Bertini_real: Software for real algebraic sets

Daniel Brake with Dan Bates, Wenrui Hao, Jon Hauenstein, Andrew Sommese, and Charles Wampler

14 October, 2014

Bertini_real Overview

Bertini_real is compiled command line software:

- performs almost purely numerical computations to produce a cellular decomposition of real algebraic components,
- ▶ uses Bertini as its homotopy continuation engine,
- uses Matlab for symbolic computations, such as deflation; as well as visualization,
- can decompose higher-dimensional curves and surfaces, including those with singularities,

うして ふゆう ふほう ふほう ふしつ

▶ results are [almost] readily 3d printed.

Real Components

Bertini_real – Numerical Cellular Decomposition

Setup

- Let f be a polynomial system with \mathbb{R} coefficients, and $f: \mathbb{C}^N \to \mathbb{C}^n$.
- Let V(f) be the variety of f.
- Consider $C \subseteq V(f)$ be a component of dimension k.
- ▶ If *f* is overdetermined, replace *f* by a randomized version of itself.

ション ふゆ マ キャット マックシン

Our objective is to decompose the real part of C; i.e., $C \cap \mathbb{R}^N$

Bertini_real @ Simons 2014 └─_{Curves}

Curve Cell

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Curves

[Lu,Bates,Sommese,Wampler,2006]

Bertini_real @ Simons 2014 └─ Curves

Curves

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Bertini_real @ Simons 2014 └─_{Curves}

Curves

Bertini_real @ Simons 2014 └─ Curves

Curves

Burmester 3-3 curve dimension 14. In 2d projection, of degree 128.

Bertini_real @ Simons 2014 └─ Surfaces

Surface Cell

Surface Decomposition

イロト 不得下 イヨト イヨト

э

[Besana,Di Rocco,Hauenstein,Sommese,Wampler, 2013]

Bertini_real @ Simons 2014 └─Surfaces

Surface examples

Bertini_real @ Simons 2014 └─Surfaces

Surface examples

distel, unrefined distel, refined $f(x,y,z) = x^2 + y^2 + z^2 + 1000(x^2 + y^2)(x^2 + z^2)(y^2 + z^2) - 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Bertini_real @ Simons 2014 └─Surfaces

Surface examples

solitude $\begin{aligned} f(x,y,z) &= \\ x^2yz + xy^2 + y^3 + y^3z - x^2z^2 \end{aligned}$

ション ふゆ く は く は く む く む く し く

Fivebar mechanism kinematics Six-dimensional trigonometric system, passed though an atan2 projection

Critical points of curves

Computing critical points of curves is easy.

Since f defines a dimension-one component, the working witness set comes with one random linear:

 $\begin{vmatrix} f \\ \mathcal{L}_1 \end{vmatrix}$

Then we use regeneration to solve the system

$$\begin{bmatrix} f \\ det \begin{pmatrix} Jf \\ J\pi_1 \end{pmatrix} \\ patch_v \end{bmatrix}$$

うして ふゆう ふほう ふほう ふしつ

[Hauenstein,Sommese,Wampler, 2009]

Regeneration to find crit

Regeneration uses products of linears to build up a start system for a homotopy. We're solving by homotoping as

$$H(x,v;t) = (1-t) \begin{bmatrix} f(x) \\ J\pi_1 \\ J\pi_1 \end{bmatrix} + t \begin{bmatrix} f(x) \\ M_1(v) \prod_{i=1}^{\delta} L_{1,i}(x) \\ \vdots \\ M_N(v) \prod_{i=1}^{\delta} L_{N,i}(x) \\ patch_v \end{bmatrix} = 0$$

• δ is the maximum degree any polynomial in f. We have a new result supporting this computation – a single

homotopy of this form will find all isolated solutions in terms of x variables, regardless of the fiber dimension.

Building a start system

▶ To form the start system and solutions, we move the given random complex $\mathcal{L}(x)$ to each $L_{j,i}$ one at a time, to find the x coordinates:

$$H(x;t) = (1-t) \begin{bmatrix} f \\ L_{j,i} \end{bmatrix} + t \begin{bmatrix} f \\ \mathcal{L}_1 \end{bmatrix} = 0$$

• Since only one $L_{j,i}$ vanishes for each start point, the remainder of the start functions must vanish due to $M_j(v)$, which are solved for v start values by matrix inversion:

$$v = \begin{bmatrix} M_{1 \neq j} \\ \vdots \\ M_{N \neq j} \\ \text{patch}_v \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

Then we take the x solution from the top, and v from bottom, and concatenate to form the start point.

Crit points of surfaces

Computing critical points of surfaces is hard.

- ▶ Surfaces have *critical curves*.
- ▶ Surfaces also have critical points themselves.

ション ふゆ く は く は く む く む く し く

Current surface critical method

Using the *determinantal* form of the criticality conditions:

witness set:

$$f_{\text{crit_curve}} = \begin{bmatrix} f \\ Jf \\ J\pi_1 \\ J\pi_2 \\ \mathcal{L}_1 \end{bmatrix} \qquad f_{\text{crit_crit}} = \begin{bmatrix} f \\ \det \begin{pmatrix} Jf \\ J\pi_1 \\ J\pi_2 \end{pmatrix} \\ \det \begin{pmatrix} f \\ J \\ \det \begin{pmatrix} Jf \\ J\pi_1 \\ J\pi_2 \end{pmatrix} \\ J\pi_1 \\ J\pi_2 \end{pmatrix} \end{bmatrix}$$

- Determinant operation produces high degree polynomials, contributing to numerical issues.
- ▶ Using this formulation for dimension 3 decompositions will be even worse w.r.t. degree and computational complexity.
- Fortunately, we can still use the nullspace method for finding critical points of this curve.

Crit points of crit curve

The actual system Bertini_real currently solves to obtain crit points of crit curve, by regeneration:

$$f_{\text{crit_crit}} = \begin{bmatrix} f \\ \det \begin{pmatrix} Jf \\ J\pi_1 \\ J\pi_2 \end{pmatrix} \\ v^{\intercal} \cdot J \begin{pmatrix} f \\ \det \begin{pmatrix} Jf \\ J\pi_1 \\ J\pi_2 \end{pmatrix} \\ \det \begin{pmatrix} Jf \\ J\pi_1 \\ J\pi_2 \end{pmatrix} \\ J\pi_1 \end{pmatrix} \\ \text{patch}_v$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

3D Printing

6. Print

- 5. Thicken surface
- 4. Process into .stl

Bertini_real @ Simons 2014 └─ Conclusion

Thank you for your kind attention.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