

towards petabase-scale genomics

Rayan Chikhi, Institut Pasteur

Simons Institute, Very Large-scale 'Omics' 2022

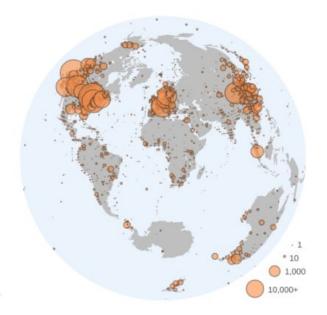
Hello

- PI, Bioinformatics algorithms lab @ Institut Pasteur
- CV: PhD@ENS Rennes, Postdoc@PSU, CNRS

Research:

- *de novo* assembly
- k-mer methods
- metagenomics
- large-scale bioinfo

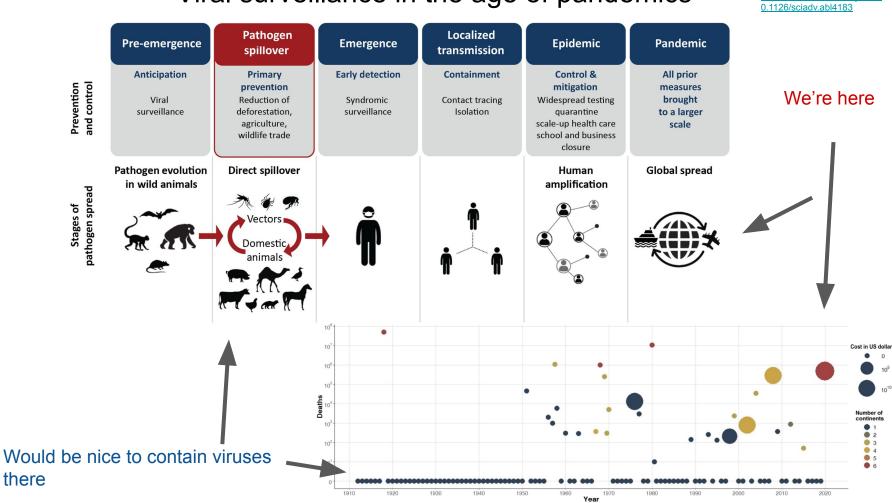
@RayanChikhi on Twitter


http://rayan.chikhi.name

Petabase-scale viral discovery

Rayan Chikhi, on behalf of the Serratus team

We analysed all available RNA sequencing data and discovered 10x more viruses species than previously known, including coronaviruses.


Nature, 2022

Viral surveillance in the age of pandemics

Source: https://www.science.org/doi/1

SARS-CoV-2 circulate(s|d) among animals

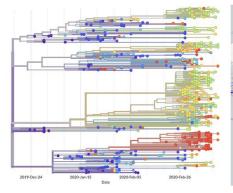
Tiger at zoo in Knoxville tests positive for SARS-CoV-2, two others possibly infected

A veterinary team from the University of Tennessee College of Veterinary Medicine is taking care of the three tigers.

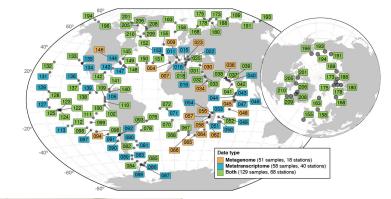
CNNWire By Joe Wenzel

Saturday, October 31, 2020

Ontario dog believed to be first in Canada to test positive for COVID-19


Officials said that the risk of infection and illness in most domestic animals is low

KATYA SLEPIAN / Oct. 26, 2020 1:45 p.m. / CANADA & WORLD / NEWS


most domestic Denmark to cull mink herd over coronavirus mutation fears – here's what the science says

Enter sequencing efforts

Tara Oceans, Salazar et al. (2019)

Nextstrain

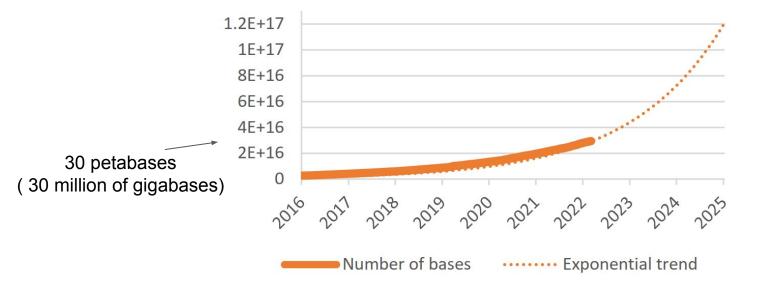
SRA

SRA

.

