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MOTIVATION 1:
KINEMATICS & ROBOTICS
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Robonaut 2 on ISS

Handshake in space Working at the task board
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R2’s Parallel Wrist

Input: sliders L1, L2

Output: angles θ1, θ2

System of polynomial equations: 
𝐹(𝐿1, 𝐿2, 𝑠𝜃1 , 𝑐𝜃1 , 𝑠𝜃2 , 𝑐𝜃2)=0

Inverse problem: 2 ∙ 2 = 4 solutions

Forward problem: 8 solutions

Push
-pull 
links

Pitch axis

Yaw axis

Motor
Gear Head

Ball Screw Assembly

Flexible Conduit

Tension Sensor

Teflon Liner
Braided Polymer Tendon

Tendon Terminator

Carricato & Parenti-Castelli

IJRR, 2004

almost
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Big Picture

Forward kinematics Inverse kinematics

INPUT OUTPUT

Workspace 
analysis

Mechanism 
synthesis

DESIGN 
PARAMETERS
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MOTIVATION 2:
SPHERE PACKINGS
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How do micro-spheres cluster?

 Arkus, Manoharan, & Brenner 
 SIAM Discrete Math 25(4) 2011
 “Deriving finite sphere packings”

Table of 
“new seeds”

 Holmes-Cerfon, Gortler, & Brenner, M.P.
 Proc. Natl. Acad. Sci. 110 (1) (2013)
 “A geometrical approach to computing energy 

landscapes from short-ranged potentials”

 Each sphere-to-sphere 
contact is a distance 
constraint 

 Enumerate the possible 
adjacency graphs 

 Solve each system of quadric 
polynomials
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BACKGROUND:
NUMERICAL ALGEBRAIC 
GEOMETRY
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Notes:

 Non-generic set is real codimension 2.

 So a randomized path is general for 𝑡 ∈ (0,1]
with probability 1.

 probability 1 algorithm

 The key is picking a family 𝐹(𝑥, 𝑝) that

1. Has a generic 𝑝1at which 𝐹(𝑥, 𝑝1) = 0
is easy (enough) to solve.

2. Has # 𝑆 as small as possible.

 It’s OK if 𝑝0 is not generic.

Parameter 
space

𝑝0

Homotopy Algorithms (a.k.a. Continuation)

 Problem 1: 

 Find all isolated solutions to a 
polynomial system

 Approach:

 Cast 𝑓(𝑥) as a member of a 
parameterized family of systems, 
say 𝐹 𝑥, 𝑝 , with 𝐹 𝑥, 𝑝0 ≡ 𝑓 𝑥 .

 Solve a generic member of the 
family, say 𝐹 𝑥, 𝑝1 .

 Isolated solutions are set 𝑆.

 Establish a general continuous 
path 𝛾 𝑡 from 𝑝1to 𝑝0.

 𝛾 1 = 𝑝1, 𝛾 0 = 𝑝0.

 Follow solution paths of the 
homotopy

 𝐻 𝑥, 𝑡 ≔ 𝐹 𝑥, 𝛾 𝑡

from 𝑥 ∈ 𝑆 at 𝑡 = 1 as 𝑡 → 0.

: N Nf 

Non-
generic 

parameter 
points

𝑝1

𝑡=1

𝛾(𝑡)

𝑡=0
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Basic Total-degree Homotopy

To find all isolated solutions to the polynomial 
system {f1,…,fN}:

Number of paths to track =

 iid fdeg complex. random, 
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Positive-Dimensional Sets

 Problem 2:

 Given: polynomial system

 Find:

 What does this mean when dim 𝑉 𝑓 > 0?

 In numerical algebraic geometry, it means we 
find witness sets for the irreducible 
components of 𝑉 𝑓 .

 Reduces Problem 2 to several instances of 
Problem 1.

: N nf 

 ( ) : | ( ) 0NV f x f x 
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Basic Construct: Witness Set

 Witness set for irreducible 
algebraic set A is {F,L,LՈA}

 F is a polynomial system such 
that A is an irreducible 
component of V(F)

 L is a generic linear space of 
complementary dimension to A

 LՈA is the witness point set
 d points on a degree d component

A

L
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The Bertini Package

 Procedures available
 Path tracking

 Adaptive precision with singular endgame

 Zero-dimensional solving
 Multi-homogeneous & regeneration homotopies

 User-defined & parameter homotopies

 Positive-dimensional sets
 Irreducible decomposition

 Membership test

 Intersection

 Basic data
 Written in C, uses GMP & MPFR for multi-precision

 Executables available for 32 & 64 bit Linux & Windows via Cygwin

 Version 1.0 released April 2008, current open-source version is 1.4

 Authors: Bates, Hauenstein, Sommese, & Wampler
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Further Reading

