Sign Conditions for Injectivity of Generalized Polynomial Maps with Applications to Chemical Reaction Networks and Real Algebraic Geometry

Anne Shiu
Texas A&M University

Solving Polynomial Equations workshop
Simons Institute
13 October 2014
Outline of talk

- Steady states
- **Theorem**: sign conditions for \(\leq 1 \) positive real solution
- Connection to Descartes’ Rule of Signs
- *Four questions about steady states*
Question 1: inward-pointing networks

- **Theorem (Gopalkrishnan, Miller, AS 2014):**
 “Inward-pointing” networks like the one on the right (below) *always have* ≥ 1 *positive steady state.*
Question 1: inward-pointing networks

- **Theorem** (Gopalkrishnan, Miller, AS 2014): “Inward-pointing” networks like the one on the right (below) *always have* ≥ 1 *positive steady state.*

- **Question:** What about networks like the one on the left?

- **Wild speculation:** The above pictures are Newton polytopes. Is there any connection to the Bernstein bound on the number of solutions in $(\mathbb{C}^*)^n$ arising from a mixed-volume computation?
Question 2: Multisite Phosphorylation

The n-site (sequential and distributive) phosphorylation network is:

\[
S_0 + E \xleftrightarrow{k_{off_0}} ES_0 \xrightarrow{k_{cat_0}} S_1 + E \xleftrightarrow{k_{off_1}} \cdots \xrightarrow{k_{cat_{n-1}}} S_{n-1} + E \xleftrightarrow{k_{off_{n-1}}} ES_{n-1} \rightarrow S_n + E
\]

\[
S_n + F \xleftrightarrow{l_{off_{n-1}}} FS_n \xrightarrow{l_{cat_{n-1}}} S_{n-1} + F \xleftrightarrow{l_{off_0}} \cdots \xrightarrow{l_{cat_0}} S_1 + F \xleftrightarrow{l_{off_0}} FS_1 \rightarrow S_0 + F
\]

The rates k_{cat_0}, \ldots which yield multiple steady states are characterized by sign conditions, but what is the max #?

Theorem (Wang and Sontag 2008): The n-site phosphorylation system has $\leq 2n - 1$ steady states.

Conjecture: The n-site phosphorylation system has $\leq n + 1$ steady states for even n and $\leq n$ for odd n.

The conjecture is true for $n = 1, 2$, and disproven by Flockerzi, Holstein, and Conradi for odd $n \geq 3$ and $n = 4$. What about even $n \geq 6$?
Question 2: multisite phosphorylation

The n-site (sequential and distributive) phosphorylation network is:

\[
\begin{align*}
S_0 + E &\xrightleftharpoons[k_{\text{off}_0}]{k_{\text{on}_0}} ES_0 \quad &S_1 + E &\xrightleftharpoons[k_{\text{off}_1}]{k_{\text{cat}_0}} \quad \cdots \quad S_{n-1} + E &\xrightleftharpoons[k_{\text{off}_{n-1}}]{k_{\text{on}_{n-1}}} ES_{n-1} \rightarrow S_n + E \\
S_n + F &\xrightleftharpoons[l_{\text{off}_{n-1}}]{l_{\text{on}_{n-1}}} FS_n \quad &S_{n-1} + F &\xrightleftharpoons[l_{\text{off}_0}]{l_{\text{cat}_0}} \quad \cdots \quad S_1 + F &\xrightleftharpoons[l_{\text{off}_1}]{l_{\text{cat}_n-1}} FS_1 \rightarrow S_0 + F
\end{align*}
\]

- The rates k_{cat_0}, \ldots which yield multiple steady states are characterized by sign conditions, but what is the max #?