SRA

Sequence Read Archive (SRA) makes biological sequence data available to the research community to enhance reproducibility and allow for new discoveries by comparing data sets. The SRA stores raw sequencing data and alignment information from high-throughput sequencing platforms, including Roche 454 GS System®, Illumina Genome Analyzer®, Applied Biosystems SOLiD System®, Helicos Heliscope®, Complete Genomics®, and Pacific Biosciences SMRT®.


Search results

Items: 1 to 20 of 19964		NextSeq 500 paired end sequen Metadata Analysis (alpha) Reads Dow						
1 .	NextSeq 500 paire 1 ILLUMINA (Illumina Accession: ERX34307	Filter: Find Filt	ered Download 🥥 What does it do?					
2 .	NextSeq 500 paire 1 ILLUMINA (Illumina Accession: ERX34307		ACTGAGCGCGCAGCTCCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCGGCGAGCTCCACCAGT TTCCAGCCGCGCGGTTGCCCCGGACGTCGCGCGACAGCGCGGCGGAGCTGCCCAACTATCACGG GTAAGCGTGGTAAGCCGTCTCGCGGATCGCCA SgnIJSRAJERR3407135.1.2 NB551234:144:HL523AFXY:1:11101:5421:1076 R (Biological) ATCAACAACAGCGGGAATACCACCTCTTCCAGCCGTTGTTTCCAACCAA					
3 .	NextSeq 500 paire 1 ILLUMINA (Illumina Accession: ERX34307	 2 2. ERR3407135.2 ERS3549882 name: NB551234:144:HL523AFXY:1:11101:2248 member: default 						
-		3. ERR3407135.3 ERS3549882 T name: NB551234:144:HL523AFXY:1:11101:2566: A member: default 4. ERR3407135.4 ERS3549882	CACCGAAACCGCGACAGCGCAATGGAACGCATCA AACCGCATCCGAAACGAGATGCGCGTTAAT	TTGC	GCAGGTGTTGCAGAAT.	ACGGA		
		name: NB551234:144:HL523AFXY:1:11101:21199 member: default 5. ERR3407135.5 ERS3549882 name: NB551234:144:HL523AFXY:1:11101:23504 member: default						

Help

Search

Growth of the Sequence Read Archive



NCBI SRA database : 30 PB

Data crypt

All the raw reads sleep there, undisturbed

All RNA-seqs (2008-2020) 5 million samples, 10.2 Petabases

Downloading all RNA-seq samples:

Guesstimate:

How many years would it take to download 10 petabases (i.e. 10,000,000,000 MB) at 1 MB/sec?

Hint: ~30,000,000 seconds in a year

Downloading all RNA-seq samples:										
Goggele	(10 peta	bytes divided	by 1 megabyte) / (seconds per year)			X Q			
	Q Tous	🖾 Images	Actualités	Shopping	▶ Vidéos	: Plus	Outils			
	Environ 2	91 000 résultat	s (0,57 secondes)						
	Ð			((10 pe		egabyte)) / (seco 6.8876		years at 1	MB/s	

