

scDesign3: single-cell and spatial omics simulator

benchmarking, inference & in silico controlled experiments

Jingyi Jessica Li

Associate Professor Junction of Statistics and Biology (http://jsb.ucla.edu) Department of Statistics University of California, Los Angeles

Processed data: a cell-by-feature matrix + cell covariates

Processed data: a cell-by-feature matrix + cell covariates

Cell heterogeneity structures

- discrete cell types (known or latent)
- continuous trajectories (usually latent)
- spatial locations (known for spatial data)

Processed data: a cell-by-feature matrix + cell covariates

Cell heterogeneity structures

- discrete cell types (known or latent)
- continuous trajectories (usually latent)
- spatial locations (known for spatial data)

Experimental designs

- batches (unwanted effects)
- conditions (biological signals)

Processed data: a cell-by-feature matrix + cell covariates

Cell heterogeneity structures

- discrete cell types (known or latent)
- continuous trajectories (usually latent)
- spatial locations (known for spatial data)

Experimental designs

- batches (unwanted effects)
- conditions (biological signals)

Features

- gene expression (scRNA-seq, spatial transcriptomics, etc.)
- chromatin accessibility (scATAC-seq, SNARE-seq, etc.)
- protein abundance (CITE-seq, etc.)

Computational benchmarking

- > 1000 computational tools at www.scrna-tools.org
- how to choose among competing computational tools?

Computational benchmarking

- > 1000 computational tools at www.scrna-tools.org
- how to choose among competing computational tools?

Inference

Conditional on a cell covariate (type, pseudotime, or spatial location)

- every gene's distribution
- every gene pair's correlation

Computational benchmarking

- > 1000 computational tools at www.scrna-tools.org
- how to choose among competing computational tools?

Inference

Conditional on a cell covariate (type, pseudotime, or spatial location)

- every gene's distribution
- every gene pair's correlation

In silico controlled experiments

- negative control: to evaluate a pipeline's false discoveries
- positive control: to evaluate a pipeline's discovery power

Computational benchmarking

- > 1000 computational tools at www.scrna-tools.org
- how to choose among competing computational tools?

Inference

Conditional on a cell covariate (type, pseudotime, or spatial location)

- every gene's distribution
- every gene pair's correlation

In silico controlled experiments

- negative control: to evaluate a pipeline's false discoveries
- positive control: to evaluate a pipeline's discovery power

A realistic simulator with interpretable parameters

2

A statistical simulator scDesign for rational scRNAseq experimental design 👌

Wei Vivian Li, Jingyi Jessica Li 🐱

Bioinformatics, Volume 35, Issue 14, July 2019, Pages i41–i50, https://doi.org/10.1093/bioinformatics/btz321 **Published:** 05 July 2019

scDesign pros:

- interpretable parameters
- variable cell number
- variable sequencing depth

Use scDesign to benchmark doublet-detection methods

Volume 12, Issue 2, 17 February 2021, Pages 176-194.e6

Article

Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data

Nan Miles Xi ¹, Jingyi Jessica Li ^{1, 2, 3, 4} 유 🖾

Use scDesign to benchmark doublet-detection methods

Volume 12, Issue 2, 17 February 2021, Pages 176-194.e6

Article

Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data

Nan Miles Xi ¹, Jingyi Jessica Li ^{1, 2, 3, 4} 온 🖾

scDesign cons:

- cannot capture gene correlations
- does not directly model count data

Exemplar scRNA-seq simulators and properties

Property Simulator	protocol adaptive	genes preserved	gene cor. captured	cell num. seq. depth flexible	easy to interpret	comp. & sample efficient
dyngen	¢۲	×	×	¥	\checkmark	\checkmark
Lun2	¥	\checkmark	×	\checkmark	¥	\checkmark
powsimR	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
PROSST	¥	\checkmark	\times	¥	\checkmark	\checkmark
scDD	\checkmark	\times	\times	¥	¥	\checkmark
scDesign	\checkmark	¥	\times	\checkmark	\checkmark	\checkmark
scGAN	\checkmark	\checkmark	¥	¥	\times	×
splat simple	\checkmark	\times	\times	\times	\checkmark	\checkmark
splat	\checkmark	\times	\times	×	\checkmark	\checkmark
kersplat	\checkmark	\times	¥	\times	\checkmark	\checkmark
SPARSim	\checkmark	\checkmark	¥	\times	\checkmark	\checkmark
SymSim	\checkmark	\times	\times	×	\checkmark	\checkmark
ZINB-WaVE	\checkmark	¥	¥	\times	\checkmark	\checkmark
SPsimSeq	\checkmark	\checkmark	\checkmark	¥	\checkmark	\checkmark

scDesign2

Related work:

SPsimSeq [Assefa et al., Bioinformatics, 2020]; ESCO [Tian et al., Bioinformatics, 2021]

scDesign2: notations

- Denote the scRNA-seq count matrix as $\boldsymbol{X} \in \mathbb{N}^{p \times n}$, with p genes and n cells
- Assume that X contains K cell types and the cell memberships are known in advance
- Suppose there are n^(k) cells in cell type k, k = 1, ..., K, and denote the count matrix for cell type k as X^(k)
- Our goal is to fit a parametric, probabilistic model of all genes' expression in each cell type k
- For simplicity of notation, we drop the subscript k in the following discussion

scDesign2: marginal distribution of each gene *i*

- Model counts directly
- Denote $X_{j} = (X_{1j}, \ldots, X_{pj}) \in \mathbb{N}^{p}$ as the gene expression vector for cell j, $j = 1, \ldots n$. We assume that the X_{j} 's are i.i.d. p variables; n observations
- x_{ij}: observed count of gene i in cell j
- Select a marginal count distribution for gene *i*'s count X_{ij} from Poisson, zero-inflated Poisson, negative binomial, and zero-inflated negative binomial

scDesign2: joint distribution of highly-expressed genes

- Use the copula framework
- Denote F : N^p → [0, 1] as the joint cumulative distribution function (CDF) of X_{ij} ∈ N^p and F_i : N → [0, 1] as the marginal CDF of X_{ij}
- By Sklar's theorem [Sklar 1959], there exists a copula function $C: [0,1]^p \to [0,1]$ such that

$$F(x_{1j},\ldots,x_{pj})=C(F_1(x_{1j}),\ldots,F_p(x_{pj}))$$

 The copula function C(·) is unique for continuous distributions, but not for discrete distributions (unidentifiable) [Genest et al 2007]

scDesign2: distributional transform and the Gaussian copula

- Distributional transform: necessary for discrete variable [Rüschendorf 2013].
 - Sample v_{ij} from Uniform[0,1] independently for $i = 1, \ldots, p$ and

$$j=1,\ldots,n$$

• Calculate *u_{ij}* as

$$u_{ij} = v_{ij} F_i(x_{ij} - 1) + (1 - v_{ij}) F_i(x_{ij})$$

Gaussian copula: Denote Φ as the CDF of a standard Gaussian random variable, we can express the joint distribution of X_{.j} as

$$F(x_{1j},\ldots,x_{pj})=\boldsymbol{\Phi}_p(\Phi^{-1}(u_{1j}),\ldots,\Phi^{-1}(u_{pj})|\boldsymbol{R})$$

where $\Phi_{\rho}(\cdot|\mathbf{R})$ is a joint Gaussian CDF with a zero mean vector and a covariance matrix that is equal to the correlation matrix \mathbf{R}

scDesign2: joint distribution fitting

- Denote \hat{F}_i as the estimated marginal distribution of gene *i*
- Sample v_{ij} from Uniform[0, 1] independently for i = 1, ..., p and j = 1, ..., n
- Calculate u_{ij} as

$$u_{ij} = v_{ij}\widehat{F}_i(x_{ij}-1) + (1-v_{ij})\widehat{F}_i(x_{ij})$$

Calculate Â as the sample correlation matrix of (Φ⁻¹(u_{1j}),...,Φ⁻¹(u_{pj}))^T, j = 1,..., n

scDesign2: data simulation

- Input from previous step:
 - fitted joint gene distributions (one per cell type)
 - cell type proportions
- User-specified input:
 - number of cells to simulate
 - total sequencing depth
- Output:
 - a synthetic gene-by-cell count matrix with K cell types
 - fitted model parameters