- **Theorem** (Wang and Sontag 2008): The n-site phosphorylation system has $\leq 2n - 1$ steady states.
Question 2: Multisite Phosphorylation

The \(n \)-site (sequential and distributive) phosphorylation network is:

\[
\begin{align*}
S_0 + E & \underset{k_{\text{off}0}}{\rightleftharpoons} ES_0 \underset{k_{\text{cat}0}}{\rightarrow} S_1 + E \quad \cdots \quad S_{n-1} + E & \underset{k_{\text{off}1}}{\rightleftharpoons} ES_{n-1} \rightarrow S_n + E \\
S_n + F & \underset{l_{\text{off}n-1}}{\rightleftharpoons} FS_n \underset{l_{\text{cat}n-1}}{\rightarrow} S_{n-1} + F \quad \cdots \quad S_1 + F & \underset{l_{\text{off}0}}{\rightleftharpoons} FS_1 \rightarrow S_0 + F
\end{align*}
\]

- The rates \(k_{\text{cat}0}, \ldots \) which yield multiple steady states are characterized by sign conditions, but what is the max \#?

- **Theorem** (Wang and Sontag 2008): The \(n \)-site phosphorylation system has \(\leq 2n - 1 \) steady states.

- **Conjecture:** The \(n \)-site phosphorylation system has \(\leq n + 1 \) steady states for even \(n \) and \(\leq n \) for odd \(n \).

- Conjecture is true for \(n = 1, 2 \), and disproven by Flockerzi, Holstein, and Conradi for odd \(n \geq 3 \) and \(n = 4 \).

What about even \(n \geq 6 \)?
Can we do a direct analysis of the (multiple) steady states of this network (Fouchet and Regoes, Plos One 2008)?

Alternate approach: lifting steady states from small to large networks (next slide)
Question 4: Lifting steady states

- **Theorem** *(Joshi and AS 2013)*: Assume that G and N are networks with inflows/outflows, such that N is obtained from G by removing reactions and species. Then if N admits multiple steady states, then G does too.

Question: For which other pairs (G, N) can we lift (multiple) steady states?
Summary

Sign conditions for \(\leq 1 \) positive real solution enable us to better understand steady states, but many open questions remain!
Summary

Sign conditions for ≤ 1 positive real solution enable us to better understand steady states, but many open questions remain!

Example:

\[
\begin{align*}
X_1 + X_2 & \leftrightarrow 0 \\
X_2 + X_3 & \leftrightarrow 0 \\
& \quad \vdots \\
X_{n-1} + X_n & \leftrightarrow 0 \\
2X_n & \leftrightarrow X_1
\end{align*}
\]

- If n is even, no multiple steady states
 (by sign conditions in today’s talk)
- If n is odd, network admits multiple steady states
 (by Schlosser and Feinberg 1993)
Summary

Sign conditions for \(\leq 1 \) positive real solution enable us to better understand steady states, but many open questions remain!

- **Example:**

 \[
 \begin{align*}
 X_1 + X_2 & \leftrightarrow 0 \\
 X_2 + X_3 & \leftrightarrow 0 \\
 & \vdots \\
 X_{n-1} + X_n & \leftrightarrow 0 \\
 2X_n & \leftrightarrow X_1
 \end{align*}
 \]

 - If \(n \) is even, *no* multiple steady states
 (by sign conditions in today’s talk)
 - If \(n \) is odd, network admits multiple steady states
 (by Schlosser and Feinberg 1993)

- **Upcoming related talks:** Alicia Dickenstein (today at 4:35)
 and Frédéric Bihan (Wednesday at 11:35)
Summary

Sign conditions for ≤ 1 positive real solution enable us to better understand steady states, but many open questions remain!

- Example:

 \[\begin{align*}
 X_1 + X_2 & \leftrightarrow 0 \\
 X_2 + X_3 & \leftrightarrow 0 \\
 & \vdots \\
 X_{n-1} + X_n & \leftrightarrow 0 \\
 2X_n & \leftrightarrow X_1
 \end{align*} \]

- If n is even, no multiple steady states (by sign conditions in today’s talk)
- If n is odd, network admits multiple steady states (by Schlosser and Feinberg 1993)

- Upcoming related talks: Alicia Dickenstein (today at 4:35) and Frédéric Bihan (Wednesday at 11:35)

- I am recruiting a postdoc.
Thank you.