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 Sphere Packings: Miranda Holmes-Cerfon, NYU
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MOTIVATION 1:
KINEMATICS & ROBOTICS
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Robonaut 2 on ISS

Handshake in space Working at the task board
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R2’s Parallel Wrist

Input: sliders L1, L2

Output: angles θ1, θ2

System of polynomial equations: 
𝐹(𝐿1, 𝐿2, 𝑠𝜃1 , 𝑐𝜃1 , 𝑠𝜃2 , 𝑐𝜃2)=0

Inverse problem: 2 ∙ 2 = 4 solutions

Forward problem: 8 solutions

Push
-pull 
links

Pitch axis

Yaw axis

Motor
Gear Head

Ball Screw Assembly

Flexible Conduit

Tension Sensor

Teflon Liner
Braided Polymer Tendon

Tendon Terminator

Carricato & Parenti-Castelli

IJRR, 2004

almost
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Big Picture

Forward kinematics Inverse kinematics

INPUT OUTPUT

Workspace 
analysis

Mechanism 
synthesis

DESIGN 
PARAMETERS
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MOTIVATION 2:
SPHERE PACKINGS
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How do micro-spheres cluster?

 Arkus, Manoharan, & Brenner 
 SIAM Discrete Math 25(4) 2011
 “Deriving finite sphere packings”

Table of 
“new seeds”

 Holmes-Cerfon, Gortler, & Brenner, M.P.
 Proc. Natl. Acad. Sci. 110 (1) (2013)
 “A geometrical approach to computing energy 

landscapes from short-ranged potentials”

 Each sphere-to-sphere 
contact is a distance 
constraint 

 Enumerate the possible 
adjacency graphs 

 Solve each system of quadric 
polynomials
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BACKGROUND:
NUMERICAL ALGEBRAIC 
GEOMETRY
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Notes:

 Non-generic set is real codimension 2.

 So a randomized path is general for 𝑡 ∈ (0,1]
with probability 1.

 probability 1 algorithm

 The key is picking a family 𝐹(𝑥, 𝑝) that

1. Has a generic 𝑝1at which 𝐹(𝑥, 𝑝1) = 0
is easy (enough) to solve.

2. Has # 𝑆 as small as possible.

 It’s OK if 𝑝0 is not generic.

Parameter 
space

𝑝0

Homotopy Algorithms (a.k.a. Continuation)

 Problem 1: 

 Find all isolated solutions to a 
polynomial system

 Approach:

 Cast 𝑓(𝑥) as a member of a 
parameterized family of systems, 
say 𝐹 𝑥, 𝑝 , with 𝐹 𝑥, 𝑝0 ≡ 𝑓 𝑥 .

 Solve a generic member of the 
family, say 𝐹 𝑥, 𝑝1 .

 Isolated solutions are set 𝑆.

 Establish a general continuous 
path 𝛾 𝑡 from 𝑝1to 𝑝0.

 𝛾 1 = 𝑝1, 𝛾 0 = 𝑝0.

 Follow solution paths of the 
homotopy

 𝐻 𝑥, 𝑡 ≔ 𝐹 𝑥, 𝛾 𝑡

from 𝑥 ∈ 𝑆 at 𝑡 = 1 as 𝑡 → 0.

: N Nf 

Non-
generic 

parameter 
points

𝑝1

𝑡=1

𝛾(𝑡)

𝑡=0
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Basic Total-degree Homotopy

To find all isolated solutions to the polynomial 
system {f1,…,fN}:

Number of paths to track =

 iid fdeg complex. random, 
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Positive-Dimensional Sets

 Problem 2:

 Given: polynomial system

 Find:

 What does this mean when dim 𝑉 𝑓 > 0?

 In numerical algebraic geometry, it means we 
find witness sets for the irreducible 
components of 𝑉 𝑓 .

 Reduces Problem 2 to several instances of 
Problem 1.