Serratus: a cloud analysis of all RNA-seqs

Welcome to Serratus

An open-science viral discovery platform

Q Explore

Tutorial 🖸

5,696,598 runs processed | 10,167,539,273,088,080 nucleotides

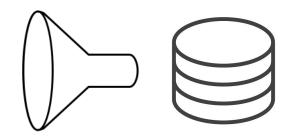
Serratus: two analyses

1) Nucleotide alignments

all RNAseqs vs all RNA viral genomes

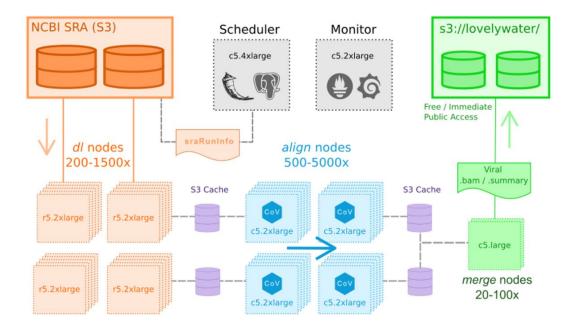
> Discovered new coronaviruses

2) Protein (translated) alignments

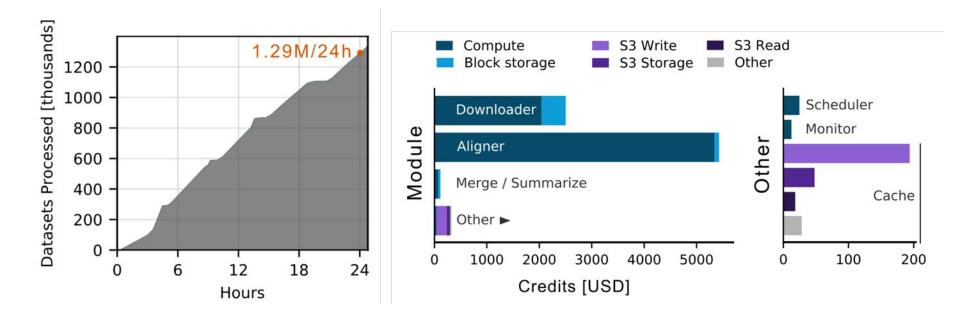

all RNAseqs vs a universal RNA virus gene

> Discovered 130,000 new RNA virus species

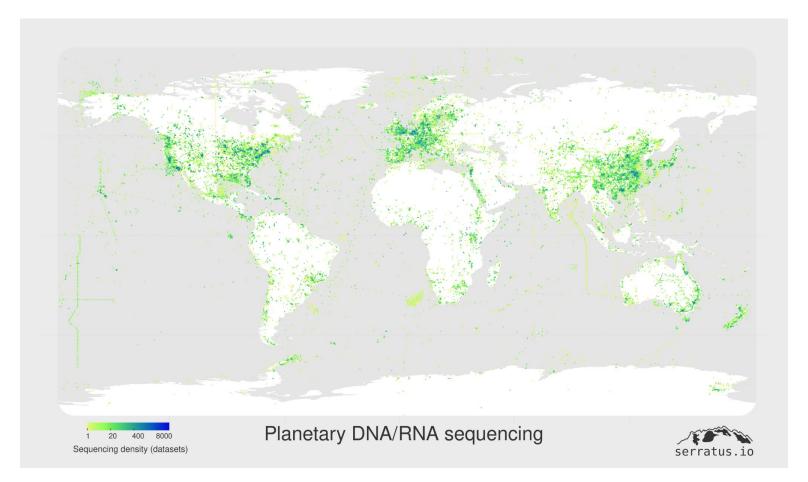
Analysis 1:


Serratus download & align (bowtie2) to all viral reference genomes

55,715 CoV+ samples


All RNA-seqs

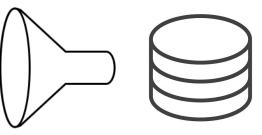
Serratus architecture


- Aggressively cost-optimized
- Native access to SRA on S3
- Dynamic scaling up to ~22,250s vCPU
- Open Source: GPLv3

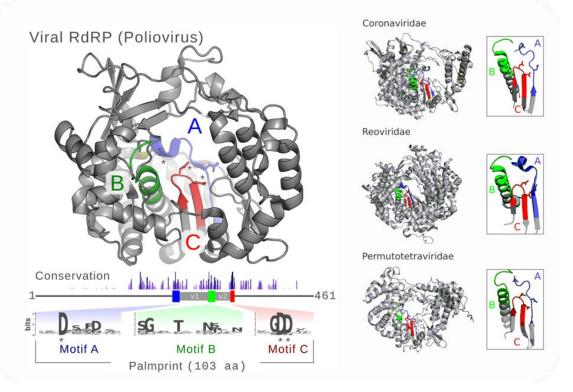
Serratus performance & costs



<u>1 million NGS libraries / day</u> <u>\$0.005 / library</u>


Geography of SRA samples

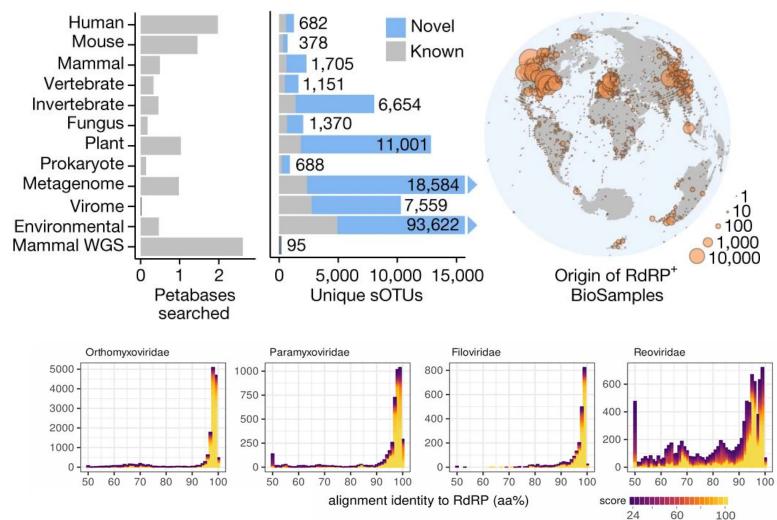
Analysis 2:


Serratus download & sensitive align (DIAMOND2) to all known versions of RNA virus universal gene

aligned reads (.bam files)

All RNA-seqs

Analysis 2, search database: 15,060 known RNA viruses RdRP gene


- RNA Virus "Palmprint"
- Species threshold:
 90% amino-acid id

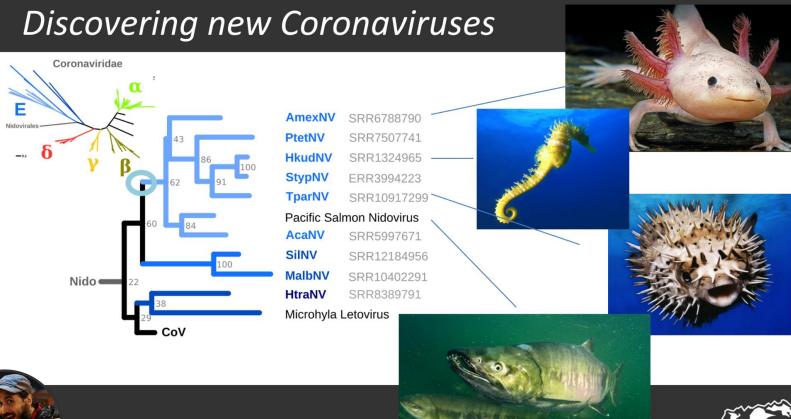
(Babaian & Edgar, 2021. bioRxiv)

Assembly of all viral RdRPs (Analysis 2)

"Micro-assembly" of all RdRp-matching reads within each sample

• SPAdes assembler & GNU parallel

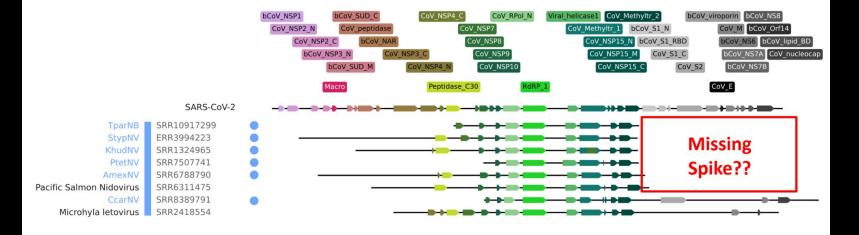
"petabase scale" on Google, www.serratus.io


Welcome to Serratus

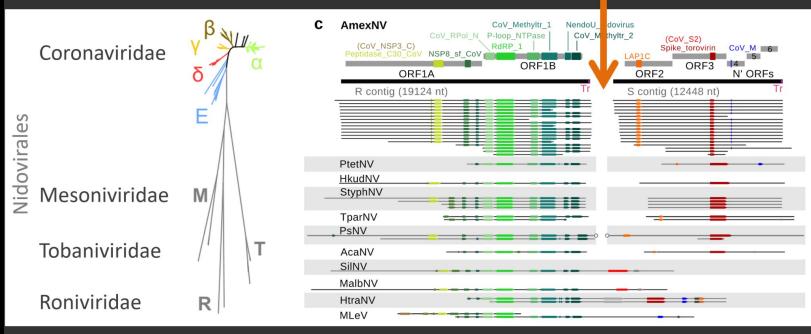
An open-science viral discovery platform

Q Explore

Tutorial 🗹


5,696,598 runs processed | 10,167,539,273,088,080 nucleotides

Slides credit: A. Babaian



Discovering new Coronaviruses

Segmented Coronaviruses?

