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‘ Primary Collaborators

= Numerical Algebraic Geometry
(including Bertini software development)
= Andrew Sommese, Notre Dame
= Jon Hauenstein, Notre Dame
« Dan Bates, CSU
= BertiniReal software
= All of the above
= Daniel Brake, Notre Dame
= Wenrui Hao, MBI (Ohio State)
= Applications
= Mechanism Design: A. Murray, D. Myszka, U. Dayton
= Sphere Packings: Miranda Holmes-Cerfon, NYU
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‘ Outline

= Motivation

= Numerical algebraic geometry
= Background
= Intersection of algebraic sets
= Real algebraic sets

= Applications
= Mechanism design
= Sphere packings
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MOTIVATION 1:
KINEMATICS & ROBOTICS
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H ndske in space . Working at the task board
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Teflon Liner
Braided Polymer Tendon
Tendon Terminator

Input: sliders Ly, L,
Output: angles 6, 9,

System of polynomial equations:
F(Ll, Lz, 891’ C91’ ng, C92)=0

MmInverse problem: 2 - 2 = 4 solutions
mForward problem: 8 solutions
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Carricato & Parenti-Castelli
IJRR, 2004

Fig. 1. A 2-DoF fully parallel wrist 7{ general geometry.

almost




‘ Big Picture

Forward kinematics Inverse kinematics

M K > Y outeut

- Workspace
synthesis
X X @ -~ = &) - Y x Q)

DESIGN 3
PARAMETERS
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MOTIVATION 2:
SPHERE PACKINGS
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Arkus, Manoharan, & Brenner

SIAM Discrete Math 25(4) 2011
“Deriving finite sphere packings”

How do micro-spheres cluster?

= Holmes-Cerfon, Gortler, & Brenner, M.P.

Proc. Natl. Acad. Sci. 110 (1) (2013)
“A geometrical approach to computing energy

landscapes from short-ranged potentials”

n=6 g({/ Ve > Each sphere-to-sphere
contact is a distance
constraint .
n=7 | & > Enumerate the possible
© adjacency graphs |
ics | &/ A" > Solve each system of quadric
i(% Vo polynomials
= G . - 3 e
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BACKGROUND:
NUMERICAL ALGEBRAIC
GEOMETRY

Simons Institute, Oct. 14, 2014 10



= Problem 1:
= Find all isolated solutions to a
polynomial system
f.:cN->cN
= Approach:

= Cast f(x) as a member of a
parameterized family of systems,

say F(x,p), with F(x,p,) = f(x).
= Solve a generic member of the
family, say F(x, p,).
Isolated solutions are set S.
= Establish a general continuous
path y(t) from p,to p,.
y(1) =p1, v(0) = po.
= Follow solution paths of the
homotopy

H(x,t) = F(x,y(0))
fromxeSatt=1ast - 0.

Simons Institute, Oct. 14, 2014

Notes:

Homotopy Algorithms (a.k.a. Continuation)

Parameter Non-
Space generic
parameter
Py points
t=1

Non-generic set is real codimension 2.

So a randomized path is general for t € (0,1]
with probability 1.

»  probability 1 algorithm
The key is picking a family F(x,p) that
1. Has a generic p;at which F(x,p;) =0

is easy (enough) to solve.

2. Has #(S) as small as possible.
It's OK if p, is not generic.




Basic Total-degree Homotopy

To find all isolated solutions to the polynomial
system {f,,...,f\}:

H(x,t) = (1t

//\ “Probal?,ility
d. = deg(f,) y random, conplex. | 1

[Number of pathstotrack = d, -d, ---d ]
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‘ Positive-Dimensional Sets

= Problem 2:
= Given: polynomial system f:C" —C"
« Find: V(f):={xeC"|f(x)=0}
= What does this mean when dim V(f) > 07?

= In numerical algebraic geometry, it means we
find witness sets for the /rreaucible
components of V(f).