Sommese & 
Wampler

World 
Scientific 

2005

Bates, 
Hauenstein, 
Sommese & 

Wampler

SIAM 
Nov.2013
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COMPUTING 
INTERSECTIONS
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Intersection 𝐴 ∩ 𝐵

 Suppose irreducible algebraic sets 𝐴 and 𝐵 are given by witness sets.
𝑓𝐴, 𝐿𝐴,𝑊𝐴 , 𝑓𝐵, 𝐿𝐵 ,𝑊𝐵

 Although 𝐴 ∩ 𝐵 ⊂ 𝑉(𝑓𝐴, 𝑓𝐵), it doesn’t always suffice to compute the irreducible 
decomposition of 𝑉(𝑓𝐴, 𝑓𝐵)

 Counterexample is the case 𝑓𝐴 = 𝑓𝐵
 Even if that does suffice, it can be very wasteful.

 Example: 𝑉(𝑓𝐴) can have many irreducible components besides 𝐴.

 Intersection methods target 𝐴 ∩ 𝐵 directly 
 Diagonal homotopy finds witness points for (𝐴 × 𝐵) ∩ 𝑉(𝑥 − 𝑦), where 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵.

 Sommese, Verschelde, W., 2004

 Isosingular deflation completes the witness set when 𝐴 ∩ 𝐵 is not an irreducible 
component of 𝑉(𝑓𝐴, 𝑓𝐵).

 Witness points are generic (w/probability 1), so the Jacobian matrix 
𝐽𝑓𝐴
𝐽𝑓𝐵

evaluated at a 

witness point has generic rank.  
 When the rank condition is appended to the system & iterated, one obtains a system that 

completes the witness set.
 Hauenstein & W., 2013

 Proof depends on the weak deflation theorem of Leykin, Verscheld, & Zhao 2006.

 Regeneration allows computation of 𝐴 ∩ 𝑉(𝑓) without first decomposing 𝑉(𝑓)
 Regeneration: Hauenstein, Sommese, & W. 2011; H&W preprint
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Regeneration

 Hauenstein, Sommese, & Wampler
 “Regeneration homotopies…”, Math.Comp. 2011 
 “Regenerative cascades…”, Appl.Math.Comp. 2011

 Basic step to find 𝑉0(𝑓1, … , 𝑓𝑁)
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Regeneration: Step 1





























































)(

)(

)(

)(

)(

1

1

1

0

xL

xL

xL

xf

xf

N

k

k

k





V





























































)(

)(

)(

)(

)(

1

1,

1

1

0

xL

xL

xL

xf

xf

N

k

k

k





V































































)(

)(

)(

)(

)(

1

,

1

1

0

xL

xL

xL

xf

xf

N

k

dk

k

k





V
move linear 
fcn dk times 

(use linear 
homotopy)





























































)(

)(

)()(

)(

)(

1

,1,

1

1

0

xL

xL

xLxL

xf

xf

N

k

dkk

k

k







V

Union of 
sets

Let dk=deg(fk)



21Simons Institute, Oct. 14, 2014

Regeneration: Step 2
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New Method for (𝐴 × 𝐵) ∩ 𝑉(𝑓)

 Generalization of the diagonal homotopy for 
𝐴 ∩ 𝐵 ≡ 𝐴 × 𝐵 ∩ 𝑉(𝑥 − 𝑦)

 Replaces the diagonal 𝑉(𝑥 − 𝑦) with 𝑉(𝑓)
 Notes:

 𝑓 can involve new variables
 (𝐴 × 𝐵 × 𝐶) ∩ 𝑉(𝑓), etc., are treated similarly
 𝐴 ∩ 𝑉(𝑥 − 𝑥0) is the homotopy membership test to answer “Is 𝑥0 ∈ 𝐴?”

 Procedure
 Step 1: use witness sets for 𝐴, 𝐵 to get a witness set for 𝐴 × 𝐵 × ℂ𝑁

 Step 2: use the linear equations to regenerate a randomization of 𝑓
equation-by-equation

 Step 3: use isosingular deflation, as necessary, to get a witness 
system

 Step 4: (optional) decompose into irreducible components.