: N nf 

 ( ) : | ( ) 0NV f x f x 
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Basic Construct: Witness Set

 Witness set for irreducible 
algebraic set A is {F,L,LՈA}

 F is a polynomial system such 
that A is an irreducible 
component of V(F)

 L is a generic linear space of 
complementary dimension to A

 LՈA is the witness point set
 d points on a degree d component

A

L
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The Bertini Package

 Procedures available
 Path tracking

 Adaptive precision with singular endgame

 Zero-dimensional solving
 Multi-homogeneous & regeneration homotopies

 User-defined & parameter homotopies

 Positive-dimensional sets
 Irreducible decomposition

 Membership test

 Intersection

 Basic data
 Written in C, uses GMP & MPFR for multi-precision

 Executables available for 32 & 64 bit Linux & Windows via Cygwin

 Version 1.0 released April 2008, current open-source version is 1.4

 Authors: Bates, Hauenstein, Sommese, & Wampler
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Further Reading

Sommese & 
Wampler

World 
Scientific 

2005

Bates, 
Hauenstein, 
Sommese & 

Wampler

SIAM 
Nov.2013
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COMPUTING 
INTERSECTIONS
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Intersection 𝐴 ∩ 𝐵

 Suppose irreducible algebraic sets 𝐴 and 𝐵 are given by witness sets.
𝑓𝐴, 𝐿𝐴,𝑊𝐴 , 𝑓𝐵, 𝐿𝐵 ,𝑊𝐵

 Although 𝐴 ∩ 𝐵 ⊂ 𝑉(𝑓𝐴, 𝑓𝐵), it doesn’t always suffice to compute the irreducible 
decomposition of 𝑉(𝑓𝐴, 𝑓𝐵)

 Counterexample is the case 𝑓𝐴 = 𝑓𝐵
 Even if that does suffice, it can be very wasteful.

 Example: 𝑉(𝑓𝐴) can have many irreducible components besides 𝐴.

 Intersection methods target 𝐴 ∩ 𝐵 directly 
 Diagonal homotopy finds witness points for (𝐴 × 𝐵) ∩ 𝑉(𝑥 − 𝑦), where 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵.

 Sommese, Verschelde, W., 2004

 Isosingular deflation completes the witness set when 𝐴 ∩ 𝐵 is not an irreducible 
component of 𝑉(𝑓𝐴, 𝑓𝐵).

 Witness points are generic (w/probability 1), so the Jacobian matrix 
𝐽𝑓𝐴
𝐽𝑓𝐵

evaluated at a 

witness point has generic rank.  
 When the rank condition is appended to the system & iterated, one obtains a system that 

completes the witness set.
 Hauenstein & W., 2013

 Proof depends on the weak deflation theorem of Leykin, Verscheld, & Zhao 2006.

 Regeneration allows computation of 𝐴 ∩ 𝑉(𝑓) without first decomposing 𝑉(𝑓)
 Regeneration: Hauenstein, Sommese, & W. 2011; H&W preprint
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Regeneration

 Hauenstein, Sommese, & Wampler
 “Regeneration homotopies…”, Math.Comp. 2011 
 “Regenerative cascades…”, Appl.Math.Comp. 2011

 Basic step to find 𝑉0(𝑓1, … , 𝑓𝑁)
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Regeneration: Step 1
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Regeneration: Step 2
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New Method for (𝐴 × 𝐵) ∩ 𝑉(𝑓)

 Generalization of the diagonal homotopy for 
𝐴 ∩ 𝐵 ≡ 𝐴 × 𝐵 ∩ 𝑉(𝑥 − 𝑦)

 Replaces the diagonal 𝑉(𝑥 − 𝑦) with 𝑉(𝑓)
 Notes:

 𝑓 can involve new variables
 (𝐴 × 𝐵 × 𝐶) ∩ 𝑉(𝑓), etc., are treated similarly
 𝐴 ∩ 𝑉(𝑥 − 𝑥0) is the homotopy membership test to answer “Is 𝑥0 ∈ 𝐴?”

 Procedure
 Step 1: use witness sets for 𝐴, 𝐵 to get a witness set for 𝐴 × 𝐵 × ℂ𝑁

 Step 2: use the linear equations to regenerate a randomization of 𝑓
equation-by-equation

 Step 3: use isosingular deflation, as necessary, to get a witness 
system

 Step 4: (optional) decompose into irreducible components.

Note: (𝐴 × 𝐵 × 𝐶) ∩ 𝑉(𝑓), etc., similar
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COMPUTING 
REAL ALGEBRAIC SETS
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Projections and Cell Decomposition

 Let 𝐴 ⊂ ℂ𝑁 be an irreducible algebraic set of dimension 𝑑 and 
multiplicity 1

 If mult 𝐴 > 1, replace 𝐴 by iso(𝐴)
 Let 𝑓𝐴, 𝐿𝐴,𝑊𝐴 be a witness set for 𝐴. We assume 𝑓𝐴 is real.
 We want to find 𝐴 ∩ ℝ𝑁

 Let 𝜋: ℂ𝑁 → ℂ𝑑 be a generic linear projection
 For 𝑥 in a Zariski-open subset of ℂ𝑑, 𝐴 ∩ 𝜋−1 𝑥 consists of deg(𝐴)

isolated, nonsingular points.  

