

Evolution of germline mutation spectrum in humans: In light of big 'omics' datasets

Priya Moorjani

Department of Molecular & Cell Biology Center for Computational Biology University of California, Berkeley

Computational Challenges in Very Large-Scale 'Omics' Simons Institute

Lab focus: Human Evolutionary Genetics

Germline mutations are the ultimate source of genetic variation

Fuel of evolution

Cause of heritable diseases

"Molecular clock" for dating events

	UCIUBER, 1935	No. 3
THE RATE	OF SPONTANEOUS MUT	TATION
(OF A HUMAN GENE.	

Pedigrees

Among populations

The textbook view of mutation rate

Crow 2000; Ségurel et al. 2014; Gao et al. 2016

 d_i = number of cell divisions in stage i μ_i = mutation rate per cell division in stage i

Whole-genome sequencing of parent-offspring trio enables direct survey of germline mutations in one generation

Cell divisions with age

Age of parent at conception (yr)

deCODE genetics: Jónsson et al. 2017

Surprise 1: Stable male-bias with age suggests underappreciated role of non-replicative sources to mutagenesis

In humans

Gao, Moorjani et al. PNAS 2019

Wu, Ober, Wall, Moorjani* & Przeworski*, PLoS Biology 2020

ATTTCGA

ATATCGA

Whole-genome sequencing of parent-offspring trio enables direct survey of germline mutations in one generation

deCODE genetics: Jónsson et al. 2017; Gao et al. 2019

Surprise 2: The unstable molecular clock: Large variation in substitution rates and spectrum across primates

Moorjani et al. 2016

Surprise 3: The mutation spectrum of polymorphisms differ across human populations

The transient elevation in TCC>TTC mutation rate in Europeans vs. non-Europeans

also Speidel et al. 2020; Mathieson and Reich 2017

The spectrum of polymorphisms is shaped by multiple evolutionary forces

Timing and causes of evolution of mutation rates in humans

bioRxiv. DOI: https://doi.org/10.1101/2022.06.17.496622

Ziyue Gao, Univ. of Pennsylvania

Yulin Zhang, UC Berkeley

Key questions:

- How many "independent" changes in the mutation spectrum happened during human evolution?
- When and in which population(s) did they occur?
- What are the causes? Genetic modifiers, environmental exposure, or changes in generation time?

How can we better characterize variation in mutation spectrum?

We developed a new framework with following features:
(1) Has a time dimension to allow reliable inter-population comparisons;
(2) Controls for effects of GC-biased gene conversion and selection.

Mutation age inferred based on genealogy reconstruction

Pairwise comparison matched for gBGC effects

Mutation type 1	Mutation type 2	gBGC effect	Mutation opportunity
T>C	T>G	Both favored	same
C>G	T>A	No effect	GC vs. AT
C>T at CpG	C>A at CpG	Both disfavored	same
C>T at nonCpG	C> A at nonCpG	Both disfavored	same

Speidel et al., (2019)

Pairwise ratios of derived polymorphisms over time in northern Europeans

Spiedel et al. 2020

1000 Genomes Project

after multiple hypothesis testing

Gao et al. 2022 biorxiv

Signal 1: Northern European-specific acceleration in non-CpG C>T mutations

<u>Signal 2</u>: Variation in C>G / T>A ratios among human populations

T>A mutation rate:

East Asian > European \geq African

C>G mutation rate:

East Asian < European \leq African

ns = not significant

Signal 3: Variation in T>C / T>G ratios among human populations

Signal 3: Variation in T>C/T>G polarized by sharing with archaic populations

Model

Model: Possible sources

A. Gene flow from unknown archaic hominin

5% 6% UA African ghost population 2-19% D 3% Ν Eur W Afr

Hammer et al. 2011; Durvasula and Sankararaman 2020; Ragsdale et al. 2020; Speidel et al. 2021

B. Structure in the stem population of Modern Humans

Ragsdale et al. 2022 *biorxiv*

Signal 3: Mutation signature related T>C change in archaic ancestry regions in modern humans

Model

Implications

Non-replicative sources play a non-negligible role in shaping the mutation landscape.

Demography and admixture can have pervasive impacts on shaping genetic variation, including on fundamental parameters such as mutation rate

Implications for Molecular clock:

- Unsteady at short timescales within humans, e.g., 10-15% across human populations
- Puzzlingly, little variation across humans and chimpanzees, e.g., on average ~1-2% across species (Moorjani et al. 2016)

Future Directions: Mutation rates in non-human species

Larger sample sizes

Leveraging hybrid genomes

Studying outlier species

Single cell sequencing of germ cells

This will provide a direct look at the evolution of mutation rates over long evolutionary timescales.

Acknowledgements

Ziyue Gao, University of Pennsylvania Yulin Zhang, UC Berkeley

Molly Przeworski, Columbia University Eduardo Amorim, California State University Felix Wu, Columbia University Manjusha Chintalapati, UC Berkeley Nathan Cramer, UC Berkeley

Thanks for helpful discussions: Roded Sharan, David Pilbeam, Nick Patterson, Monty Slatkin, and members of Moorjani lab

Koret Berkeley- Tel Aviv Initiative

Alfred P. Sloan FOUNDATION

National Institutes of Health