Note: (𝐴 × 𝐵 × 𝐶) ∩ 𝑉(𝑓), etc., similar
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COMPUTING 
REAL ALGEBRAIC SETS
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Projections and Cell Decomposition

 Let 𝐴 ⊂ ℂ𝑁 be an irreducible algebraic set of dimension 𝑑 and 
multiplicity 1

 If mult 𝐴 > 1, replace 𝐴 by iso(𝐴)
 Let 𝑓𝐴, 𝐿𝐴,𝑊𝐴 be a witness set for 𝐴. We assume 𝑓𝐴 is real.
 We want to find 𝐴 ∩ ℝ𝑁

 Let 𝜋: ℂ𝑁 → ℂ𝑑 be a generic linear projection
 For 𝑥 in a Zariski-open subset of ℂ𝑑, 𝐴 ∩ 𝜋−1 𝑥 consists of deg(𝐴)

isolated, nonsingular points.  

 This still holds for generic 𝜋:ℝ𝑁 → ℝ𝑑

 We have deg(𝐴) points in ℂ𝑁, of which ≤ deg 𝐴 are in ℝ𝑁.
 Define the critical set of 𝐴 with respect to 𝜋 as

𝐾 ≔ 𝑐𝑟𝑖𝑡𝜋 𝐴 = 𝐴 ∩ 𝑉 det
𝐽𝑓𝐴
𝐽𝜋

∩ ℝ𝑁

 This is a necessary condition for the real root count to change.
 In any continuous subset 𝑈 ⊂ ℝ𝑑 with 𝑈 ∩ 𝜋(𝐾) = ∅, 𝜋−1 𝑈 ∩ 𝐴 is a 

collection of nonsingular 𝑑-dimensional sheets
 Coordinates on 𝑈 define coordinate patches on 𝐴.
 We can track paths on the sheets of 𝐴 by continuation.

 To describe 𝐴 ∩ ℝ𝑁, it suffices to decompose ℝ𝑑 ∖ 𝜋(𝐾) into cells 
and use continuation to determine:

 How the real sheets meet each other, and
 How the real sheets meet 𝐾.
 Note: some pieces of 𝐾 might have no sheets meeting them.  

 These are lower-dimensional pieces of 𝐴 ∩ ℝ𝑁.

 Ex: isolated singular points, Whitney umbrella handle.

𝑈

𝜋(𝐾)

ℝ𝑑
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Real curves and surfaces

𝜋

ℝ1

𝐾 …

𝜋(𝐾)

…

𝐴
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Real Cell Decomposition

 Steps
 Find a witness set for critical set 𝐾 in ℂ𝑁.

 Use an intersection algorithm: 𝐴 × 𝑃𝑁 ∩ 𝑉
𝐽𝑓𝐴
𝐽𝜋

𝑣

 Find a real cell decomposition of 𝐾. 
 If 𝐴 is a curve, then 𝐾 is just a set of points.

 The real points in 𝐾 are the endpoints of the cell decomposition.

 If 𝐴 is a surface, then 𝐾 is a curve, and we have to apply cell decomposition 
to 𝐾.

 Computing 𝑐𝑟𝑖𝑡𝜋1(𝑐𝑟𝑖𝑡𝜋2 𝐴 ) is the bottleneck

 The situation will be even worse for 3-folds and up.

 Use homotopies to connect all the patches.

 History
 Curve case: Lu, Bates, Sommese, & W., 2007
 Surface case: Besana, DiRocco, Hauenstein, Sommese, & W., 2013

 Restricted to “almost smooth” surfaces

 BertiniReal project: Brake, Hao, B,H,S,&W, preprint
 Software.  Curves & surfaces.  No theoretical restrictions.

 Daniel Brake’s talk will give more details.



27Simons Institute, Oct. 14, 2014

APPLICATIONS
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Four-Bar Design: Burmester Problems

 “Body guidance”
 Specify precision poses for 

the coupler frame to attain.
 Classic Burmester problem, 

1888

 “Path generation”
 Specify precision points for 

the coupler curve to 
interpolate

 Orientation ignored

 Alt’s 9-point problem, 1923

 “Mixed Burmester”
 Specify some poses and 

some positions
 Tong, Murray & Myszka, 

2013

Coupler point

Coupler frame

Circlepoint

Centerpoint
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Mixed Burmester family of problems

 Let m=# poses, n=# points

 Generic dimension of solution set is

D = 10 – 2m - n

# points

# 
poses 0 1 2 3 4 5 6 7 8

1 8 7 6 5 4 3 2 1 0

2 6 5 4 3 2 1 0

3 4 3 2 1 0

4 2 1 0

5 0

Alt’s 9-point 
problem.

Posed 1923.

Solved 1992.