 This still holds for generic 𝜋:ℝ𝑁 → ℝ𝑑

 We have deg(𝐴) points in ℂ𝑁, of which ≤ deg 𝐴 are in ℝ𝑁.
 Define the critical set of 𝐴 with respect to 𝜋 as

𝐾 ≔ 𝑐𝑟𝑖𝑡𝜋 𝐴 = 𝐴 ∩ 𝑉 det
𝐽𝑓𝐴
𝐽𝜋

∩ ℝ𝑁

 This is a necessary condition for the real root count to change.
 In any continuous subset 𝑈 ⊂ ℝ𝑑 with 𝑈 ∩ 𝜋(𝐾) = ∅, 𝜋−1 𝑈 ∩ 𝐴 is a 

collection of nonsingular 𝑑-dimensional sheets
 Coordinates on 𝑈 define coordinate patches on 𝐴.
 We can track paths on the sheets of 𝐴 by continuation.

 To describe 𝐴 ∩ ℝ𝑁, it suffices to decompose ℝ𝑑 ∖ 𝜋(𝐾) into cells 
and use continuation to determine:

 How the real sheets meet each other, and
 How the real sheets meet 𝐾.
 Note: some pieces of 𝐾 might have no sheets meeting them.  

 These are lower-dimensional pieces of 𝐴 ∩ ℝ𝑁.

 Ex: isolated singular points, Whitney umbrella handle.

𝑈

𝜋(𝐾)

ℝ𝑑
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Real curves and surfaces

𝜋

ℝ1

𝐾 …

𝜋(𝐾)

…

𝐴
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Real Cell Decomposition

 Steps
 Find a witness set for critical set 𝐾 in ℂ𝑁.

 Use an intersection algorithm: 𝐴 × 𝑃𝑁 ∩ 𝑉
𝐽𝑓𝐴
𝐽𝜋

𝑣

 Find a real cell decomposition of 𝐾. 
 If 𝐴 is a curve, then 𝐾 is just a set of points.

 The real points in 𝐾 are the endpoints of the cell decomposition.

 If 𝐴 is a surface, then 𝐾 is a curve, and we have to apply cell decomposition 
to 𝐾.

 Computing 𝑐𝑟𝑖𝑡𝜋1(𝑐𝑟𝑖𝑡𝜋2 𝐴 ) is the bottleneck

 The situation will be even worse for 3-folds and up.

 Use homotopies to connect all the patches.

 History
 Curve case: Lu, Bates, Sommese, & W., 2007
 Surface case: Besana, DiRocco, Hauenstein, Sommese, & W., 2013

 Restricted to “almost smooth” surfaces

 BertiniReal project: Brake, Hao, B,H,S,&W, preprint
 Software.  Curves & surfaces.  No theoretical restrictions.

 Daniel Brake’s talk will give more details.
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APPLICATIONS
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Four-Bar Design: Burmester Problems

 “Body guidance”
 Specify precision poses for 

the coupler frame to attain.
 Classic Burmester problem, 

1888

 “Path generation”
 Specify precision points for 

the coupler curve to 
interpolate

 Orientation ignored

 Alt’s 9-point problem, 1923

 “Mixed Burmester”
 Specify some poses and 

some positions
 Tong, Murray & Myszka, 

2013

Coupler point

Coupler frame

Circlepoint

Centerpoint
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Mixed Burmester family of problems

 Let m=# poses, n=# points

 Generic dimension of solution set is

D = 10 – 2m - n

# points

# 
poses 0 1 2 3 4 5 6 7 8

1 8 7 6 5 4 3 2 1 0

2 6 5 4 3 2 1 0

3 4 3 2 1 0

4 2 1 0

5 0

Alt’s 9-point 
problem.

Posed 1923.

Solved 1992.

