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NOT in this talk

> Univariate problems /  zero-

dimensional problems.

> Cylindrical Algebraic Decomposi-
tion of real solution sets.

> Certificates of positivity.
Peyrl /Parillo, Kaltofen/Yang/Zhi

We will focus on Chap. 13 — 16.



Real Algebraic Geometry and some Applications

Basic objects.

Fi=-=F,=0, G1>0,...,Gs>0

in Q[Xq,...,X,] of degree < D — semi-algebraic set S in R”

Need of fast and reliable software — complexity estimates




State-of-the-art and what we want to do

Collins ~ 70’s Cylindrical algebraic decomposition — doubly exponential in n

Hong, McCallum, Arnon, Brown, Strzebonski, Anai, Sturm, Weispfenning

Software: QEPCAD, Redlog, SYNRAC, Mathematica, Maple, ...

> Quest for algorithms singly exponential in the number of variables

Grigoriev/Vorobjov, Canny, Renegar, Heintz/Roy/Solerno, Basu/Pollack/Roy

Existence Do)
Dimension DO(ndim)
Connectivity Do’

> Primary goal: obtain fast and reliable software

> Better understanding of the complexity — constant in the exponent?
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Hong, McCallum, Arnon, Brown, Strzebonski, Anai, Sturm, Weispfenning

Software: QEPCAD, Redlog, SYNRAC, Mathematica, Maple, ...

> Quest for algorithms singly exponential in the number of variables

Grigoriev/Vorobjov, Canny, Renegar, Heintz/Roy/Solerno, Basu/Pollack/Roy

Existence DO") ~ O (8°) (regular systems) else ~ O (§*)

with § = DP(D —1)" 7P ("_))
Dimension potndim) o (D*" 4™~ hypersurfaces Bannwarth/S.
Connectivity DoO®?)

Software: RAGIlib

> Primary goal: obtain fast and reliable software

> Better understanding of the complexity — constant in the exponent?



Critical Point Method: Basic Ideas

Reduction of the dimension

through Global Optimization

Properties of Critical Points

Vorobjov, Renegar, Gournay /Risler,
Heintz/Roy/Solerno, Basu/Pollack/Roy 96

> Existence: from n-variate to univariate problems.
aT) =0,  X;=q(T)/a(T), (1<i<n)
> One-block quantifier elimination.
q(Y1,...,Y,.,T) =0, Xi=qY1,....,Y.,T)/q(Y1,..., Y., T)
> Connectivity queries: reduction to the curve case.

Q(Ua T) = 0, X; = Qi(U7 T)/QO(Ua T)



Polar varieties — definition

Todd /Severi ~ 30's — Piene/Teissier ~ 75's

For 1 <i<mn,let m; : (x1,...,Xp) = (X1,-..,X;)

Polar variety W, associated to m; and V (Fy,...,F),)

Fi=---=F,=0 and

Example: F, = Xi+X5+X3-1
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Modelings

> Minors of the truncated jacobian

matrix ~» Determinantal modeling

> Linearly independant vectors in the

kernel ~» Lagrange system

F =0, A-jac(F,1)=0, u-A=1



Geometry of polar varieties

Let V={xeC"| Fi(x) =---= F,(x) =0} — regularity assumptions
Transfer of properties of IV to polar varieties in generic coordinates.

> Dimension is well controlled
dim(W7) = 0,dim(Ws) =1,...,dim(W;) =7 —1
Bank/Giusti/Heintz/M’bakop/Pardo 97 ‘
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Geometry of polar varieties

Let V ={xe C"| Fi(x) =--- = F,(x) =0} — regularity assumptions
Transfer of properties of IV to polar varieties in generic coordinates.

> Dimension is well controlled
Bank/Giusti/Heintz/M’bakop/Pardo 97

> Closedness of projections
Win(VNR")=0and VNR"” #0) = 7 (VNR") =R

L S./Schost 03

ﬁ Transfer of Noether position prop-

erties to polar varieties.

Removal of regularity assumptions Hong/S.

e Deformation techniques without using

infinitesimal arithmetic

e Ideal theoretic operations



Polar varieties and Grobner bases Faugere/S./Spaenlehauer

(Arithmetic) Complexity results
(determinantal modeling, deg(F;) = D for 1 < i < p)

> Dreg < Dp—1)+ (D —2)n+2
> When D = 2, O(n*"*)
> O (ﬁ((D - 1)6)”“) if D > 2 and p is fixed.




Polar varieties and Grobner bases Faugere/S./Spaenlehauer

(Arithmetic) Complexity results
(determinantal modeling, deg(F;) = D for 1 < i < p)

> Dreg < D(p—1) + (D —2)n +2
: > When D = 2, O(n*"*)
> 0 (L((D=1)e)™) if D >2 and p is fixed

D=4, p=2, n=8.
DEG(Z)=81648,

Total computation time: = 10 hours

D=2, p=4, n=21.
DEG(Z)=18240,

Total computation time: = 3 hours
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D > 2: Compl == 107 8DEG?218

D=2 p=4: Compl=5-10"11,10.55

Generalizations to mixed degrees in Spaenlehauer, SIOPT 2014



Polar varieties and homotopy techniques

—1
o=DP (D—-1)"""? (n 1) — generic degree of the 0-dim. polar variety
p PR

> Symbolic homotopy (Geometric Resolution Algorithm)
(Giusti/Lecerf/Salvy, Heintz, Montana, Solerno, Pardo, etc.)