Burmester’s
problems 1888
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Degree of Solution Set

# points

# poses 0 1 2 3 4 5 6 7 8

1 1 7 43 234 1108 3832 8716 10858 8652

2 22=4 24 134 552 1554 2388 2224

3 44=16 64 194 362 402*

4 44=16 48 60*

5 44=16

*Tong had 156 & 3116 for the 4-2 and 3-4 cases, resp., but this included 
degenerate singular solutions.
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Case 3-3: Curve of degree 362

 Plots show centerpoint curve (a projection): degree 128
 Generic # of critical points = 1440 nonsingular + 144 singular

Curve as sampled by Tong, 
Murray, & Myszka, 2013

Curve as decomposed by 
Hauenstein, 2014
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Another 3-3 Burmester curve

An irreducible 
curve of 

degree 362
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Sphere Packings

Table of 
“new seeds”

 Arkus, Manoharan, & Brenner 
 SIAM Discrete Math 25(4) 2011
 “Deriving finite sphere packings”
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Sphere Packings

 Problem: 
 determine all rigid packings of 𝑁 or fewer identical spheres

 Why is it interesting?
 Models how spheres immersed in a liquid form into colloidal mixtures of particle clusters.

 Hard spheres with short-range attraction

 Knowing the complete list of packings allows determination of energies and predictions of 
cluster distribution.

 Manoharan (Harvard) runs experiments with microspheres.  
 Uses diffraction imaging to analyze the clusters.

 Possibility of designing colloids or micro-manufacturing desired clusters by mixing spheres with 
different DNA coatings

 Determining all packings of size ≤ 𝑁:
 Enumerate all non-isomorphic, minimally-rigid, adjacency matrices, 𝐴.

 𝐴𝑖𝑗 = {1, if 𝑆𝑖 touches 𝑆𝑗; 0, else.}

 Minimally-rigid = exactly 3𝑁 − 6 contacts for 𝑁 spheres.
 Prune by impossibility rules

 Example: if a touches b, at most 5 spheres can touch a&b.

 For each 𝐴, solve the system of distance equations.
 Find all isolated real roots – not necessarily unique!
 Cull out any with interpenetrating spheres.
 Detect chiral pairs.

bad packing good packing
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Solving Packings

 Packings do not need to be solved from scratch
 They can be decomposed into a series of previously solved 

sub-problems.
 We call these “packing rules” 
 Each is a parameterized polynomial system
 After solving a rule for generic parameters, subsequent appearances 

of the rule can be solved via parameter continuation.

 Packing rules can be represented by a kinematic type graph
 Graphs composed from

 2 types of nodes: 
 P = point
 R = rigid body

 3 types of edges:
 c = Simple contact – points have only this kind
 v = Shared vertex (spherical joint)
 e = Shared edge (hinge joint)

 Minimally rigid: 3𝑃 + 6𝑅 − 𝑐 − 3𝑣 − 5𝑒 = 6
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Combinatorics of packings

 From Arkus, Manoharan, & Brenner
 Here, “Iterative” means solvable with 

 Tetrahedron rule applied to 𝑛 − 1; or
 Gluing rigid bodies at shared faces.

 A bigger set of rules will tamp down 
the combinatorial explosion
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Some Packing Rules

P

c

R

P

P

P

P

Triangle. 

1 Root.

Tetrahedron. 

2 Roots.

R

R

R

c

c

c

c

c
cv cc

e

R

R

c e

c4 Revolute robot. 

4 Roots.

Spherical pentad. 

6 Roots.

c c

R

cc cc

R

Stewart-Gough 
platform. 

40 Roots.

c c
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Building with rules

 Each rule gives (one or more) solutions, each a rigid 
packing.

 These can be a rigid body that is a subset of a bigger 
packing.

 The vast majority of big 𝑁 packings have at least one rigid 
sub-packing.

 Rules can be deployed as:
 Elimination-type solutions for easy cases
 Parameter-continuation solutions for harder ones.

 M. Holmes-Cerfon is using Bertini

 2 caveats:
 Singular solutions occur. First is at 𝑁 = 9.
 Numerical error propagates, so one may need to solve the sub-

problems more accurately than the final problem. 
 Use endpoint refinement algorithms.
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Wrap-up

 Numerical algebraic geometry
 Witness sets are the fundamental construct
 Irreducible decomposition is key.
 Software: Bertini

 Open source, free.

 Intersection algorithms
 Enable further investigations of sets represented by witness sets
 Regeneration approach is the most effective at present
 Isosingular theory enables treatment of singular cases

 Cell decomposition of real algebraic sets
 Builds a complete topological map of the real set
 Uses intersection and isosingular deflation
 Limited at present to curves and surfaces

 Applications
 Robot and mechanism kinematics lead to interesting polynomial systems

 Mechanism design problems are especially challenging
 Real solutions are desirable.
 BertiniReal can decompose high degree curves from this class.

 Sphere packing problems
 Intersection algorithms can solve the packing rules as parameterized families
 Deploying the rules effectively should push the envelope on # of spheres.


