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Entering the genomic era of the

Tree of Life
Tandy Warnow

The University of lllinois




Phylogenomics
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Nature Reviews | Genetics

Phylogeny + genomics = genome-scale phylogeny estimation



Phylogenomic pipeline

Select taxon set and markers
Gather and screen sequence data, possibly identify orthologs
Compute multiple sequence alignments for each locus, and construct gene trees

Compute species tree or network:
 Combine the estimated gene trees, OR

e Estimate a tree from a concatenation of the multiple sequence alignments
Get statistical support on each branch (e.g., bootstrapping)
Estimate dates on the nodes of the phylogeny

Use species tree with branch support and dates to understand biology




T. Warnow, S. Mirarab, N. Nguyen

G. Ka-Shu Wong . Leebens-Mack N. Wickett N. Matasci
UT-Austin/UIUC UT-Austin /JUCSD UT-Austin/lUCSD

U Alberta U Georgia Northwestern iPlant

2014 PNAS study: 103 plant transcriptomes, 400-800 single copy “genes”

o 2019 Nature study: much larger!

Major Challenges:
* Large alignments (and sequence length heterogeneity)

e Multi-copy genes omitted (9500 -> 400)
 Massive gene tree heterogeneity consistent with ILS




Avian Phylogenomics Project 7

Erich Jarvis, MTP Gilbert, Guojie Zhang, Siavash Mirarab, Tandy Warnow,
HHMI Copenhagen BGI Texas Texas and UIUC

* Approx. 50 species, whole genomes

* 14,000 loci

* Multi-national team (100+ investigators)

8 papers published in special issue of Science 2014

Major challenge:
Multi-copy genes omitted
Massive gene tree heterogeneity consistent with ILS




Phylogenomic pipeline

Select taxon set and markers
Gather and screen sequence data, possibly identify orthologs
Compute multiple sequence alignments for each locus, and construct gene trees

Compute species tree or network:
 Combine the estimated gene trees, OR

* Estimate a tree from a concatenation of the multiple sequence alignments
Get statistical support on each branch (e.g., bootstrapping)
Estimate dates on the nodes of the phylogeny

Use species tree with branch support and dates to understand biology




Phylogeny/MSA estimation: CS and Statistics

* Assume DNA sequences are generated on an
unknown model tree, and try to infer the tree
(and/or alighment) from the observed
sequences seen at the leaves



Large datasets are difficult

* Two dimensions:
* Number of loci
* Number of species (or individuals)

* Missing data
* Heterogeneity

* Many analytical pipelines involve Maximum likelihood
and Bayesian estimation



This talk

1. Estimating species trees from gene trees (“easy”) —
15 minutes

2. Maximum Likelihood for estimating large gene trees
(very hard) -5 minutes

3. Multiple sequence alignment (harder, plus a
conundrum) — 5 minutes



Part |: Species Tree Estimation

Orangutan

Corbisicam

From the Tree of the Life Website,
University of Arizona



Phylogeny Estimation
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s method M statistically consistent under
model G?

Question answered by
mathematical proof

Error
in species tree

inferred by
method M

Amount of data
generated under model G and
then given to method M as input



Genome-scale data”?

error

Length of the genome



(Gene tree discordance

Multiple causes for discord,

1 including

hE * Incomplete Lineage Sorting
(ILS),

* Gene Duplication and Loss
(GDL), and

/& A * Horizontal Gene Transfer (HGT)

Gorilla Human Chimp Orang. Gorilla Chimp Human Orang.
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Gorilla Chimp Human Orang.

