Advances in Numerical Algebraic Geometry with Applications

Charles Wampler General Motors R&D Center Warren, Michigan, USA

Primary Collaborators

- Numerical Algebraic Geometry (including Bertini software development)
 - Andrew Sommese, Notre Dame
 - Jon Hauenstein, Notre Dame
 - Dan Bates, CSU
- BertiniReal software
 - All of the above
 - Daniel Brake, Notre Dame
 - Wenrui Hao, MBI (Ohio State)
- Applications
 - Mechanism Design: A. Murray, D. Myszka, U. Dayton
 - Sphere Packings: Miranda Holmes-Cerfon, NYU

Outline

Motivation

Numerical algebraic geometry

- Background
- Intersection of algebraic sets
- Real algebraic sets
- Applications
 - Mechanism design
 - Sphere packings

MOTIVATION 1: KINEMATICS & ROBOTICS

Robonaut 2 on ISS

Handshake in space

Working at the task board

Big Picture

GM

MOTIVATION 2: SPHERE PACKINGS

How do micro-spheres cluster?

- Arkus, Manoharan, & Brenner
 - SIAM Discrete Math 25(4) 2011
 - "Deriving finite sphere packings"

- Holmes-Cerfon, Gortler, & Brenner, M.P.
 - Proc. Natl. Acad. Sci. 110 (1) (2013)
 - "A geometrical approach to computing energy landscapes from short-ranged potentials"

BACKGROUND: NUMERICAL ALGEBRAIC GEOMETRY

Homotopy Algorithms (a.k.a. Continuation)

- Problem 1:
 - Find all **isolated** solutions to a polynomial system

$$f:\mathbb{C}^N\to\mathbb{C}^N$$

- Approach:
 - Cast f(x) as a member of a parameterized family of systems, say F(x,p), with $F(x,p_0) \equiv f(x)$.
 - Solve a generic member of the family, say F(x, p₁).
 - Isolated solutions are set *S*.
 - Establish a general continuous path $\gamma(t)$ from p_1 to p_0 .
 - $\gamma(1) = p_1, \ \gamma(0) = p_0.$
 - Follow solution paths of the homotopy
 - $H(x,t) \coloneqq F(x,\gamma(t))$

from $x \in S$ at t = 1 as $t \to 0$.

Notes:

- Non-generic set is real codimension 2.
- So a randomized path is *general* for $t \in (0,1]$ with **probability 1**.
 - > probability 1 algorithm
- The key is picking a family F(x,p) that
 - 1. Has a generic p_1 at which $F(x, p_1) = 0$ is easy (enough) to solve.
 - 2. Has #(S) as small as possible.
- It's OK if p_0 is not generic.

Basic Total-degree Homotopy

To find all isolated solutions to the polynomial system $\{f_1, \dots, f_N\}$:

Positive-Dimensional Sets

Problem 2:

- Given: polynomial system $f: \mathbb{C}^N \to \mathbb{C}^n$
- Find: $V(f) := \{x \in \mathbb{C}^N \mid f(x) = 0\}$
- What does this mean when $\dim V(f) > 0$?
 - In numerical algebraic geometry, it means we find witness sets for the *irreducible components* of V(f).
 - Reduces Problem 2 to several instances of Problem 1.

Basic Construct: Witness Set

- Witness set for irreducible algebraic set A is $\{F, L, L \cap A\}$
 - F is a polynomial system such that A is an irreducible component of V(F)
 - L is a generic linear space of complementary dimension to A
 - L\OA is the witness point set
 d points on a degree d component

The Bertini Package

Procedures available

- Path tracking
 - Adaptive precision with singular endgame
- Zero-dimensional solving
 - Multi-homogeneous & regeneration homotopies
 - User-defined & parameter homotopies
- Positive-dimensional sets
 - Irreducible decomposition
 - Membership test
 - Intersection

Basic data

- Written in C, uses GMP & MPFR for multi-precision
- Executables available for 32 & 64 bit Linux & Windows via Cygwin
- Version 1.0 released April 2008, current open-source version is 1.4
- Authors: Bates, Hauenstein, Sommese, & Wampler

Further Reading

Intersection $A \cap B$

Suppose irreducible algebraic sets *A* and *B* are given by witness sets.

 $\{f_A, L_A, W_A\}, \{f_B, L_B, W_B\}$

- Although $A \cap B \subset V(f_A, f_B)$, it doesn't always suffice to compute the irreducible decomposition of $V(f_A, f_B)$
 - Counterexample is the case $f_A = f_B$
- Even if that does suffice, it can be very wasteful.
 - Example: $V(f_A)$ can have many irreducible components besides A.
- Intersection methods target $A \cap B$ directly
 - Diagonal homotopy finds witness points for $(A \times B) \cap V(x y)$, where $x \in A, y \in B$.
 - Sommese, Verschelde, W., 2004
 - *Isosingular deflation* completes the <u>witness set</u> when $A \cap B$ is not an irreducible component of $V(f_A, f_B)$.
 - Witness points are *generic* (w/probability 1), so the Jacobian matrix $\begin{bmatrix} Jf_A \\ Jf_B \end{bmatrix}$ evaluated at a witness point has generic rank.
 - When the rank condition is appended to the system & iterated, one obtains a system that completes the witness set.
 - Hauenstein & W., 2013
 - Proof depends on the weak deflation theorem of Leykin, Verscheld, & Zhao 2006.
 - Regeneration allows computation of $A \cap V(f)$ without first decomposing V(f)
 - Regeneration: Hauenstein, Sommese, & W. 2011; H&W preprint