= Reduces Problem 2 to several instances of
Problem 1.
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‘ Basic Construct: Witness Set

s Witnhess set for irreducible
algebraic set A is {F,L,LNA}

= Fis a polynomial system such
that A is an irreducible
component of V(F)

= L is a generic linear space of
complementary dimension to A

= LNA is the witness point set
d points on a degree d component
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The Bertini Package

= Procedures available
= Path tracking
Adaptive precision with singular endgame
= Zero-dimensional solving
Multi-homogeneous & regeneration homotopies
User-defined & parameter homotopies

= Positive-dimensional sets
Irreducible decomposition
Membership test
Intersection
= Basic data
= Written in C, uses GMP & MPFR for multi-precision
= Executables available for 32 & 64 bit Linux & Windows via Cygwin
= Version 1.0 released April 2008, current open-source version is 1.4
= Authors: Bates, Hauenstein, Sommese, & Wampler
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Further Reading

Sommese & = ‘
Wampler ‘ ' kn-n]::'nk'\‘ I\l‘le;\-Lxr Ch';:t\ ‘\l‘ \‘U\”’::;:I\:l
The Numerical Solution - 3 el Sl
o 2l 4 /
of Systems of Polynomials World = pulmmcq lyg ol
Arising in Engineering and Science Scientific S & ynqmla 2 ).'b-ttmb
2005 g with Bertini
| Bates,
Hauenstein, |
Sommese & |
Wampler | =
Andrew J. Sommease « Charles W. Wampler, |l SIAM
Nov.2013
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COMPUTING
INTERSECTIONS
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Intersection AN B

= Suppose irreducible algebraic sets A and B are given by witness sets.

{fAr LAJ WA}: {fBJ LB' WB}

= Although An B c V(f,, fg), it doesn't always suffice to compute the irreducible
decomposition of V(fy4, fz)

Counterexample is the case f, = f3
= Even if that does suffice, it can be very wasteful.
Example: V(f,) can have many irreducible components besides A.
= Intersection methods target A n B directly
= Diagonal homotopy finds witness points for (A x B) nV(x —y), where x € A,y € B.
Sommese, Verschelde, W., 2004

= Isosingular deflation completes the witness set when A n B is not an irreducible
component of V (£, fz).

Witness points are generic (w/probability 1), so the Jacobian matrix J1a

: : : J
witness point has generic rank. Je

When the rank condition is appended to the system & iterated, one obtains a system that
completes the witness set.
Hauenstein & W., 2013

Proof depends on the weak deflation theorem of Leykin, Verscheld, & Zhao 2006.

] evaluated at a

= Regeneration allows computation of A n V(f) without first decomposing V (f)
Regeneration: Hauenstein, Sommese, & W. 2011; H&W preprint
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‘ Regeneration

= Hauenstein, Sommese, & Wampler

= “Regeneration homotopies...”, Math.Comp. 2011
= “Regenerative cascades...”, Appl.Math.Comp. 2011

= Basic step to find Vy(fy, ..., fv)

[ 100 ] [ 100 ]
i (X) f_1(X)
Vol [ Le(X) | ) V| [ f.(X)]
Lk+1 (X) Lk+1 (X)

(L Lv(X) 4, L L (%) )
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Regeneration: Step 1
:ﬁ—_ o

A

fk—1.(x)
L, (X)
Lk+1(X)

LX) )

Let d,=deg(f)

Vol || L2 (X)

/ I—k+1 (X)

move linear

fcn d, times
(use linear
homotopy)

Simons Institute, Oct. 14, 2014

Union of
sets

Vo

‘ f1<x)\/—) v,

fk—;(x)

Lk,dk (x)

| Ly .(X) ]

I‘k+1 (X)

20

f,(x)

fk—l.(x)
[Lk,l(x) Ly, (X)]
Ly.1(X)

Ly .(X)




‘ Regeneration: Step 2

/

f, (x) \ - f(x)
| Linear |
i1 (X) homotopy i1 (X)
Lo () Ly g, (X) > Vol |[T.(0)
Lk+1 (X) Lk+1 (X)
Ly (X) 1 Ly (X)
Repeat for k+1,k+2,...,N

Simons Institute, Oct. 14, 2014
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‘ New Method for (A X B) NV (f)
Note: (A X B x C) nV(f), etc., similar

= Generalization of the diagonal homotopy for
ANB=AXB)NV(x—1y)
= Replaces the diagonal V(x — y) with V' (f)

= Notes:
f can involve new variables
(AX B xC)nV(f), etc., are treated similarly
ANV(x— xy) is the homotopy membership test to answer “Is x, € A?"

= Procedure
= Step 1: use witness sets for 4, B to get a witness set for 4 x B x CV
= Step 2: use the linear equations to regenerate a randomization of f
equation-by-equation
= Step 3: use isosingular deflation, as necessary, to get a witness
system

= Step 4: (optional) decompose into irreducible components.
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*—

COMPUTING
REAL ALGEBRAIC SETS
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Projections and Cell Decomposition

= Let A c C" be an irreducible algebraic set of dimension d and
multiplicity 1
«  If mult(4) > 1, replace A by iso(4)
»  Let {f,, Ly, W,} be a witness set for A. We assume f,, is real.
« Wewanttofind AnRY
= Let m:CN - €% be a generic linear projection

= For x in a Zariski-open subset of €%, A n = 1(x) consists of deg(4)
isolated, nonsingular points.