Multiple causes for discord,

including

* Incomplete Lineage Sorting
(ILS),

* Gene Duplication and Loss
(GDL), and

* Horizontal Gene Transfer (HGT)



MSC+GTR Hierarchical Model

Species tree

Gorilla  Human  Chimp Orangutan

- / \ N
Gene evolution model
' 3 { SN
Gene tree Gene tree Gene tree Gene tree
. @ang. A@ang. &ang. _
Chimp Gorilla Gorilla Human Chimp ~ Human Gorilla Chimp  Human ians

Sequence evolution model

¢ Sequence data ¢ ¢ Sequence data ¢
(Alignments) (Alignments)
ACTGCACACCG CTGAGCATCG AGCAGCATCGTG CAGGCACGCACGAA

ACTGC-CCCCG
AATGC-CCCCG
—-CTGCACACGG

CTGAGC-TCG AGCAGC-TCGTG
ATGAGC-TC- AGCAGC-TC-TG
CTGA-CAC-G C-TA-CACGGTG

AGC-CACGC-CATA
ATGGCACGC-C-TA
AGCTAC-CACGGAT

1. Gene trees evolve
within the species
tree (under the
Multi-Species
Coalescent model)

2. Sequences evolve

down the gene
trees (under GTR
model)



Traditional approach: concatenation

...................................................................

supermatrix

1 ffffffffffffffff 4, ssssssssssssssssssssssssssssssssssssssssssssss

: gene1 i gene?2 : gene 1000

------------------------------------------------------------

ACTGCACACCGCTGAGCATCG CAGAGCACGCACGAA
ACTGC-CCCCGCTGAGC~TCG AGCA-CACGC-CATA

~CTGCACACGGCTGA~CAC-G AGC-TAC-CACGGAT

Statistically inconsistent and can even
be positively misleading (proved for

unpartitioned maximum likelihood)
[Roch and Steel, Theo. Pop. Gen., 2014]

Mixed accuracy in simulations

[Kubatko and Degnan, Systematic Biology, 2007]
[Mirarab, et al., Systematic Biology, 2014]

Orangutan

Gorilla

Error

Chimpanzee

§ Phylogeny —>
inference
AATGC~-CCCCGATGAGC~-TC~- " " * " ATGAGCACGC-C~-TA

Human

———

Data



MSC+GTR Hierarchical Model

Species tree

Gorilla  Human  Chimp Orangutan

- / \ N
Gene evolution model
' 3 { SN
Gene tree Gene tree Gene tree Gene tree
. @ang. A@ang. &ang. _
Chimp Gorilla Gorilla Human Chimp ~ Human Gorilla Chimp  Human ians

Sequence evolution model

¢ Sequence data ¢ ¢ Sequence data ¢
(Alignments) (Alignments)
ACTGCACACCG CTGAGCATCG AGCAGCATCGTG CAGGCACGCACGAA

ACTGC-CCCCG
AATGC-CCCCG
—-CTGCACACGG

CTGAGC-TCG AGCAGC-TCGTG
ATGAGC-TC- AGCAGC-TC-TG
CTGA-CAC-G C-TA-CACGGTG

AGC-CACGC-CATA
ATGGCACGC-C-TA
AGCTAC-CACGGAT

1. Gene trees evolve
within the species
tree (under the
Multi-Species
Coalescent model)

2. Sequences evolve

down the gene
trees (under GTR
model)



Summary Method Protocol

1. Given gene sequence

Gorilla  Human  Chimp Orangutan allgnments, compute
s um‘é!LuanuﬁummJ!muwmn? yjt = z!& = ez SRS 7 g;Ear]ealtrEEEES

! | Step2 infer spemes trees _f { 2. Given gene trees,

A A PR A A S LRt B e s D el LRI SIS

Gene tree Gene tree Gene tree Gene tree combine into Species tree
Orang. ; H
Chimp HumanGori”(a)rang. Gorilla Huma Chimp  Human ChlmpGori”grang. Chimp  Human Oang, FaSter than Concatenatlon'
- i ,_.,j o » 4  andcan be parallelized
{Step 1 mfer gene trees (traditional methods)
' iSzeten k‘ B » TL_“" e e <r
ACTGCACACCG CTGAGCATCG ,  AGCAGCATCGTG CAGGCACGCACGAA
ACTGC-CCCCG CTGAGC-TCG AGCAGC-TCGTG AGC-CACGC-CATA
AATGC-CCCCG ATGAGC-TC- AGCAGC-TC-TG ATGGCACGC-C-TA