Re-writing the textbook definition of a Coronavirus

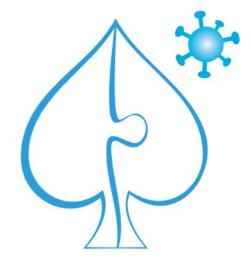
Metagenome & metavirome assembly

Usually:

Reconstruct all the genomes

Computationnally intensive

Analysis 1:


Reconstruct only CoV genome(s)

Computationnally intensive

Analysis 2:

Reconstruct only RdRP genes

Computationnally easy(/ier) :)

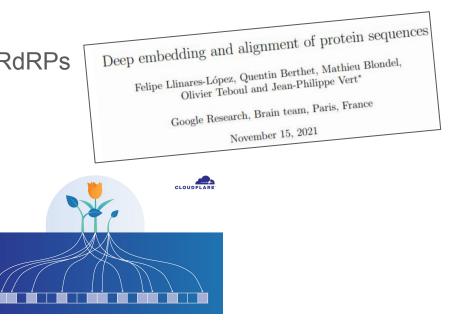
SPAdes assembler

rnaSPAdes

coronaSPAdes

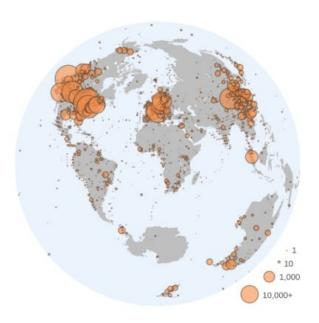
0	Name	٣	Instance ID	٣	Instance Type 👻	Availability Zone		screenshot: P. Barbera)	
	Comp	ute	i-004fc86f8363	36d17	c5.9xlarge	us-east-2a	🥥 ru	nning	
ſ	Comp	uto	i-01af64dd577	f162h5	c5 9vlarge	us-east-2a	🥥 ru	nning	
AWS Batch fram	newor	k for la	arge-scal	e ass	embly	us-east-2a	🥚 ru	nning	
	Comp	ute	i-0879ad68f76	a4a54e	c5.9xlarge	us-east-2a	🥥 ru	nning	
(Comp	ute	i-094ddc9b931	fde962	c5.9xlarge	us-east-2a	🥥 ru	nning	
Peak: ~28,000 vCPUs	Comp	ute	i-0c8f6d93593	531c32	c5.9xlarge	us-east-2a	🥚 ru	nning	
	Comp	ute	i-0e08ab6c5a3	8d0ce3f	c5.9xlarge	us-east-2a	🥚 ru	nning	
0	Comp	ute	i-0ea10648ade	eabf68	c5 9xlarge	us-east-2a	nu	nning	
AWS Batch > Dashboard Dashboard							Last	updated: 07:11:08 PM. /	Auto-refreshes every 60 se
Jobs overview									
RUNNABLE			RUNNING			SUCCEEDED			FAILED
450			173			48			817
Job queue overview									
Job queue		▼ SUBM	ITTED 🔻 PE	NDING	▼ RUNNABLE ▼	STARTING V R	UNNING	SUCCEEDED	▼ FAILED
RayanUnitigsBatchProcessingJobQueue								⊘0	80
RayanSerratusDlBatchProcessingJobQueu	ie							⊘ 0	0 🛞
RayanSerratusAssemblyBatchJobQueue		0	0		450	7 1:	'3	⊘ 48	817

But, for all-RdRp assembly (Analysis 2)..


With a single "bigger" instance (c6a.48xlarge, 192 cores)

10⁵ viral species known, 10⁸ left to discover

What's next?


- DNA viruses
- Lower homology detection with known RdRPs
 - Replacing Bowtie 2 / Diamond by ...?

- A global index of the SRA
 - nearly feasible with k-mers already
 - would only support exact search

Summary:

- 132,260 novel RNA virus species
- 1 new group of CoV-like segmented virus
- hyper-compressed (300-500 nt) Zetaviruses
 53 novel deltaviruses (cancer),
 252 huge phages, ..