A multi-gene probabilistic model per cell type

- Each gene \sim count distribution \in {Poisson, negative binomial, ZIP, ZINB}
- Gene correlations estimated via Gaussian copula

A multi-gene probabilistic model per cell type

- Each gene \sim count distribution \in {Poisson, negative binomial, ZIP, ZINB}
- Gene correlations estimated via Gaussian copula

Method | Open Access | Published: 25 May 2021

scDesign2: a transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured

Tianyi Sun, Dongyuan Song, Wei Vivian Li 🖂 & Jingyi Jessica Li 🖂

Genome Biology 22, Article number: 163 (2021) | Cite this article 5654 Accesses | 8 Citations | 31 Altmetric | <u>Metrics</u> JOURNAL OF COMPUTATIONAL BIOLOGY Volume 29, Number 1, 2022 © Mary Ann Liebert, Inc. Pp. 1-4 DOI: 10.1089/cmb.2021.0440

RECOMB 2021

Simulating Single-Cell Gene Expression Count Data with Preserved Gene Correlations by scDesign2

TIANYI SUN, DONGYUAN SONG,2 WEI VIVIAN LI,3 and JINGYI JESSICA LI1,i

A multi-gene probabilistic model per cell type

- Each gene \sim count distribution \in {Poisson, negative binomial, ZIP, ZINB}
- Gene correlations estimated via Gaussian copula

Method | Open Access | Published: 25 May 2021

scDesign2: a transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured

Tianyi Sun, Dongyuan Song, Wei Vivian Li 🖂 & Jingyi Jessica Li 🖂

Genome Biology 22, Article number: 163 (2021) | Cite this article 5654 Accesses | 8 Citations | 31 Altmetric | Metrics JOURNAL OF COMPUTATIONAL BIOLOGY Volume 29, Number 1, 2022 © Mary Ann Liebert, Inc. Pp. 1–4 DOI: 10.1089/cmb.2021.0440 RECOMB 2021

Simulating Single-Cell Gene Expression Count Data with Preserved Gene Correlations by scDesign2

TIANYI SUN, DONGYUAN SONG, WEI VIVIAN LI, and JINGYI JESSICA $\mathrm{LI}^{1,\mathrm{i}}$

Generalization: the marginal distribution of gene *i* in cell $j \sim$ cell *j*'s covariates Example covariates: cell type, cell pseudotime, spatial coordinates, condition, batch, ... Generalized additive model + negative binomial distribution

A multi-gene probabilistic model per cell type

- Each gene \sim count distribution \in {Poisson, negative binomial, ZIP, ZINB}
- Gene correlations estimated via Gaussian copula

Method | Open Access | Published: 25 May 2021

scDesign2: a transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured

Tianyi Sun, Dongyuan Song, Wei Vivian Li 🖂 & Jingyi Jessica Li 🖂

Genome Biology 22, Article number: 163 (2021) | Cite this article 5654 Accesses | 8 Citations | 31 Altmetric | Metrics JOURNAL OF COMPUTATIONAL BIOLOGY Volume 29, Number 1, 2022 © Mary Ann Liebert, Inc. Pp. 1–4 DOI: 10.1089/cmb.2021.0440 RECOMB 2021

Simulating Single-Cell Gene Expression Count Data with Preserved Gene Correlations by scDesign2

TIANYI SUN, DONGYUAN SONG, WEI VIVIAN LI, and JINGYI JESSICA $\mathrm{LI}^{1,\mathrm{i}}$

Generalization: the marginal distribution of gene *i* in cell $j \sim$ cell *j*'s covariates Example covariates: cell type, cell pseudotime, spatial coordinates, condition, batch, ... Generalized additive model + negative binomial distribution

- Cell states: continuous trajectory & discrete cell types
- Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
- Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Example: continuous trajectory (pancreatic cell differentiation)

- Cell states: continuous trajectory & discrete cell types
- Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
- Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Examples: bifurcation trajectories & multiomics

- Cell states: continuous trajectory & discrete cell types
- Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
- Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Example: spatial data (brain region measured by 10X Visium) Gene Olfm1

- Cell states: continuous trajectory & discrete cell types
- Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
- Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

15

scDesign3 functionalities (simulation)

scDesign3 functionalities (interpretation)

17

Why need in silico controlled experiments?

https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations

Why need in silico controlled experiments?