-CTGCACACGG CTGA-CAC-G C-TA-CACGGTG AGCTAC-CACGGAT



Quartet trees and the MSC

* Allman, Degnan, and Rhodes (J. Mathematical Biology 2011) proved:

* For every four species, the most probable unrooted gene tree is topologically
identical to the true species tree

* This is not true for five species (anomaly zone)



ASTRAL

[Mirarab, et al., ECCB/Bioinformatics, 2014]

* Optimization Problem (NP-Hard):

Find the species tree with the maximum number of induced

quartet trees shared with the collection of input gene trees

Set of quartet trees
induced by T

a gene tree :
all input gene trees

 Theorem: Statistically consistent under the muilti-
species coalescent model when solved exactly

15



ASTRAL

[Mirarab, et al., ECCB/Bioinformatics, 2014]

e Optimization Problem (NP-Hard):

Find the species tree with the maximum number of induced

quartet trees shared with the collection of input gene trees

Theorem: Under
MSC, the most

Set of quartet trees

induced by T
robable quartet
probable q Score(T) = |Q(T) N Q(¢)
tree is the true T
species tree agene tree all input gene trees

 Theorem: Statistically consistent under the multi-
species coalescent model when solved exactly

15



ASTRAL

[Mirarab, et al., ECCB/Bioinformatics, 2014]

* Optimization Problem (NP-Hard):

Find the species tree with the maximum number of induced

quartet trees shared with the collection of input gene trees

Set of quartet trees

induced by T
Score(T) = >_1Q(T) N Q(1)

a gene tree teT

all input gene trees

 Theorem: Statistically consistent under the multi-
species coalescent model when solved exactly

15

ASTRAL uses
dynamic
programming
to solve a
constrained
version of this
problem, and is
provably
statistically
consistent




ASTRAL

[Mirarab, et al., ECCB/Bioinformatics, 2014]

* Optimization Problem (NP-Hard):

Find the species tree with the maximum number of induced ASTRAL runs in

quartet trees shared with the collection of input gene trees O(1X]*kn)
where there

are n species
Set of quartet trees | jnd Kk genes,

induced by T and X is the set

Score(T) = Z|Q(T) NQ(t)] of allowed

bipartitions
teT

a gene tree :
all input gene trees

 Theorem: Statistically consistent under the muilti-
species coalescent model when solved exactly

15



ASTRAL on biological datasets

1 : lan : 400- n Dissecting Molecular Evolution in the Highly Diverse Plant
KP: 103 plant species, 400-800 genes Clade Caryophyllales Using Transcriptome Sequencing

Yang, et al. 96 Caryophyllales species, 1122
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Laumer, et al. 40 flatworm species, 516 genes

Molecular Phylogenetics and Evolution

journal hemepage: www.elsevior.com/locatelympov

Grover, et al. 8 cotton species, 52 genes
Re-evaluating the phylogeny of allopolyploid Gossypium L.
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a) Low/Moderate ILS (12% AD) b) High ILS (41% AD)
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Figure 1. The impact of gene tree estimation error (GTEE) and incomplete lineage sorting (ILS) on species tree error,

all datasets with 26 species and 1000 genes.
Syst Biol, Volume 67, Issue 2, March 2018, Pages 285-303, https://doi.org/10.1093/sysbio/syx077 4 E)N,z(ERE,QPBEB



https://doi.org/10.1093/sysbio/syx077

Summary and two key ideas for |LS-based
species tree estimation

 Theorem: For every four species, the most probable (unrooted) gene tree is
topologically identical to the true species tree