= This still holds for generic 7: RN —» R4
= We have deg(4) points in CV, of which < deg(4) are in R".
= Define the critical set of A with respect to 7 as

K :=crit,(A) =AnV (det []]{‘:]) N RN

= Thisis a necessary condition for the real root count to change. ]Rd
= Inany continuous subset U c RE with Unm(K) = @, n 2 (U)NnAis a
collection of nonsingular d-dimensional sheets
« Coordinates on U define coordinate patches on A.
=  We can track paths on the sheets of A by continuation.
= To describe A n RY, it suffices to decompose R? \ n(K) into cells
and use continuation to determine:
= How the real sheets meet each other, and

= How the real sheets meet K. 7T(K )
= Note: some pieces of K might have no sheets meeting them.

These are lower-dimensional pieces of A N RV,

Ex: isolated singular points, Whitney umbrella handle.
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‘ Real curves and surfaces
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‘ Real Cell Decomposition

= Steps
= Find a witness set for critical set K in CV.

Use an intersection algorithm: (A x PY) nV (l]]{ﬂ v)

= Find a real cell decomposition of K.

If A is a curve, then K is just a set of points.
The real points in K are the endpoints of the cell decomposition.

If Ais a surface, then K is a curve, and we have to apply cell decomposition
to K.
Computing crit, (crity,(A)) is the bottleneck

The situation will be even worse for 3-folds and up.
= Use homotopies to connect all the patches.

= History
Curve case: Lu, Bates, Sommese, & W., 2007
Surface case: Besana, DiRocco, Hauenstein, Sommese, & W., 2013
Restricted to “almost smooth” surfaces
BertiniReal project: Brake, Hao, B,H,S,&W, preprint
Software. Curves & surfaces. No theoretical restrictions.

= Daniel Brake’s talk will give more details.
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APPLICATIONS
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‘ Four-Bar Design: Burmester Problems

\Coupler frame = "Body guidance”

= Specify precision poses for
the coupler frame to attain.

= Classic Burmester problem,
1888

= Path generation”

= Specify precision points for
the coupler curve to
interpolate

Orientation ignored
Output Link = Alt's 9-point problem, 1923
= 'Mixed Burmester”

= Specify some poses and
some positions

= Tong, Murray & Myszka,
2013
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Coupler point
Circlepoint

Inpuf Link




‘ Mixed Burmester family of problems

= Let m=# poses, n=# points

s Generic dimension of solution set is

D=10-2m-n
# points

#
poses 0 1 2 3 4 8
1 8 7 6 5 4 O«
2 6 5 4 3 2
3 4 3 2 1 0
4 12,1 0
5 L0 e et
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Alt’s 9-point
problem.
Posed 1923.

Solved 1992.




‘ Degree of Solution Set

# points
# poses 0 1 2 4 5 6 7/ 8
1 1 7 43 1108 3832 8716 10858 8652
2 22=4 24 134 1554 2388 2224
(B)—44=16—64—194— 362 | 402*
4 | 44=16 48 60*
5 | 44=16

*Tong had 156 & 3116 for the 4-2 and 3-4 cases, resp., but this included
degenerate singular solutions.
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‘ Case 3-3: Curve of degree 362

= Plots show centerpoint curve (a projection): degree 128
= Generic # of critical points = 1440 nonsingular + 144 singular

x 10+ =
1.2}
\/ 100}
1t
o /‘”"‘\_; 5
0.8} e / /"""‘\\\ L 80|

60/}

0.4/ -/ ; o ° /\\ ( 40|

-0.2+ > o : 20}
Curve as sampled by Tong, Curve as decomposed by
Murray, & Myszka, 2013 Hauenstein, 2014
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‘ Another 3-3 Burmester curve

\ N\ N

An irreducible
curve of
degree 362
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Sphere Packings

* Table of
“new seeds”

p
'

e i
A == ; A SR e
: \ \‘«\‘ -8 3 AN N )‘ @\ Rﬁ l/ =/
B 4 g [ N ¢ X |
= \| v | P \l LW y 4
" ¥ = ‘
— W — T
n 1 0 : /L{,ﬁ\ L/
A .{ ; f \J
g
C

