e.g., distance
matrix)

Divide-and-Conquer Gene Tree Estimation
Note: use most 
accurate method 
on subsets, and 
treat as absolute 
constraints

Guide Tree Merger

RAxML, 
IQ-TREE, 
etc



Figure 2 from  “Disjoint Tree Mergers 
for Large-Scale Maximum Likelihood 
Tree Estimation”,  Park et al., 
Algorithms 2021

GTM pipeline: 
• starting tree is IQ-Tree or FastTree

(smaller datasets), 
• IQ-tree used to compute subset 

trees, and 
• then combined using GTM



GTM-pipeline:
• Scales to large datasets
• Is competitive with RAxML 

and IQ-TREE for accuracy
• Is only slightly slower than 

starting tree (but more 
accurate) 
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using statistically consistent 
methods)



Decompose 
species set into 
pairwise disjoint 
subsets.Full

species
set

Build a tree on each
subset

Compute tree on entire set of species 
using “Disjoint Tree Merger” method

Tree
on full

species set

Auxiliary
Info

(e.g., distance
matrix)

Divide-and-Conquer using Disjoint Tree Mergers
Theorem: DTM pipelines 
maintain statistical 
consistency for phylogeny 
estimation (assuming 
subset trees computed 
using statistically consistent 
methods)

Also: has been 
used for species
Tree estimation
(e.g., ASTRAL and 
concatenation)
and shows 
Improvements in 
runtime and 
sometimes 
accuracy



Part III: Multiple Sequence Alignment



Multiple Sequence Alignment (MSA): 
a scientific grand challenge1

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
…
Sn = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
…

Sn = TCACGACCGACA

Novel techniques needed for scalability and accuracy
NP-hard problems and large datasets
Current methods do not provide good accuracy
Few methods can analyze even moderately large datasets 

Many important applications besides phylogenetic estimation

1 Frontiers in Massive Data Analysis, National Academies Press, 2013



…ACGGTGCAGTTACC-A…

…AC----CAGTCACCTA…

The true pairwise alignment
– Reflects historical substitution, insertion, and deletion 

events 
– Letters (nucleotides or amino acids) in the same column 

are supposed to be homologs

…ACGGTGCAGTTACCA…

SubstitutionDeletion

…ACCAGTCACCTA…

Insertion



What makes MSA difficult?

• Large numbers of sequences
• High rates of substitutions and indels
• Sequence length heterogeneity
• Very long sequences (e.g., genome-scale)



Two-phase estimation
Alignment methods
• Clustal
• POY (and POY*)
• Probcons (and Probtree)
• Probalign
• MAFFT
• Muscle
• Di-align
• T-Coffee 
• Prank (PNAS 2005, Science 2008)
• Opal (ISMB and Bioinf. 2007)
• FSA (PLoS Comp. Bio. 2009)
• Infernal (Bioinf. 2009)
• Etc.

Phylogeny methods
• Bayesian MCMC 
• Maximum parsimony 
• Maximum likelihood 
• Neighbor joining
• FastME
• UPGMA
• Quartet puzzling
• Etc.

RAxML: heuristic for large-scale ML optimization



Simulation Studies

S1 S2

S3S4

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT-------GACCGC--
S4 = -------TCAC--GACCGACA

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-C--T-----GACCGC--
S4 = T---C-A-CGACCGA----CA

Compare

True tree and 
alignment

S1 S4

S3S2

Estimated tree and 
alignment

Unaligned 
Sequences



1000-taxon models, ordered by difficulty (Liu et al., 2009)



Re-aligning on a tree
A

B D

C

Merge 
sub-alignments

Estimate ML 
tree on merged 

alignment

Decompose 
dataset

A B

C D

Align subsets

A B

C D

ABCD



SATé, PASTA, and MAGUS Algorithms

Estimate ML tree on new 
alignment

Tree

Obtain initial alignment and 
estimated ML tree

Use tree to compute 
new alignment

Alignment

Repeat until termination condition, and

return the alignment/tree pair with the best ML score





Improvement over time

• SATé-1 (Science 2009): up to about 8,000
• SATé-2 (Syst Biol 2012): up to 50,000
• PASTA (J Comp Biol 2014): up to 1,000,000
• MAGUS (Bioinformatics 2021): more accurate than PASTA (and one 

iteration suffices) – up to 1,000,000 

Each method improved on the previous with respect to accuracy, 
speed, and scalability



Statistical Alignment

• Since MSA and tree estimation are both about evolution (recognition 
of homologies due to evolution), can we co-estimate them together, 
using a statistical model of evolution?

• BAli-Phy (Redelings and Suchard) is the main method for this 
problem.
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From www.bali-phy.org/README.html, 5.2.1. Too many taxa?

“BAli-Phy is quite CPU intensive, and so we recommend  
using 50 or fewer taxa in order to limit the time  required 
to accumulate enough MCMC samples.  (Despite this 
recommendation, data sets with more  than 100 taxa 
have occasionally been known to converge.) We 
recommend initially pruning as many  taxa as possible 
from your data set, then adding some  back if the MCMC 
is not too slow.”

http://www.bali-phy.org/README.html


Systematic Biology, Volume 68, Issue 3, May 2019, Pages 396–411, https://doi.org/10.1093/sysbio/syy068

BAli-Phy is best on small simulated protein datasets!

BAli-Phy is best!



Systematic Biology, Volume 68, Issue 3, May 2019, Pages 396–411, https://doi.org/10.1093/sysbio/syy068

BAli-Phy not so great on on 1192 small biological protein datasets

T-Coffee and PROMALS 
are best!

BAli-Phy good for 
Modeler score, but not 
so good for SP-Score 
(e.g., MAFFT better)



Observations

• Simulated data: Bali-Phy is the best!
• Protein benchmarks: BAli-Phy in middle

• Good for Modeler score (so low false positives)
• Not good for SP-score (so high false negatives)

• BAli-Phy under-aligns on biological datasets, but not on simulated 
datasets



Most likely not an issue of failure of the MCMC analyses 
to converge (48 hours, 32 processors, < 30 sequences). 

Possible explanations:
1. Model misspecification (i.e., BAli-Phy model not 

appropriate)
2. Structural alignments and evolutionary alignments 

different
3. The structural alignments are not correct  
All these explanations are likely true, but the relative 
contributions are unknown. 

What is going on? 
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