 ASTRAL can find the “Maximum Quartet Support Species Tree” (MQSST) in
low degree polynomial time, in a constrained search space

* Maintains statistical consistency if the constraint space is defined from the gene
trees

* Fast in practice
* Highly accurate if there are enough gene trees (even when there is gene tree
estimation error and missing data)

e Concatenation using ML (e.g., RAXML) sometimes more accurate, despite
not having guarantee of statistical consistency



G. Ka-Shu Wong J. Leebens-Mack N. Wickett N. Matasci T. Warnow, S. Mirarab, N. Nguyen
U Alberta U Georgia Northwestern iPlant UT-Austin/UIUC UT-Austin /JUCSD UT-Austin/lUCSD

o 2014 PNAS study: 103 plant transcriptomes, 400-800 single copy “genes”
o 2019 Nature study: much larger!

Major Challenges:
e Multi-copy genes omitted (9500 -> 400)
 Massive gene tree heterogeneity consistent with ILS




Gene Family Trees

(A)

Gene
duplication

Figure by Luay Nakhleh, TREE 2013

The species tree has one
duplication (at the root),
which produces a gene
family tree that has two
copies of the species tree!

Multi-copy trees: MUL-trees



Species tree estimation under GDL

Options:
1. Throw out multi-copy genes
2. Figure out orthology

3. Run methods (like gene tree parsimony) that combine gene
family trees into a species tree

Note:

Nothing proven to be statistically consistent under GDL...
until 2019



Problem: Given set of MUL-trees, infer the species tree

Note: no orthology

/ >@x detection

A B C D B1 C1 Az
(a) Species tree T ) Gene tree M; with one duplication.

A~| C1 A2 Bz D A1 C1 Bz D

(c) Gene tree My with one duplication (d) Gene tree with one duplication and
and two losses. three losses.



Theorem (Legried, Molloy, Warnow, and
Roch, 2019): ASTRAL-multi is statistically
consistent under GDL and runs in
polynomial time.

Theorem: Under GDL, most probable quartet tree is the species tree




But...ASTRAL-multi is not as accurate as other methods!

5 25 genes 50 genes 100 genes 500 genes
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2 4 i 6000-
E/ 100 200- 400
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Species Tree Methods

W ASTRAL M DupTree MFastMulRFS = MulRF
Results on 100-species datasets with moderate GDL, moderately high ILS, and high GTEE
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ASTRAL-Pro: Quartet-Based Species-Tree Inference despite Paralogy &
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ASTRAL-pro

* Input: Set of unrooted multi-copy gene family trees (mul-trees)
* Qutput: Species tree

e Step 1: “root and tag” every mul-tree
e Step 2: Use the rooting to define “speciation quartets”

e Step 3: Run ASTRAL’s DP algorithm with modified weights, reflecting
speciation quartets



ASTRAL-pro

* Input: Set of unrooted multi-copy gene family trees (mul-trees)
* Qutput: Species tree

e Step 1: “root and tag” every mul-tree
e Step 2: Use the rooting to define “speciation quartets”

e Step 3: Run ASTRAL’s DP algorithm with modified weights, reflecting
speciation quartets

Theorem: ASTRAL-pro is statistically consistent if it correctly roots-and-
tags every mul-tree



Results on 1000-taxon Species Trees

0.25 45000
¢
40000 A
0-201 35000 - o
Accuracy: no important 30000 4
accuracy differences on these 0151 ' 2
g 3 S 25000
large datasets. 5 R ‘ ;
& = 20000 - 1
. 0.10 . o E -1
Speed: ASTRID_mUItI fastest, 15000 -
but ASTRAI-Pro nearly same. oone. '
0.05 A
FastMulRFS slowest (max about | . ——
7 hours). —— 5000 - ==
0.00 T T T 0 T T T
FastMulRFS ASTRAL-Pro ASTRID-multi FastMulRFS ASTRAL-Pro ASTRID-multi
Method Method

1000 species and 1000 gene trees estimated from 100bp alignments (approx. 44% mean gene tree error), AD=20%,
duplication rate of 5.0 x 10-10, and loss/dup = 1.
James Willson et al. AICoB 2021. Lecture Notes in Computer Science, vol 12715.