. Arkus, Manoharan, & Brenner
. SIAM Discrete Math 25(4) 2011
. “Deriving finite sphere packings”
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Sphere Packings

= Problem:
« determine all rigid packings of N or fewer identical spheres
= Why is it interesting?
= Models how spheres immersed in a liquid form into colloidal mixtures of particle clusters.
Hard spheres with short-range attraction
= Knowing the complete list of packings allows determination of energies and predictions of
cluster distribution.
= Manoharan (Harvard) runs experiments with microspheres.
Uses diffraction imaging to analyze the clusters.
= Possibility of designing colloids or micro-manufacturing desired clusters by mixing spheres with
different DNA coatings

= Determining all packings of size < N:

= Enumerate all non-isomorphic, minimally-rigid, adjacency matrices, A.
Aj; = {1,if §; touches §;; 0, else.}
Minimally-rigid = exactly 3N — 6 contacts for N spheres.
Prune by impossibility rules

Example: if a touches b, at most 5 spheres can touch a&b.

= For each 4, solve the system of distance equations.
Find all isolated real roots — not necessarily unique!
Cull out any with interpenetrating spheres.
Detect chiral pairs.

bad packing good packing
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‘ Solving Packings

= Packings do not need to be solved from scratch

= They can be decomposed into a series of previously solved
sub-problems.
We call these “packing rules”
Each is a parameterized polynomial system
After solving a rule for generic parameters, subsequent appearances
of the rule can be solved via parameter continuation.
= Packing rules can be represented by a kinematic type graph

= Graphs composed from

2 types of nodes:
P = point
R = rigid body

3 types of edges:
¢ = Simple contact — points have only this kind
v = Shared vertex (spherical joint)
e = Shared edge (hinge joint)

= Minimally rigid: 3P + 6R —c—3v —5e =6
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Combinatorics of packings

n A's Non-Isomorphic A’s | Minimally | Iterative A’s | Non-Iterative A's
rigid A’s

I I l l I ()

2 2 2 1 1 ()

3 S 4 1 1 0

4 64 11 1 | 0 |
51 1,024 34 1 1 0 |
6 32.768 156 4 3 1

7 2.097.152 1.044 29 20 3 |
8 | 268.435,456 12.346 438 437 |

9 | 6.8719 -10% 274.668 13.828 13.823 5 |
10| 3.5184 -10% 12.005,168 750,352 750,258 94

TABLE 1. The Growth of Adjacency Matrices with .

From Arkus, Manoharan, & Brenner

Here, “Iterative” means solvable with
= Tetrahedron rule applied to n — 1; or
= Gluing rigid bodies at shared faces.

Simons Institute, Oct. 14, 2014

A bigger set of rules will tamp down
the combinatorial explosion

36




‘ Some Packing Rules

Spherical pentad.

Triangle.
‘ \ 1 Root. 6 Roots.
c Tetrahedron.
/c C 2 Roots.

Stewart-Gough
platform.

40 Roots.
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4 Revolute robot.
4 Roots.




‘ Building with rules

= Each rule gives (one or more) solutions, each a rigid
packing.
= These can be a rigid body that is a subset of a bigger
packing.
= The vast majority of big N packings have at least one rigid
sub-packing.
= Rules can be deployed as:
= Elimination-type solutions for easy cases
= Parameter-continuation solutions for harder ones.
M. Holmes-Cerfon is using Bertini

= 2 caveats:
Singular solutions occur. Firstis at N = 9.

Numerical error propagates, so one may need to solve the sub-
problems more accurately than the final problem.
Use endpoint refinement algorithms.
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Wrap-up

= Numerical algebraic geometry
= Witness sets are the fundamental construct
= Irreducible decomposition is key.
= Software: Bertini
Open source, free.
= Intersection algorithms
= Enable further investigations of sets represented by witness sets
= Regeneration approach is the most effective at present
= Isosingular theory enables treatment of singular cases

= Cell decomposition of real algebraic sets
= Builds a complete topological map of the real set
= Uses intersection and isosingular deflation
= Limited at present to curves and surfaces

= Applications

= Robot and mechanism kinematics lead to interesting polynomial systems
Mechanism design problems are especially challenging
Real solutions are desirable.
BertiniReal can decompose high degree curves from this class.

= Sphere packing problems
Intersection algorithms can solve the packing rules as parameterized families
Deploying the rules effectively should push the envelope on # of spheres.
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