 ${\tt https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations} \label{eq:https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations} \label{eq:https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations}$

Double-dipping challenges in single-cell inference

• Cell clustering + DEG identification

DEGs between inferred cell clusters from single-cell RNA-seq data

ClusterDE (cell clustering + DEG identification between cell clusters)

- existing methods assume **Gaussian** distributions

TN test [Zhang, Kamath, and Tse, *Cell Syst*, 2019] clusterpval [Gao, Bien, and Witten, *arXiv*, 2020]

or require count splitting

countsplit [Neufeld, Gao, Popp, Battle, and Witten, arXiv, 2022]

DEGs between inferred cell clusters from single-cell RNA-seq data

ClusterDE (cell clustering + DEG identification between cell clusters)

- existing methods assume **Gaussian** distributions

TN test [Zhang, Kamath, and Tse, *Cell Syst*, 2019] clusterpval [Gao, Bien, and Witten, *arXiv*, 2020]

or require count splitting

countsplit [Neufeld, Gao, Popp, Battle, and Witten, arXiv, 2022]

Our proposal: scDesign3 + Clipper

- inspired by

gap statistic [Hastie, Tibshirani, and Walther, *JRSSB*, 2002] knockoffs [Barber and Candès, *Ann Stat*, 2015]

scDesign3: in silico negative control

Clipper: a p-value-free FDR control framework

- NO requirement of
 - high-resolution p-values
 - parametric distributions
 - large sample sizes

- Foundation: knockoffs
- Two components:
 - contrast scores
 - cutoff

Goal: marginal screening for **interesting** features *d* features FDR threshold *q*

Method Open Access Published: 11 October 2021

Clipper: *p*-value-free FDR control on high-throughput data from two conditions

Xinzhou Ge, Yiling Elaine Chen, Dongyuan Song, MeiLu McDermott, Kyla Woyshner, Antigoni Manousopoulou, Ning Wang, Wei Li, Leo D. Wang & Jingyi Jessica Li

Genome Biology 22, Article number: 288 (2021) Cite this article

6865 Accesses 5 Citations 52 Altmetric Metrics

Clipper offers a general p-value-free FDR control solution

Key: contrast score construction

example	target data	null data			
	(experiment)	(negative control)			
ClusterDE	actual data	scDesign3 simulated data			

Contrast score of feature $j = 1, \ldots, d$, the

 $C_i := t(target data) - t(null data),$

where $t(\cdot)$ is a summary statistic — can be a **complex pipeline**

Complete null case: no cell clusters

[Zheng et al., Nat Commun, 2017]

ClusterDE: scDesign3 + Clipper (preliminary)

Complete null case: no cell clusters

Take-home messages

- scDesign3 usages
 - Method benchmarking
 - Parameter inference
 - In silico controlled data generation

Take-home messages

- scDesign3 usages
 - Method benchmarking
 - Parameter inference
 - In silico controlled data generation

Double dipping is ubiquitous in genomic data science
 Statistical inference is often NOT the first step of a pipeline

Take-home messages

- scDesign3 usages
 - Method benchmarking
 - Parameter inference
 - In silico controlled data generation

- Double dipping is ubiquitous in genomic data science
 Statistical inference is often NOT the first step of a pipeline
- Our proposal for single-cell inference
 - scDesign3: generating data from the specified null
 - Clipper: FDR control that only requires null data generation for once

Acknowledgements

Wei Vivian Li Tianyi Sun (former Ph.D. (Ph.D. student student) Assist. Prof. @ scDesign2 Rutgers) scDesign

i Sun Dongyuan .D. Song ent) (Ph.D. sign2 student) scDesign3

uan Gua g Ya D. (Ph nt) stuc gn3 scRea

Guan'ao Yan (Ph.D. student) scReadSim Xinzhou Ge (Postdoc) Clipper Kexin Li (Ph.D. student) scDesign3+ Clipper

26