Summary and two key ideas for species tree
estimation under ILS

 Theorem: For every four species, the most probable (unrooted) gene tree is
topologically identical to the true species tree

 ASTRAL can find the “Maximum Quartet Support Species Tree” (MQSST) in
low degree polynomial time, in a constrained search space

* Maintains statistical consistency if the constraint space is defined from the gene
trees

* Fast in practice
* Highly accurate if there are enough gene trees (even when there is gene tree
estimation error and missing data)

e Concatenation using ML (not consistent) sometimes more accurate, despite
not having guarantee of statistical consistency



Summary and three key ideas for species tree
estimation under [LS+GDL

 Theorem: For every four species, the most probable (unrooted) gene
tree is topologically identical to the true species tree

* ASTRAL-multi and ASTRAL-one: can find the “Maximum Quartet
Support Species Tree” (MQSST) in low degree polynomial time, in a
constrained search space — and are statistically consistent

* ASTRAL-Pro (not guaranteed statistically consistent) but:
* Roots and tags gene trees
* Statistically consistent if rooting and tagging is correct

* Highly accurate if there are enough gene trees (even when there is gene tree
estimation error and missing data)



What about HGT?

* HGT also makes heterogeneous gene trees

* Under some assumptions of random HGT operating, it may be
possible to define the “underlying” species tree.

e Statistical consistency of quartet-based methods for computing the
underlying species tree established by:

* Roch & Snir, JCB 2013
* Daskalakis & Roch, arXiv 2015

* Simulation study (Davidson et al. 2015) shows ASTRAL and wQMC
(Snir et al.) more accurate than concatenation and NJst when ILS+HGT
IS present



Gene trees -> Species trees, using Quartet Trees

* Recurring theme: the most probable quartet tree is the species tree
for:
* ILS (Multi-species coalescent)
« ILS+GDL (DLCOAL)
 Random (but bounded) HGT

* Hence, quartet-based species tree estimation (from gene trees) is
often statistically consistent, if performed properly.

* Finding MQSST (within a constrained search space) a powerful
approach that maintains consistency and is computationally efficient

* Interestingly, MQSST is also fairly robust



Part II: Large-scale gene tree estimation



Phylogeny Problem
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DNA Sequence Evolution (Idealized)

AAGACTT

AAGGCCT TGGACTT

AGGGCAT TAGCCCT AGCACTT

AGGGCAT TAGCCCA  TAGACTT AGCACAA AGCGCTT

—3rmIWE

—2rmIWE

—1rmIWE




Markov Models of Sequence Evolution (Gene Tree)

The different sites are assumed to evolve i.i.d. down the model tree, so it suffices to
model a single site

Jukes-Cantor, 1969 (simplest DNA site evolution model):
* The state at the root is randomly drawn from {A,C,T,G} (nucleotides)

 The model tree T is binary and has substitution probabilities p(e) on each edge e,
with O<p(e)<3/4

* If a site (position) changes on an edge, it changes with equal probability to each of
the remaining states

* The evolutionary process is Markovian.

More complex models are also considered, often with little change to the theory.