Burmester’s
problems 1888
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Degree of Solution Set

# points

# poses 0 1 2 3 4 5 6 7 8

1 1 7 43 234 1108 3832 8716 10858 8652

2 22=4 24 134 552 1554 2388 2224

3 44=16 64 194 362 402*

4 44=16 48 60*

5 44=16

*Tong had 156 & 3116 for the 4-2 and 3-4 cases, resp., but this included 
degenerate singular solutions.
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Case 3-3: Curve of degree 362

 Plots show centerpoint curve (a projection): degree 128
 Generic # of critical points = 1440 nonsingular + 144 singular

Curve as sampled by Tong, 
Murray, & Myszka, 2013

Curve as decomposed by 
Hauenstein, 2014
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Another 3-3 Burmester curve

An irreducible 
curve of 

degree 362
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Sphere Packings

Table of 
“new seeds”

 Arkus, Manoharan, & Brenner 
 SIAM Discrete Math 25(4) 2011
 “Deriving finite sphere packings”
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Sphere Packings

 Problem: 
 determine all rigid packings of 𝑁 or fewer identical spheres

 Why is it interesting?
 Models how spheres immersed in a liquid form into colloidal mixtures of particle clusters.

 Hard spheres with short-range attraction

 Knowing the complete list of packings allows determination of energies and predictions of 
cluster distribution.

 Manoharan (Harvard) runs experiments with microspheres.  
 Uses diffraction imaging to analyze the clusters.

 Possibility of designing colloids or micro-manufacturing desired clusters by mixing spheres with 
different DNA coatings

 Determining all packings of size ≤ 𝑁:
 Enumerate all non-isomorphic, minimally-rigid, adjacency matrices, 𝐴.

 𝐴𝑖𝑗 = {1, if 𝑆𝑖 touches 𝑆𝑗; 0, else.}

 Minimally-rigid = exactly 3𝑁 − 6 contacts for 𝑁 spheres.
 Prune by impossibility rules

 Example: if a touches b, at most 5 spheres can touch a&b.

 For each 𝐴, solve the system of distance equations.
 Find all isolated real roots – not necessarily unique!
 Cull out any with interpenetrating spheres.
 Detect chiral pairs.

bad packing good packing
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Solving Packings

 Packings do not need to be solved from scratch
 They can be decomposed into a series of previously solved 

sub-problems.
 We call these “packing rules” 
 Each is a parameterized polynomial system
 After solving a rule for generic parameters, subsequent appearances 

of the rule can be solved via parameter continuation.

 Packing rules can be represented by a kinematic type graph
 Graphs composed from

 2 types of nodes: 
 P = point
 R = rigid body

 3 types of edges:
 c = Simple contact – points have only this kind
 v = Shared vertex (spherical joint)
 e = Shared edge (hinge joint)

 Minimally rigid: 3𝑃 + 6𝑅 − 𝑐 − 3𝑣 − 5𝑒 = 6
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Combinatorics of packings

 From Arkus, Manoharan, & Brenner
 Here, “Iterative” means solvable with 

 Tetrahedron rule applied to 𝑛 − 1; or
 Gluing rigid bodies at shared faces.

 A bigger set of rules will tamp down 
the combinatorial explosion
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Some Packing Rules

P

c

R

P

P

P

P

Triangle. 

1 Root.

Tetrahedron. 

2 Roots.

R

R

R

c

c

c

c

c
cv cc

e

R

R

c e

c4 Revolute robot. 

4 Roots.

Spherical pentad. 

6 Roots.

c c

R

cc cc

R

Stewart-Gough 
platform. 

40 Roots.

c c
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Building with rules

 Each rule gives (one or more) solutions, each a rigid 
packing.

 These can be a rigid body that is a subset of a bigger 
packing.

 The vast majority of big 𝑁 packings have at least one rigid 
sub-packing.

 Rules can be deployed as:
 Elimination-type solutions for easy cases
 Parameter-continuation solutions for harder ones.

 M. Holmes-Cerfon is using Bertini

 2 caveats:
 Singular solutions occur. First is at 𝑁 = 9.
 Numerical error propagates, so one may need to solve the sub-

problems more accurately than the final problem. 
 Use endpoint refinement algorithms.
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Wrap-up

 Numerical algebraic geometry
 Witness sets are the fundamental construct
 Irreducible decomposition is key.
 Software: Bertini

 Open source, free.

 Intersection algorithms
 Enable further investigations of sets represented by witness sets
 Regeneration approach is the most effective at present
 Isosingular theory enables treatment of singular cases

 Cell decomposition of real algebraic sets
 Builds a complete topological map of the real set
 Uses intersection and isosingular deflation
 Limited at present to curves and surfaces

 Applications
 Robot and mechanism kinematics lead to interesting polynomial systems

 Mechanism design problems are especially challenging
 Real solutions are desirable.
 BertiniReal can decompose high degree curves from this class.

 Sphere packing problems
 Intersection algorithms can solve the packing rules as parameterized families
 Deploying the rules effectively should push the envelope on # of spheres.