All our data is accessible: https://github.com/ababaian/serratus/wiki/Access-Data-Release 7 TB of alignments and assemblies

More details:

https://www.nature.com/article s/s41586-021-04332-2

https://github.com/ababaian/serratus/

Chat with us on Slack:

https://join.slack.com/t/hackseq-rna/sh ared_invite/zt-ewlzh9qf-SiNkxvvTJflcut FN0h5jlQ

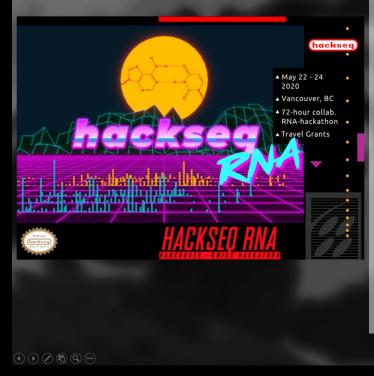
nature

Explore content 🖌 About the journal 🖌 Publish with us 🗸

<u>nature</u> > <u>articles</u> > article

Article Published: 26 January 2022

Petabase-scale sequence alignment catalyses viral discovery


Robert C. Edgar, Jeff Taylor, Victor Lin, Tomer Altman, Pierre Barbera, Dmitry Meleshko, Dan Lohr, Gherman Novakovsky, Benjamin Buchfink, Basem Al-Shayeb, Jillian F. Banfield, Marcos de la Peña, Anton Korobeynikov, Rayan Chikhi & Artem Babaian

 Nature
 602, 142–147 (2022)
 Cite this article

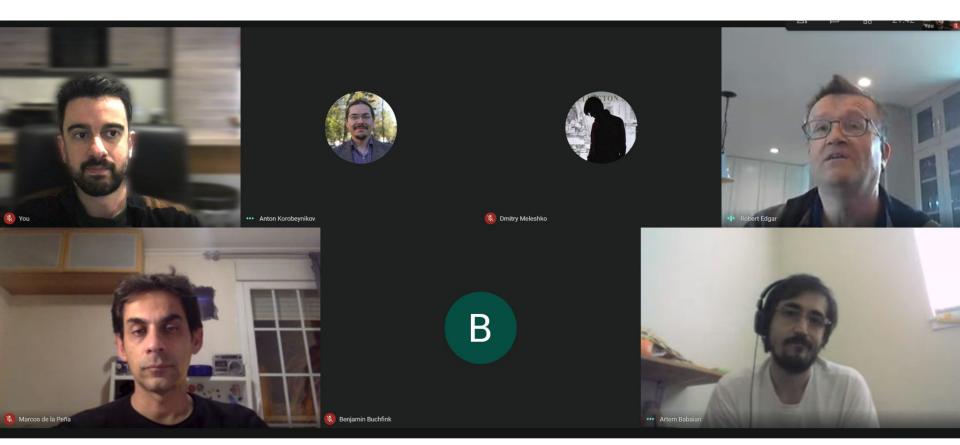
 32k
 Accesses
 1024
 Altmetric
 Metrics

Abstract

Public databases contain a planetary collection of nucleic acid sequences, but their systematic exploration has been inhibited by a lack of efficient methods for searching this corpus, which (at the time of writing) exceeds 20 petabases and is growing exponentially¹. Here we developed a cloud computing infrastructure, Serratus, to enable ultra-highthroughput sequence alignment at the petabase scale. We searched 5.7 million biologically diverse samples (10.2 petabases) for the hallmark gene RNA-dependent RNA polymerase and identified well over 10⁵ novel RNA viruses, thereby expanding the number of known species by roughly an order of magnitude. We characterized novel viruses related to coronaviruses, hepatitis delta virus and huge phages, respectively, and analysed their environmental reservoirs. To catalyse the ongoing revolution of viral discovery, we established a free and comprehensive database of these data and tools. Expanding the known sequence diversity of viruses can reveal the evolutionary origins of emerging pathogens and improve pathogen surveillance for the anticipation and mitigation of future pandemics.

Digital Collaboration

- Anton Korobeynikov
- Artem Babaian
- Basem Al-Shayeb
- Benjamin Buchfink
- Dan Lohr


-

- Dmitry Meleshko
- Gherman Novakovsky
- Jeff Taylor
- Jillian F. Banfield
- Marcos de la Pena
- Pierre Barbera
- Rayan Chikhi
- Robert C. Edgar
- Tomer Altman
- Victor Lin

(St. Petersburg) (Vancouver) (Berkeley) (Tubingen) (Boulder) (Ithaca) (Vancouver) (Vancouver) (Berkeley) (Valencia) (Heidelberg) (Paris) (Sonoma) (San Francisco) (Gainsville)

All equal contributions

We never met IRL

Serratus

Known RNA Virome

Earth's Virome

We are here

Summary

- Lots of genomics data
- Many great analyses could be made
- Cloud helps at the largest scale

Credits

Some of the people who initiate these "small-group but large-scale" analyses:

C. Titus Brown, Ben Langmead, Artem Babaian, Rob Finn, Adam Phillippy, Andre Kahles, Zamin Iqbal, Carl Kingsford, Rob Patro, Christina Boucher, Pierre Peterlongo, Olivier Jaillon, Dominique Lavenier, Antoine Limasset, Camille Marchet, Daniel Gautheret, Thérèse Commes, and many others I forget to mention

Additional credits:

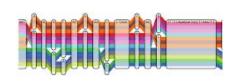
k-mer people

Slides advise: Michel Attafeu, Sophie Shaw, Na, Cami, Karin, M, Malfoy

Sequence Bioinformatics

@ Institut Pasteur

Genomes & metagenomes assembly


PRAI RIE INSTITUT

PaRis Artificial Intelligence Research Institut

Cnr

Algorithms and data structures on k-mers

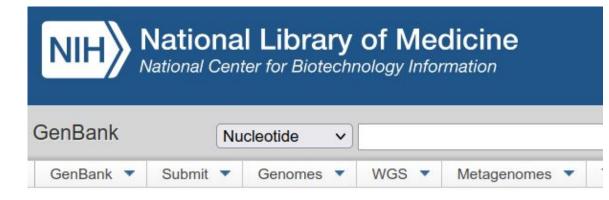
Sequence search in very large datasets

Pangenomics



Bonus slides

Part 1.5: "Spill the beans! Where is this magical bigger data you speak of?"


GenBank

Type: assemblies Size: 1.2 TB (<u>April 2022</u>) Diversity: high

Particularity: all sequences are annotated

NCBI WGS

Whole Genome Shotgun Submissions

What is Whole Genome Shotgun (WGS)?

Whole Genome Shotgun (WGS) projects are genome assemblies of incomplete genor eukaryotes that are generally being sequenced by a whole genome shotgun strategy.

Type: assemblies Size: 16 TB (<u>April 2022</u>) Diversity: high

Difference with GenBank: sequences are not necessarily annotated

NCBI
SRA

RA	SRA	Advanced Search
GA	ATAT ATAT CGCC TTGC TA	SRA Sequence Read Archive (SRA) makes biological sequence data available to the research community to enhance reproducibility and allow for new discoveries by comparing data sets. The SRA stores raw sequencing data and alignment information from high-throughput sequencing platforms, including Roche 454 GS System®, Illumina Genome Analyzer®, Applied Biosystems SOLID System®, Helicos Heliscope®, Complete Genomics®, and Pacific Biosciences SMRT®.
Sea	arch results	
Iten	ns: 1 to 20 of 19964	NextSeq 500 paired end sequencing (ERR3407135)
		Metadata Analysis (alpha) Reads Download
	NextSeq 500 paire	
1.	1 ILLUMINA (Illumina	
	Accession: ERX34307	
	NextSeq 500 paire	< 1 1 346553 > View: Diological reads
2.	1 ILLUMINA (Illumina	Deade (constants)
	Accession: ERX34307	name: NB551234:144:HL523AFXY:1:11101:5421: >anllSRAIERR3407135.1.1 NB551234:144:HL523AFXY:1:11101:5421:1076 F (Biological)
		member: default ACCTGAGCGCGCGCGCGCGCGCGCGCGCGGAATTTGGGATGTTCCATCAGT
	NextSeq 500 paire	2. ERR3407135.2 ERS3549882 TTCCAGGCGCGTTTGCCCTGACGTCGCGACATGCGCGAACTGCAAGCTGCCAAATATCACGG GTAAGCGTGGTAAGGCGTGGTAAGGCGTTTCGGGATCGCCA
3.	1 ILLUMINA (Illumina	name: NB551234:144:HL523AFXY:1:11101:22482 member: default >gnl SRA ERR3407135.1.2 NB551234:144:HL523AFXY:1:11101:5421:1076 R (Biological)
	Accession: ERX34307	ATCAACAACAACGCGGGAATACCACCTCTTCCAGCCGTTGTTTCCAACGCGTTAAT
_	1. 1 <u>. 1</u> . 1.	3. ERR3407135.3 ERS3549882 name: NB551234:144:HL523AFXY:1:11101:2566; AAACCGCATCCGAAACGAGATGCGCGCGTTAAT member: default
		4. <u>ERR3407135.4</u> <u>ERS3549882</u> name: NB551234:144:HL523AFXY:1:11101:21199 member: default
		5. ERR3407135.5 ERS3549882 name: NB551234:144:HL523AFXY:1:11101:23504 member: default

What is STAT good for?