Regeneration

Hauenstein, Sommese, & Wampler

- "Regeneration homotopies...", Math.Comp. 2011
- "Regenerative cascades...", Appl.Math.Comp. 2011
- Basic step to find $V_0(f_1, ..., f_N)$

Regeneration: Step 1

GМ

Regeneration: Step 2

New Method for $(A \times B) \cap V(f)$

Note: $(A \times B \times C) \cap V(f)$, etc., similar

Generalization of the diagonal homotopy for

$$A \cap B \equiv (A \times B) \cap V(x - y)$$

- Replaces the diagonal V(x y) with V(f)
- Notes:
 - *f* can involve new variables
 - $(A \times B \times C) \cap V(f)$, etc., are treated similarly
 - $A \cap V(x x_0)$ is the homotopy membership test to answer "Is $x_0 \in A$?"
- Procedure
 - Step 1: use witness sets for A, B to get a witness set for $A \times B \times \mathbb{C}^N$
 - Step 2: use the linear equations to regenerate a randomization of f equation-by-equation
 - Step 3: use isosingular deflation, as necessary, to get a witness system
 - Step 4: (optional) decompose into irreducible components.

COMPUTING REAL ALGEBRAIC SETS

Projections and Cell Decomposition

- Let $A \subset \mathbb{C}^N$ be an irreducible algebraic set of dimension d and multiplicity 1
 - If mult(A) > 1, replace A by iso(A)
 - Let $\{f_A, L_A, W_A\}$ be a witness set for A. We assume f_A is real.
 - We want to find $A \cap \mathbb{R}^N$
- Let $\pi: \mathbb{C}^N \to \mathbb{C}^d$ be a generic linear projection
 - For x in a Zariski-open subset of \mathbb{C}^d , $A \cap \pi^{-1}(x)$ consists of deg(A) isolated, nonsingular points.
- This still holds for generic $\pi: \mathbb{R}^N \to \mathbb{R}^d$
 - We have deg(A) points in \mathbb{C}^N , of which $\leq deg(A)$ are in \mathbb{R}^N .
 - Define the *critical set* of A with respect to π as

$$K \coloneqq crit_{\pi}(A) = A \cap V\left(\det\begin{bmatrix}Jf_A\\J\pi\end{bmatrix}\right) \cap \mathbb{R}^N$$

- This is a necessary condition for the real root count to change.
- In any continuous subset $U \subset \mathbb{R}^d$ with $U \cap \pi(K) = \emptyset$, $\pi^{-1}(U) \cap A$ is a collection of nonsingular *d*-dimensional sheets
- Coordinates on *U* define coordinate patches on *A*.
- We can track paths on the sheets of *A* by continuation.
- To describe $A \cap \mathbb{R}^N$, it suffices to decompose $\mathbb{R}^d \setminus \pi(K)$ into cells and use continuation to determine:
 - How the real sheets meet each other, and
 - How the real sheets meet *K*.
 - Note: some pieces of *K* might have no sheets meeting them.
 - These are lower-dimensional pieces of $A \cap \mathbb{R}^N$.
 - Ex: isolated singular points, Whitney umbrella handle.

Real curves and surfaces

Real Cell Decomposition

Steps

- Find a witness set for critical set K in \mathbb{C}^N .
 - Use an intersection algorithm: $(A \times P^N) \cap V \begin{pmatrix} Jf_A \\ I\pi \end{pmatrix} v$
- Find a real cell decomposition of *K*.
 - If A is a curve, then K is just a set of points.
 - The real points in *K* are the endpoints of the cell decomposition.
 - If *A* is a surface, then *K* is a curve, and we have to apply cell decomposition to *K*.
 - Computing $crit_{\pi_1}(crit_{\pi_2}(A))$ is the bottleneck
 - The situation will be even worse for 3-folds and up.
- Use homotopies to connect all the patches.
- History
 - Curve case: Lu, Bates, Sommese, & W., 2007
 - Surface case: Besana, DiRocco, Hauenstein, Sommese, & W., 2013
 - Restricted to "almost smooth" surfaces
 - BertiniReal project: Brake, Hao, B,H,S,&W, preprint
 - Software. Curves & surfaces. No theoretical restrictions.
- Daniel Brake's talk will give more details.

APPLICATIONS

Four-Bar Design: Burmester Problems

- "Body guidance"
 - Specify precision poses for the coupler frame to attain.
 - Classic Burmester problem, 1888
 - "Path generation"
 - Specify precision points for the coupler curve to interpolate
 - Orientation ignored
 - Alt's 9-point problem, 1923
 - "Mixed Burmester"
 - Specify some poses and some positions
 - Tong, Murray & Myszka, 2013

Mixed Burmester family of problems

Let m=# poses, n=# points

• Generic dimension of solution set is D = 10 - 2m - n

Degree of Solution Set

*Tong had 156 & 3116 for the 4-2 and 3-4 cases, resp., but this included degenerate singular solutions.