Incremental algorithm — well-suited for complete intersections

Use of Lagrange system yields a complexity ~ O(d?) S./Schost

> (Semi-)Numerical homotopy
Sommese/Wampler Bates, Hauenstein, Leykin, Verschelde, etc.
Path-tracking from a “good” start system ~~ Lagrange system
BUT far from being optimal for mixed degrees.
On-going work (Hauenstein/S.):
> Dedicated homotopy in the case of mixed systems.

> Possible generalization to determinantal systems.



Summary

Software RAGIib (Real Algebraic Geometry Library)
Scales to ~ 8-10 variables (D = 4, n = 6, dense equation — 2 hours)

Applications in biology, comput. geometry, numerical analysis, robotics, etc.

e Non-validity of models in bio-informatics
e Discovery fo the stability region of MacCormack’s scheme for PDEs

e Computational geometry: Voronoi diagram, Perspective problems, etc.

HRLLABORATORIES, LLC - [Jsed for an engineering application

Systems of inequalities with ~ 6 — 8 wvariables

| HRL |

Unreachable by current CAD implementations
through Erich Kaltofen’s consulting activity

New challenges: topological informations such as connectivity queries?
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Example: torus

Roadmap



Complexity results for roadmaps

DO") (probabilistic) / DO (deterministic) Canny (~ 88)
Further improvements (Grigoriev/Vorobjov, Gourney/Risler, Heintz/Roy /Solerno)
~ DO(") deterministic Basu/Pollack /Roy
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~ DO(") deterministic Basu/Pollack /Roy
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A landmark result: Basu/Roy 2014 (nD)é(m deterministic, no hyp.
BUT (n'°e(®) D)O(nlog*(n) and Output size: (n'0s2(") D)nlogs(n)

n <log5(n) ford<n <16

Y

vn <login for4<n<2' =65536
2

Input: smoothness and compactness hyp. f = (f1,..., f,) red. reg. sequence

O (E(4n>\D)6(>\—|—3)(n—|—3>\))

Output: (nD)>A3)(n+34)

with A = log,(n—p) and E = EvalComplexity(f)



A general form of Canny’s algorithm S./Schost 2011

Input / output
e input: a “nice” system f = fi,..., f, defining V =V (f) (d = dim(V))

e output: a roadmap of V(f)

Main idea: for a suitable 7 < d

e recursive call on W,

— we need W, to satisfy the input assumptions.

e recursive call on finitely many fibers of m;_; (about D")
— we need to perform computations over “base points”.

Done by revisiting Lecert’s geometric resolution algorithm
e merge the results
Expectedly, running time about D™ where p is the depth of the recursion.

We want to use this recursive scheme with i ~ (n — p)/2



Smoothness of polar varieties Bank/Giusti/Heintz/S./Schost

W, = {x eV | dim(m;(TV) <i— 1}

can be decomposed into Thom-Boardman strata.

Si,i—l = {X eV ’ dlm(m(TxV)) =17 — 1}
Si,i_g = {X eV ‘ dlm(m(TXV)) =7 — 2}

Si; ={x eV |dim(m(1xV)) = j}

Sio={x eV |dim(m;(TxV)) = 0}
Mather, Alzati/Ottaviani, Alzati/Ottaviani
In generic coordinates:
> T-B strata are locally closed smooth constructible sets.

> Dimension of T-B is controlled.

> When 1 < dim(vz(f))+3, Si,; has dimension <01 <5 <p—2.



Our divide-and-conquer algorithm

Recursive calls: require to manipulate polar varieties of polar varieties

F, = f, Ll.jac(f,il), L1.u1 =1 — Wz with 19 d/2

F, = Fl, Lg.jaC(Fl, ig), Lous, =1 — WiQ with 19 ~ ’61/2

FT = FT—l) Lr.jaC(FT_l,?:r), LQ.HQ =1 — Wir with ir ~ ir_1/2
2

Multi-homogeneous systems, with ~ n“ variables, and multi-degrees

(D, 0,...,0) for fi,...,[fp
(D— 1,0,...,0) for fp1-|—17°°'7fp1-|—p2

(D — 1, 1, ceey 1) for fp1-|—---—|—pk—1+17 e eey fp1+---+pk°

Good control on the degree bounds — ~ (nD)"



First implementation
> Based on the latest Faugere’s FGb library for computing Grobner bases
and rational parametrization.

> No assumption is checked ; routines for optimizating the choice of linear

changes of variables are not implemented.

> Tests on random dense systems of quadrics and quartics (worst case).



First implementation
Based on the latest Faugere’s FGb library for computing Grobner bases
and rational parametrization.

No assumption is checked ; routines for optimizating the choice of linear

changes of variables are not implemented.

Tests on random dense systems of quadrics and quartics (worst case).

scales to problems of dimension 5 (case of quartics) and problems of

dimension 9 (quadrics).

new ideas behind this implementation and careful computation of
“critical points of critical points”.

size of the output is clearly overestimated.



Conclusions and Perspectives

> Strong interaction between algorithm /software design and complexity

> Exact methods based on the critical point method can now solve

efficiently non-trivial problems

> You should NOT conclude that CAD becomes useless

> no other alternative to quantifier elimination
> extremely efficient for low-dimensional problems

> highly non-trivial (and efficient) algorithms for curve of surface

topology based on CAD-like techniques

> Diversity is good.