- Say you have a model organism
 - Search for all sequencing data containing that organism
 - Find host-associations
 - Find co-occurrences with other species
 - Say you have a set of samples
 - Determine set of species in them
 - Find other similar samples
- etc.,

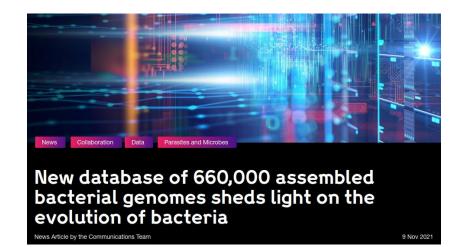
NCBI STAT

A taxonomic index of all sequencing data

Method Open Access Published: 20 September 2021

STAT: a fast, scalable, MinHash-based *k*-mer tool to assess Sequence Read Archive next-generation sequence submissions

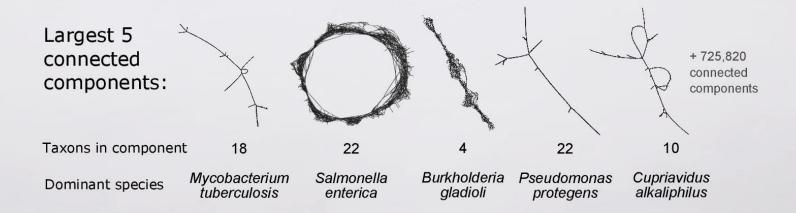
Kenneth S. Katz ^{C,} Oleg Shutov, <u>Richard Lapoint</u>, <u>Michael Kimelman</u>, <u>J. Rodney Brister</u> & <u>Christopher</u> <u>O'Sullivan</u>


Genome Biology 22, Article number: 270 (2021) Cite this article

"we have processed more than 27.9 Peta base pairs from runs"

Taxonomy Analysis

Unidentified reads: 40.04% Identified reads: 59.96% -Viruses: 50.55% ssRNA viruses: 50.55% Measles morbillivirus: 50.55% dsDNA viruses, no RNA stage: < 0.01%</p> ssDNA viruses: < 0.01% Ortervirales: < 0.01%</p> cellular organisms: 9.4% Bacteria: 6.44% Proteobacteria: 1.76% Terrabacteria group: 0.48% -FCB group: < 0.01% Acidobacteria: < 0.01%</p> Eukaryota: 1.94%


Blackwell, .., Iqbal's 661k bacterial genomes collection

Type: assemblies Size: 2.5 TB Diversity: medium dBG? yes Results: Pangenome graph of 661,405 bacterial genomes Data from Blackwell et al, 2021:

2.9T 661k_assemblies.fa
1.6T 661k_assemblies.fa.lz4

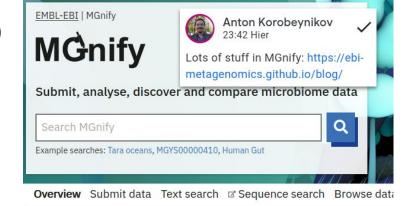
rust-mdbg -k 10 -l 12 --density 0.001 --minabund 1 661k_assemblies.fa.lz4

Many others (often metagenomic)

In this thread we are releasing a concatenated FASTA file of all assemblies produced by Serratus: 59,256 SRA accessions, 5.9 terabases total.

Uros @uki156 · Mar 22

Replying to @RayanChikhi


When you said "in this thread we are releasing", I was hoping you were actually going to tweet out the entire thing $% \left(\frac{1}{2} \right) = 0$

Resource | Open Access | Published: 20 July 2020

A unified catalog of 204,938 reference genomes from the human gut microbiome

Alexandre Almeida 🖂, Stephen Nayfach, Miguel Boland, Francesco Strozzi, Martin Beracochea, Zhou Jason Shi, Katherine S. Pollard, Ekaterina Sakharova, Donovan H. Parks, Philip Hugenholtz, Nicola Segata, Nikos C. Kyrpides & Robert D. Finn 🖂

MGNify: a database of assemblies of metagenome studies from ENA searchable by metadata

Text se	earch 🔿	Sequence search 🔿	
Name, b	iome, or keyword	Sequence search	
Analys	is types	Public	data
X Analys	is types	Public	data
x Analys 356039	amplicon	Public 8696	data studies
a Analys 356039 28873		-	
356039	amplicon	8696	studies
356039 28873	amplicon assemblies	8696 661121	studies