Case 3-3: Curve of degree 362

Plots show centerpoint curve (a projection): degree 128 Generic # of critical points = 1440 nonsingular + 144 singular

Curve as sampled by Tong, Murray, & Myszka, 2013

Curve as decomposed by Hauenstein, 2014

Another 3-3 Burmester curve

An irreducible curve of degree 362

Sphere Packings

- Arkus, Manoharan, & Brenner
 - SIAM Discrete Math 25(4) 2011 .
 - "Deriving finite sphere packings"

Sphere Packings

- Problem:
 - determine all rigid packings of N or fewer identical spheres
- Why is it interesting?
 - Models how spheres immersed in a liquid form into colloidal mixtures of particle clusters.
 - Hard spheres with short-range attraction
 - Knowing the complete list of packings allows determination of energies and predictions of cluster distribution.
 - Manoharan (Harvard) runs experiments with microspheres.
 - Uses diffraction imaging to analyze the clusters.
 - Possibility of designing colloids or micro-manufacturing desired clusters by mixing spheres with different DNA coatings
- Determining all packings of size $\leq N$:
 - Enumerate all non-isomorphic, minimally-rigid, adjacency matrices, A.
 - $A_{ij} = \{1, \text{ if } S_i \text{ touches } S_j; 0, \text{ else.}\}$
 - Minimally-rigid = exactly 3N 6 contacts for N spheres.
 - Prune by impossibility rules
 - Example: if a touches b, at most 5 spheres can touch a&b.
 - For each *A*, solve the system of distance equations.
 - Find all isolated real roots not necessarily unique!
 - Cull out any with interpenetrating spheres.
 - Detect chiral pairs.

bad packing

good packing

Solving Packings

- Packings do not need to be solved from scratch
 - They can be decomposed into a series of previously solved sub-problems.
 - We call these "packing rules"
 - Each is a parameterized polynomial system
 - After solving a rule for generic parameters, subsequent appearances of the rule can be solved via *parameter continuation*.
- Packing rules can be represented by a kinematic type graph
 - Graphs composed from
 - 2 types of nodes:
 - P = point
 - R = rigid body
 - 3 types of edges:
 - c = Simple contact points have only this kind
 - v = Shared vertex (spherical joint)
 - e = Shared edge (hinge joint)
 - Minimally rigid: 3P + 6R c 3v 5e = 6

Combinatorics of packings

n	\mathcal{A} 's	Non-Isomorphic \mathcal{A} 's	$\begin{array}{c} \text{Minimally} \\ \text{rigid} \ \mathcal{A}\text{'s} \end{array}$	Iterative \mathcal{A} 's	Non-Iterative \mathcal{A} 's
1	1	1	1	1	0
2	2	2	1	1	0
3	8	4	1	1	0
4	64	11	1	1	0
5	1,024	34	1	1	0
6	32,768	156	4	3	1
7	2,097,152	1,044	29	26	3
8	268,435,456	12,346	438	437	1
9	$6.8719 \cdot 10^{10}$	274,668	13,828	13,823	5
10	$3.5184 \cdot 10^{13}$	12,005,168	750,352	750,258	94

TABLE 1. The Growth of Adjacency Matrices with n.

- From Arkus, Manoharan, & Brenner
- Here, "Iterative" means solvable with
 - Tetrahedron rule applied to n 1; or
 - Gluing rigid bodies at shared faces.

 A bigger set of rules will tamp down the combinatorial explosion

Some Packing Rules

Building with rules

- Each rule gives (one or more) solutions, each a rigid packing.
- These can be a rigid body that is a subset of a bigger packing.
- The vast majority of big N packings have at least one rigid sub-packing.
- Rules can be deployed as:
 - Elimination-type solutions for easy cases
 - Parameter-continuation solutions for harder ones.
 - M. Holmes-Cerfon is using Bertini
 - 2 caveats:
 - Singular solutions occur. First is at N = 9.
 - Numerical error propagates, so one may need to solve the subproblems more accurately than the final problem.
 - Use endpoint refinement algorithms.

Wrap-up

- Numerical algebraic geometry
 - Witness sets are the fundamental construct
 - Irreducible decomposition is key.
 - Software: Bertini
 - Open source, free.
- Intersection algorithms
 - Enable further investigations of sets represented by witness sets
 - Regeneration approach is the most effective at present
 - Isosingular theory enables treatment of singular cases
- Cell decomposition of real algebraic sets
 - Builds a complete topological map of the real set
 - Uses intersection and isosingular deflation
 - Limited at present to curves and surfaces
- Applications
 - Robot and mechanism kinematics lead to interesting polynomial systems
 - Mechanism design problems are especially challenging
 - Real solutions are desirable.
 - BertiniReal can decompose high degree curves from this class.
 - Sphere packing problems
 - Intersection algorithms can solve the packing rules as parameterized families
 - Deploying the rules effectively should push the envelope on # of spheres.