Phylogeny estimation as a statistical problem

* Assume DNA sequences are generated on an unknown model tree, and try
to infer the tree from the observed sequences seen at the leaves

 Many methods:

* Maximum likelihood: Find the model tree that maximizes the probability of
generating the observed sequences

* Bayesian estimation
* Distance-based methods (e.g., neighbor joining)
* Maximum parsimony

NP-hard optimization problems, heuristics



Maximum likelihood for gene tree estimation

* Theory:
* Statistically consistent

* Low sample complexity (Roch & Sly, Prob. Theory and Related Fields, 2017):
phase transition (logarithmic then polynomial)

e NP-hard

e Empirical (based on heuristics) — using RAXML (leading ML heuristic)
e QOutstanding accuracy on simulated data

e Challenging on large datasets (best methods can take CPU years or fail to run
on large datasets)



Divide-and-Conquer using Disjoint Tree Mergers

Note: use most
accurate method

Deco_mpose_ on subsets, and
species Se't .|njco treat as absolute
pairwise disjoint constraints

Full subsets.
species
set

Build a tree on each
subset

A A
AAAAA

Auxiliary
Info
(e.g., distance

matrix)

Compute tree on entire set of species
using “Disjoint Tree Merger” method

Erin Molloy,
Introduced this

approach



Divide-and-Conquer Gene Tree Estimation

Note: use most
accurate method

Deco_mpose_ on subsets, and
species set into treat as absolute
pairwise disjoint constraints

Full subsets.
species
set
- |RAXML,
Build a tree on each |Q'TREE,
subset etc
Auxiliary
Info A A
(e.g., distance A A A
matrix) A A
Compute tree on entire set of species . Guide Tree M erger

using “Disjoint Tree Merger” method
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GTM pipeline:

starting tree is IQ-Tree or FastTree
(smaller datasets),

|IQ-tree used to compute subset
trees, and

then combined using GTM
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Divide-and-Conquer using Disjoint Tree Mergers

Theorem: DTM pipelines
maintain statistical
consistency for phylogeny
estimation (assuming
subset trees computed
using statistically consistent
methods)

Decompose
species set into
pairwise disfoint
Full subsets.
species
set

Build a tree on each
subset

A A
AAAAA

Auxiliary
Info
(e.g., distance

matrix)

Compute tree on entire set of species
using “Disjoint Tree Merger” method



Divide-and-Conquer using Disjoint Tree Mergers

Decompose
species set into
pairwise disfoint
Full subsets.
species
set

Auxiliary
Info
(e.g., distance

matrix)

Theorem: DTM pipelines
maintain statistical
consistency for phylogeny
estimation (assuming
subset trees computed
using statistically consistent
methods)

Build a tree on each
subset

Also: has been
used for species
Tree estimation
(e.g., ASTRAL and
concatenation)

A A

Compute tree on entire set of species

using “Disjoint Tree Merger” method

and shows
A A A Improvements in
A A runtime and
‘ sometimes
accuracy




Part Ill: Multiple Sequence Alignment



Multiple Sequence Alignment (MSA):
a scientific grand challenge’

Novel techniques needed for scalability and accuracy

NP-hard problems and large datasets
Current methods do not provide good accuracy
Few methods can analyze even moderately large datasets

Many important applications besides phylogenetic estimation

" Frontiers in Massive Data Analysis, National Academies Press, 2013



Deletion

Substitution
.ACGGTGCAGTTACCA...
N / """ ACGGTGCAGTTACC-A.
..ACCAGTCACCTA.. .AC----CAGTCACCTA..

The true pairwise alignment

— Reflects historical substitution, insertion, and deletion
events

— Letters (nucleotides or amino acids) in the same column
are supposed to be homologs



What makes MSA difficult?

* Large numbers of sequences
* High rates of substitutions and indels
* Sequence length heterogeneity

* Very long sequences (e.g., genome-scale)



Two-phase estimation

Alignment methods Phylogeny methods

e Clustal .

. POY (and POY*) * Bayesian MCMC

* Probcons (and Probtree)  Maximum parsimony
e Probalign . : .

. MAFFT Maximum likelihood
* Muscle * Neighbor joining

* Di-align .

* T-Coffee FastME

* Prank (PNAS 2005, Science 2008) « UPGMA

. Opal (ISMB and Bioinf. 2007) . Quartet puzzlin
- FSA (PLoS Comp. Bio. 2009) P 8

« Infernal (Bioinf. 2009) e Etc.
 Etc.

RAXML: heuristic for large-scale ML optimization



Simulation Studies

S1 = -AGGCTATCACCTGACCTCCA|
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-CT------- GACCGC--
S4 = -————-- TCAC--GACCGACA
Sl::>--<::52
S4 S3

True tree and
alignment

S1 = AGGCTATCACCTGACCTCCA
S2 = TAGCTATCACGACCGC
S3 = TAGCTGACCGC
S4 = TCACGACCGACA
Unaligned
Sequences
<
Compare

S1 = -AGGCTATCACCTGACCTCCA
S2 = TAG-CTATCAC--GACCGC--
S3 = TAG-C--T-----GACCGC--
S4 = T---C-A-CGACCGA----CA
s1 sS4
s2 s3

Estimated tree and
alignment
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1000-taxon models, ordered by difficulty (Liu et al., 2009)



Re-aligning on a tree

Decompose R ..
dataset . .

\Angn subsets
N oo

Estimate MN A .
tree on merged ABCD , 5
sub-alignments

alignment




SATE, PASTA, and MAGUS Algorithms

Obtain initial alignment and
estimated ML tree

Use tree to compute

Estimate ML tree on new new alignment

alignment

Repeat until termination condition, and

return the alignment/tree pair with the best ML score



Missing Branch Rate

Alignment SP-FN Error
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Improvement over time

e SATé-1 (Science 2009): up to about 8,000
* SATé-2 (Syst Biol 2012): up to 50,000
* PASTA (J Comp Biol 2014): up to 1,000,000

* MAGUS (Bioinformatics 2021): more accurate than PASTA (and one
iteration suffices) — up to 1,000,000

Each method improved on the previous with respect to accuracy,
speed, and scalability



Statistical Alignment

* Since MSA and tree estimation are both about evolution (recognition
of homologies due to evolution), can we co-estimate them together,
using a statistical model of evolution?

* BAli-Phy (Redelings and Suchard) is the main method for this
problem.



But: BAII-Phy is limited to smalldatasets

From www.bali-phy.org/README.html, 5.2.1. Too many taxa?

“BAli-Phy is quite CPU intensive, and so we recommend
using 50 or fewer taxa in order to limit the time required
to accumulate enough MCMC samples. (Despite this
recommendation, data sets with more than 100 taxa
have occasionally been known to converge.) We
recommend initially pruning as many taxa as possible
from your data set, then adding some back if the MCMC
is not too slow.”


http://www.bali-phy.org/README.html

BAli-Phy is best on small simulated protein datasets!
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SP.Score
® BAli-Phy @ ContrAlign ® MUSCLE ® PRIME ® PROBCONS
Clustal MAFFT G-INS-i @ PRANK @ Probalign

OXTFORD

Systematic Biology, Volume 68, Issue 3, May 2019, Pages 396—411, https://doi.org/10.1093/sysbio/syy068 UNIVERSITY DRESS



BAli-Phy not so great on on 1192 small biological protein datasets

BAliBase Homstrad
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[ ]
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0.6
o8 BAli-Phy good for
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Systematic Biology, Volume 68, Issue 3, May 2019, Pages 396—411, https://doi.org/10.1093/sysbio/syy068 UNIVERSITY PRESS



Observations

e Simulated data: Bali-Phy is the best!

* Protein benchmarks: BAli-Phy in middle
* Good for Modeler score (so low false positives)
* Not good for SP-score (so high false negatives)

* BAli-Phy under-alighs on biological datasets, but not on simulated
datasets



What is going on?

Most likely not an issue of failure of the MCMC analyses
to converge (48 hours, 32 processors, < 30 sequences).

Possible explanations:

1. Model misspecification (i.e., BAli-Phy model not
appropriate)

2. Structural alignments and evolutionary alignments
different

3. The structural alignments are not correct

All these explanations are likely true, but the relative
contributions are unknown.
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